Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Chemosphere ; 361: 142515, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830460

RESUMO

The catalytic performance of modified hydroxyapatite nanoparticles, Ca10-xFex-yWy(PO4)6(OH)2, was applied for the degradation of methylene blue (MB), fast green FCF (FG) and norfloxacin (NOR). XPS analysis pointed to the successful partial replacement of Ca by Fe. Under photo-electro-Fenton process, the catalyst Ca4FeII1·92W0·08FeIII4(PO4)6(OH)2 was combined with UVC radiation and electrogenerated H2O2 in a Printex L6 carbon-based gas diffusion electrode. The application of only 10 mA cm-2 resulted in 100% discoloration of MB and FG dyes in 50 min of treatment at pH 2.5, 7.0 and 9.0. The proposed treatment mechanism yielded maximum TOC removal of ∼80% and high mineralization current efficiency of ∼64%. Complete degradation of NOR was obtained in 40 min, and high mineralization of ∼86% was recorded after 240 min of treatment. Responses obtained from LC-ESI-MS/MS are in line with the theoretical Fukui indices and the ECOSAR data. The study enabled us to predict the main degradation route and the acute and chronic toxicity of the by-products formed during the contaminants degradation.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Ferro , Azul de Metileno , Nanopartículas , Poluentes Químicos da Água , Catálise , Peróxido de Hidrogênio/química , Ferro/química , Azul de Metileno/química , Nanopartículas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Norfloxacino/química , Durapatita/química , Corantes/química , Processos Fotoquímicos , Raios Ultravioleta
2.
Analyst ; 149(14): 3828-3838, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38855814

RESUMO

Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Lagos , Limite de Detecção , Cristais Líquidos , Norfloxacino , Norfloxacino/análise , Norfloxacino/química , Aptâmeros de Nucleotídeos/química , Cristais Líquidos/química , Lagos/análise , Lagos/química , Técnicas Biossensoriais/métodos , Solo/química , Antibacterianos/análise , Antibacterianos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Cetrimônio/química
3.
Environ Res ; 257: 119231, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797468

RESUMO

The persistent water treatment and separation challenge necessitates innovative and sustainable advances to tackle conventional and emerging contaminants in the aquatic environment effectively. Therefore, a unique three-dimensional (3D) network composite film (BNC-KC) comprised of bacterial nanocellulose (BNC) incorporated nano-kaolinite clay particles (KC) was successfully synthesized via an in-situ approach. The microscopic characterization of BNC-KC revealed an effective integration of KC within the 3D matrix of BNC. The investigated mechanical properties of BNC-KC demonstrated a better performance compared to BNC. Thereafter, the sorption performance of BNC-KC films towards basic blue 9 dye (Bb9) and norfloxacin (NFX) antibiotic from water was investigated. The maximum sorption capacities of BNC-KC for Bb9 and NFX were 127.64 and 101.68 mg/g, respectively. Mechanistic studies showed that electrostatic interactions, multi-layered sorption, and 3D structure are pivotal in the NFX/Bb9 sorption process. The intricate architecture of BNC-KC effectively traps molecules within the interlayer spaces, significantly increasing sorption efficiency. The distinctive structural configuration of BNC-KC films effectively addressed the challenges of post-water treatment separation while concurrently mitigating waste generation. The environmental evaluation, engineering, and economic feasibility of BNC-KC are also discussed. The cost estimation assessment of BNC-KC revealed the potential to remove NFX and Bb9 from water at an economically viable cost.


Assuntos
Celulose , Poluentes Químicos da Água , Celulose/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Adsorção , Argila/química , Purificação da Água/métodos , Norfloxacino/química , Antibacterianos/química , Silicatos de Alumínio/química , Corantes/química , Corantes/isolamento & purificação
4.
J Hazard Mater ; 474: 134704, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38810576

RESUMO

The effects on the adsorption of fluoroquinolone antibiotics of long-term soil heterogeneity induced by land-use were investigated. Three different land use areas with their two organic matter (OM) pools were tested for the adsorption of three antibiotics widely detected in the environment (ciprofloxacin, norfloxacin, ofloxacin). The soils were separated into two size fractions, > 63 µm fraction and < 63 µm fractions for the fast and slow OM pools, respectively. Any effect of land use on adsorption was only observed in the slow pool in the increasing order: arable land, grassland, and forest. The composition of the soil organic matter (SOM) did influence adsorption in the slow pool, but not in the bulk soilsThis was, because: 1) the ratio of the slow pool was low, as in forest, 2) the ratio of the slow pool was high but its adsorption capacity was low due to its SOM composition, as in arable land and grassland. Soils containing a large slow SOM pool fraction with aliphatic dominance were found to be more likely to adsorb micropollutants. It is our contention that the release of contaminated water, sludge, manure or compost into the environment should only be undertaken after taking this into consideration.


Assuntos
Antibacterianos , Fluoroquinolonas , Poluentes do Solo , Solo , Adsorção , Poluentes do Solo/química , Poluentes do Solo/análise , Antibacterianos/química , Antibacterianos/análise , Fluoroquinolonas/química , Fluoroquinolonas/análise , Solo/química , Ciprofloxacina/química , Ciprofloxacina/análise , Norfloxacino/química , Norfloxacino/análise
5.
Biomed Mater ; 19(4)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740038

RESUMO

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.


Assuntos
Antibacterianos , Biofilmes , Íons , Metais Terras Raras , Testes de Sensibilidade Microbiana , Plâncton , Pseudomonas aeruginosa , Metais Terras Raras/química , Metais Terras Raras/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Plâncton/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Staphylococcus aureus/efeitos dos fármacos , Animais , Norfloxacino/farmacologia , Norfloxacino/química
6.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731553

RESUMO

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Assuntos
Carvão Vegetal , Medicamentos de Ervas Chinesas , Norfloxacino , Poluentes Químicos da Água , Norfloxacino/química , Carvão Vegetal/química , Adsorção , Medicamentos de Ervas Chinesas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Termodinâmica , Purificação da Água/métodos , Concentração de Íons de Hidrogênio
7.
Chemosphere ; 359: 142258, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719119

RESUMO

Iron-containing MOFs have attracted extensive interest as promising Fenton-like catalysts. In this work, magnetic Fe3O4 nanofiber (FNS)/MOFs composites with stable structure, included FNS/MIL-88B, FNS/MIL-88A and FNS/MIL-100, were prepared via the in-situ solvothermal method. The surface of the obtained fibers was covered by a dense and continuous MOFs layer, which could effectively solve the agglomeration problem of MOFs powder and improved the catalytic performance. The adsorption and catalytic properties of FNS/MOFs composites were evaluated by removal of norfloxacin. FNS/MIL-88B showed the best performance with a maximum adsorption capacity up to 214.09 mg/g, and could degrade 99% of NRF in 60 min. Meanwhile, FNS/MIL-88B had a saturation magnetization of 20 emu/g, and could be rapidly separated by an applied magnetic field. The self-supported nanofibers allowed the adequate contact between MOFs and pollutants, and promoted the catalytic activity and high stability. We believe that this work provided a new idea for the design and preparation of Fenton-like catalysts especially MOFs composites.


Assuntos
Ferro , Nanofibras , Norfloxacino , Poluentes Químicos da Água , Nanofibras/química , Norfloxacino/química , Adsorção , Ferro/química , Poluentes Químicos da Água/química , Catálise , Estruturas Metalorgânicas/química , Peróxido de Hidrogênio/química
8.
Environ Sci Pollut Res Int ; 31(20): 29088-29100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568303

RESUMO

Biochar, as a potential adsorbent, has been widely employed to remove pollutants from sewage. In this study, a lignin-based biochar (CB-800) was prepared by a simple high-temperature pyrolysis using urban green waste (Cinnamomum camphora leaves) as a feedstock to remove norfloxacin (NOR) from water. Batch adsorption test results indicated that CB-800 had a strong removal capacity for NOR at a wide range of pH values. The maximum adsorption achieved in the study was 50.90 ± 0.64 mg/g at 298 K. The pseudo-first and second-order kinetic models and the Dubinin-Radushkevich isotherm fitted the experimental data well, indicating that NOR adsorption by CB-800 was a complex process involving both physi-sorption and chemi-sorption. The physical properties of CB-800 were characterized by SEM and BET. The mesoporous structures were formed hierarchically on the surface of CB-800 (with an average pore size of 2.760 nm), and the spatial structure of NOR molecules was more easily adsorbed by mesoporous structures. Combined with Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis, it was showed that the main NOR adsorption mechanisms by CB-800 included ion exchange, π-electron coordination, hydrogen bonding, and electrostatic adsorption. Meanwhile, the reduction of C = O and pyridine nitrogen, and the presence of C-F2, also indicated the occurrence of substitution, addition, and redox. This study not only determined the reaction mechanism between biochar and NOR, but also provides guidance to waste managers for the removal of NOR from water by biochar. It is envisaged that the results will broaden the utilization of urban green waste.


Assuntos
Carvão Vegetal , Norfloxacino , Carvão Vegetal/química , Norfloxacino/química , Cinética , Adsorção , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Sci Total Environ ; 930: 172511, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641106

RESUMO

The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.


Assuntos
Norfloxacino , Poliestirenos , Norfloxacino/química , Adsorção , Poliestirenos/química , Antibacterianos/química , Nanopartículas/química , Poluentes Químicos da Água/química , Processos Fotoquímicos , Modelos Químicos
10.
J Hazard Mater ; 471: 134287, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653132

RESUMO

Antibiotics can generally be detected in the water-sediment systems of lakes. However, research on the migration and transformation of antibiotics in water-sediment systems based on the influences of light and wind waves is minimal. To address this research gap, we investigated the specific impacts of light and wind waves on the migration and transformation of three antibiotics, norfloxacin (NOR), trimethoprim (TMP), and sulfamethoxazole (SMX), under simulated light and wind waves disturbance conditions in a water-sediment system from Taihu Lake, China. In the overlying water, NOR was removed the fastest, followed by TMP and SMX. Compared to the no wind waves groups, the disturbance of big wind waves reduced the proportion of antibiotics in the overlying water. The contributions of light and wind waves to TMP and SMX degradation were greater than those of microbial degradation. However, the non-biological and biological contributions of NOR to degradation were almost equal. Wind waves had a significant impact on the microbial community changes in the sediment, especially in Methylophylaceae. These results verified the influence of light and wind waves on the migration and transformation of antibiotics, and provide assistance for the risk of antibiotic occurrence in water and sediments.


Assuntos
Antibacterianos , Sedimentos Geológicos , Sulfametoxazol , Poluentes Químicos da Água , Vento , Antibacterianos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Sulfametoxazol/química , Sedimentos Geológicos/química , Norfloxacino/química , Trimetoprima/química , Lagos/química , China , Luz
11.
J Hazard Mater ; 471: 134309, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653133

RESUMO

This study addresses antibiotic pollution in global water bodies by integrating machine learning and optimization algorithms to develop a novel reverse synthesis strategy for inorganic catalysts. We meticulously analyzed data from 96 studies, ensuring quality through preprocessing steps. Employing the AdaBoost model, we achieved 90.57% accuracy in classification and an R²value of 0.93 in regression, showcasing strong predictive power. A key innovation is the Sparrow Search Algorithm (SSA), which optimizes catalyst selection and experimental setup tailored to specific antibiotics. Empirical experiments validated SSA's efficacy, with degradation rates of 94% for Levofloxacin and 97% for Norfloxacin, aligning closely with predictions within a 2% margin of error. This research advances theoretical understanding and offers practical applications in material science and environmental engineering, significantly enhancing catalyst design efficiency and accuracy through the fusion of advanced machine learning techniques and optimization algorithms.


Assuntos
Antibacterianos , Cobalto , Aprendizado de Máquina , Óxidos , Poluentes Químicos da Água , Cobalto/química , Catálise , Antibacterianos/química , Poluentes Químicos da Água/química , Óxidos/química , Levofloxacino/química , Norfloxacino/química , Algoritmos
12.
Talanta ; 274: 126003, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569374

RESUMO

Antibiotics in aquatic environments raise health concerns. Therefore, the rapid, on-site, and accurate detection of antibiotic residues is crucial for protecting the environment and human health. Herein, a dumbbell-shaped iron (Fe3+)-dopamine coordination nanozyme (Fe-DCzyme) was developed via an iron-driven self-assembly strategy. It exhibited excellent peroxidase-like activity, which can be quenched by adding l-cysteine to prevent Fe3+/Fe2+ electron transfer but restored by adding norfloxacin. Given the 'On-Off-On' effect of peroxidase-like activity, Fe-DCzyme was used as a colourimetric sensor for norfloxacin detection, and showed a wide linear range from 0.05 to 6.00 µM (R2 = 0.9950) and LOD of 27.0 nM. A portable smartphone-assisted detection platform using Fe-DCzyme was also designed to convert norfloxacin-induced color changes into RGB values as well as to realise the rapid, on-site and quantitative detection of norfloxacin. A good linear relation (0.10-6.00 µM) and high sensitivity (LOD = 79.3 nM) were achieved for the smartphone-assisted Fe-DCzyme detection platform. Its application was verified using norfloxacin spiking methods with satisfactory recoveries (92.66%-119.65%). Therefore, the portable smartphone-assisted Fe-DCzyme detection platform with low cost and easy operation can be used for the rapid, on-site and visual quantitative detection of antibiotic residues in water samples.


Assuntos
Colorimetria , Dopamina , Ferro , Norfloxacino , Smartphone , Norfloxacino/análise , Norfloxacino/química , Ferro/química , Dopamina/análise , Dopamina/química , Colorimetria/métodos , Antibacterianos/análise , Antibacterianos/química , Poluentes Químicos da Água/análise , Limite de Detecção , Nanoestruturas/química
13.
Langmuir ; 40(17): 9155-9169, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38641555

RESUMO

A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.


Assuntos
Bismuto , Compostos Férricos , Luz , Norfloxacino , Peróxidos , Vanadatos , Vanadatos/química , Vanadatos/efeitos da radiação , Bismuto/química , Norfloxacino/química , Norfloxacino/efeitos da radiação , Catálise/efeitos da radiação , Compostos Férricos/química , Peróxidos/química , Processos Fotoquímicos , Triticum/química , Triticum/efeitos da radiação
14.
Environ Pollut ; 351: 124027, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688387

RESUMO

Inadequate treatment of antibiotic-contaminated wastewater, including compounds such as norfloxacin (NOR), poses a substantial treat to both ecological safety and human well-being. An innovative approach was devised to address NOR pollution using amorphous TiO2 modified biochar (A-TiO2/BC) prepared via sol-gel impregnation. The resultant had a commendably specific surface area of 131.8 m2/g-1, which was 1.91 times more than the original surface area of unmodified BC. A-TiO2/BC also exhibited abundant hydroxyl and oxygen-containing functional groups, thereby provided adequately active sites for NOR adsorption. R2 values obtained from NOR isotherm adsorption models descended in order of Freundlich < Temkin < Sips < Langmuir, which indicated that the NOR removal by A-TiO2/BC mainly complied with monolayer adsorption accompanied by heterogeneous surface adsorption. Under weakly acidic conditions, NOR adsorption benefits from the synergistic physicochemical interactions of A-TiO2 and BC. Notably, A-TiO2/BC demonstrated an impressive NOR adsorption capacity of up to 78.14 mg g-1, with a dosage of 20 mg L-1 at 25 °C under pH 6. Such A-TiO2 modified biochar thus presents a promising alternative for NOR removal.


Assuntos
Carvão Vegetal , Norfloxacino , Titânio , Poluentes Químicos da Água , Carvão Vegetal/química , Titânio/química , Norfloxacino/química , Adsorção , Poluentes Químicos da Água/química , Antibacterianos/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
15.
Inorg Chem ; 63(14): 6514-6525, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38547361

RESUMO

The solar light-responsive Fe-doped Co-based coordination polymer (Fe@Co-CP) photocatalyst was synthesized under mild conditions. [Co(4-padpe)(1,3-BDC)]n (Co-CP) was first constructed using mixed ligands through the hydrothermal method. Then, Fe was introduced into the Co-CP framework to achieve the enhanced photocatalytic activity. The optimal Fe@Co-CP-2 exhibited excellent catalytic degradation performance for norfloxacin and ciprofloxacin under sunlight irradiation without auxiliary oxidants, and the degradation rates were 91.25 and 92.66% in 120 min. These excellent photocatalytic properties were ascribed to the generation of the Fe-O bond, which not only enhanced the light absorption intensity but also accelerated the separation efficiency of electrons and holes, and hence significantly improved the photocatalytic property of the composites. Meanwhile, Fe@Co-CP-2 displayed excellent stability and reusability. In addition, the degradation pathways and intermediates of antibiotic molecules were effectively analyzed. The free radical scavenging experiment and ESR results confirmed that •OH, •O2-, and h+ active species were involved in the catalytic degradation reaction; the corresponding mechanisms were deeply investigated. This study provides a fresh approach for constructing Fe-doped Co-CP-based composite materials as photocatalysts for degradation of antibiotic contaminants.


Assuntos
Ciprofloxacina , Norfloxacino , Norfloxacino/química , Norfloxacino/efeitos da radiação , Antibacterianos/química , Luz , Catálise
16.
Environ Res ; 251(Pt 2): 118711, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499225

RESUMO

The current study reported torrefied coco-peat biochar treated at 200 °C, as a novel adsorbent exhibiting phenomenal norfloxacin (NFX) adsorption efficiency. The CHNS analysis confirmed the carbon abundance in the biochar (36.45%), however, XRF analysis indicated a significant presence of K2O (27.73%) and chlorine (7.49%). The XRD and Raman spectral analysis confirmed the amorphous structure of the biochar. Multilayer topology was evident in the SEM micrograph of biochar contributing to its large effective surface area. Additionally, the mesoporous structure of the adsorbent was verified by BET. The adsorption mechanism was predicted to be non-ionic since the zeta potential of both adsorbent and adsorbate was found negative. The process parameters were optimized at 30 °C, pH 6.9, dosage 7 g/L, antibiotic load 494.25 mg/L, and time of 89 min for a maximum of 99.52% adsorption of NFX using Central Composite Design, Analysis of Variance, and Response Surface Methodology. The adsorption process was exothermic, and spontaneous obeying the pseudo-second-order kinetics, while the bulk process was confined to surface adsorption. Isotherm study of NFX adsorption revealed the process to be a favorable, monolayer, and homogeneous adsorption. The NFX molecules were desorbed with an efficiency of 89.19% using 80% ethanol and upon recrystallization, 87.76% of the initial NFX was recovered as crude crystal. Moreover, the NFX removal efficiency was consistent across various water systems, tap water (99.02%), seawater (99.56%), river water (98.92%), pond water (98.26%), and distilled water (99.17%). The techno-economic analysis identified bulk expense as the biochar preparation ($0.82/kg) and the process will be profitable having recovered NFX sold at $6/kg instead of the present retail price ($71/kg). Thus, the study successfully demonstrated a zero-waste, self-sustainable, and revenue-generating water treatment process implementing the circular economy framework.


Assuntos
Carvão Vegetal , Norfloxacino , Poluentes Químicos da Água , Norfloxacino/química , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Antibacterianos/química , Purificação da Água/métodos , Purificação da Água/economia , Solo/química , Cinética
17.
Environ Res ; 249: 118471, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354888

RESUMO

Nowadays, NOR-containing wastewater has placed huge pressure on global ecology. In this study, a chemically-modified chitosan-based polymer was cross-linked with magnetite to prepare a novel magnetic composite adsorbent named Fe3O4/CS-P(AM-SSS) for norfloxacin (NOR) removal. The preparation conditions were optimized by single factor experiments and response surface methodology. A series of characterization analyses were carried out on the morphology, structure, and properties of Fe3O4/CS-P(AM-SSS), verifying that Fe3O4/CS-P(AM-SSS) was successfully prepared. Batch adsorption experiments showed that NOR was efficiently removed by Fe3O4/CS-P(AM-SSS), with a broad pH applicability of 3-10, short adsorption equilibrium time of 60 min, maximum adsorption capacity of 268.79 mg/g, and high regeneration rate of 86% after eight adsorption-desorption cycles. Due to the three-dimensional network structure and abundant functional groups provided by modified chitosan polymer, the superior adsorption capability of Fe3O4/CS-P(AM-SSS) was achieved through electrostatic interaction, π-π stacking, hydrophobic interaction, and hydrogen bonding. Adsorption process was exothermic and well fitted by the pseudo-second-order kinetic model and the Langmuir isothermal model. The presence of cations had a slight inhibitory effect on NOR adsorption, while humic acid nearly had no effect. In model swine wastewater, 90.3% NOR was removed by Fe3O4/CS-P(AM-SSS). Therefore, with these superior characteristics, Fe3O4/CS-P(AM-SSS) was expected to be an ideal material for treating NOR-containing wastewater in the future.


Assuntos
Quitosana , Óxido Ferroso-Férrico , Norfloxacino , Poluentes Químicos da Água , Norfloxacino/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Óxido Ferroso-Férrico/química , Quitosana/química , Antibacterianos/química , Águas Residuárias/química , Polímeros/química , Cinética
18.
Curr Top Med Chem ; 24(7): 644-665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357952

RESUMO

BACKGROUND: The concept of utilizing drug repurposing/repositioning in the development of hybrid molecules is an important strategy in drug discovery. Fluoroquinolones, a class of antibiotics, have been reported to exhibit anticancer activities. Although anticancer drug development is achieving some positive outcomes, there is still a need to develop new and effective anticancer drugs. Some limitations associated with most of the available anticancer drugs are drug resistance and toxicity, poor bio-distribution, poor solubility, and lack of specificity, thereby reducing their therapeutic outcomes. OBJECTIVES: Fluoroquinolones, a known class of antibiotics, have been explored by hybridizing them with other pharmacophores and evaluating their anticancer activity in silico and in vitro. Hence, this review provides an update on new anticancer drugs containing fluoroquinolones moiety, Ciprofloxacin and Norfloxacin between 2020 and 2023, their structural relationship activity, and the future strategies to develop potent chemotherapeutic agents. METHODS: Fluoroquinolones were mostly hybridized via the N-4 of the piperazine ring on position C-7 with known pharmacophores characterized, followed by biological studies to evaluate their anticancer activity. RESULTS: The hybrid molecules displayed promising and interesting anticancer activities. Factors such as the nature of the linker, the presence of electron-withdrawing groups, nature, and position of the substituents influenced the anticancer activity of the synthesized compounds. CONCLUSION: The hybrids were selective towards some cancer cells. However, further in vivo studies are needed to fully understand their mode of action.


Assuntos
Antineoplásicos , Ciprofloxacina , Norfloxacino , Norfloxacino/farmacologia , Norfloxacino/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
19.
J Biomol Struct Dyn ; 42(1): 425-434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37096761

RESUMO

Fluoroquinolones (FQs) are the most commonly used antimicrobial drugs and regardless of their advantages in the healthcare sector, the pollution of these antimicrobial drugs in the environment has big concerns about human and environmental health. The presence of these antibiotic drugs even at the lowest concentrations in the environment has resulted in the emergence and spread of antibiotic resistance. Hence, it is necessary to remediate these pollutants from the environment. Previously alkaline laccase (SilA) from Streptomyces ipomoeae has been demonstrated to show degrading potentials against two of the FQs, Ciprofloxacin (CIP) and Norfloxacin (NOR); however, the molecular mechanism was not elucidated in detail. In this study, we have analyzed the possible molecular catalytic mechanism of FQ degrading SilA-laccase for the degradation of the FQs, CIP, NOR and Ofloxacin (OFL) using three-dimensional protein structure modeling, molecular docking and molecular dynamic (MD) studies. The comparative protein sequence analysis revealed the presence of tetrapeptide conserved catalytic motif, His102-X-His104-Gly105. After evaluating the active site of the enzyme in depth using CDD, COACH and S-site tools, we have identified the catalytic triad composed of three conserved amino acid residues, His102, Val103 and Tyr108 with which ligands interacted during the catalysis process. By analyzing the MD trajectories, it is revealed that the highest degradation potential of SilA is for CIP followed by NOR and OFL. Ultimately, this study provides the possible comparative catalytic mechanism for the degradation of CIP, NOR and OFL by the SilA enzyme.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Norfloxacino , Humanos , Norfloxacino/análise , Norfloxacino/química , Norfloxacino/metabolismo , Ciprofloxacina , Ofloxacino/análise , Ofloxacino/química , Ofloxacino/metabolismo , Lacase/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/química , Fluoroquinolonas
20.
Environ Sci Pollut Res Int ; 30(30): 75247-75261, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37213017

RESUMO

Dissolved antibiotics have been a research subject due to their widespread presence and potential threats in drinking water treatment. To enhance the photocatalytic activity of Bi2MoO6 for the degradation of norfloxacin (NOR), the heterostructured Co3O4/Bi2MoO6 (CoBM) composites were synthesized by employing ZIF-67-derived Co3O4 on Bi2MoO6 microspheres. The as-synthesized resultant material 3-CoBM by 300 °C calcination was characterized by XRD, SEM, XPS, transient photocurrent techniques, and EIS. The photocatalytic performance was evaluated by monitoring different concentrations, NOR removal from aqueous solution. Compared with Bi2MoO6, 3-CoBM exhibited the better adsorption and elimination capacity of NOR due to the combined effect between peroxymonosulfate activation and photocatalytic reaction. The influences of catalyst dosage, PMS dosage, various interfering ions (Cl-, NO3-, HCO3-, and SO42-), pH value, and type of antibiotics for application removal were also invested. By activating PMS under visible-light irradiation, 84.95% of metronidazole (MNZ) can be degraded within 40 min, and NOR and tetracycline (TC) can be completely degraded using 3-CoBM. Degradation mechanism was elucidated by quenching tests in combination with EPR measurement, and the degree of activity of the active groups from strong to weak is h+, SO4-•, and •OH, respectively. The degradation products and conceivable degradation pathways of NOR were speculated by LC-MS. In combination of excellent peroxymonosulfate activation and highly enhanced photocatalytic performance, this newly Co3O4/Bi2MoO6 catalyst might be a promising candidate for degrading emerging antibiotic contamination in wastewater.


Assuntos
Norfloxacino , Peróxidos , Norfloxacino/química , Microesferas , Peróxidos/química , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...