Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Commun Biol ; 7(1): 623, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802487

RESUMO

Nesfatin-1 (NESF-1) has been shown to modulate lipid metabolism. We have identified a nesfatin-1-like-peptide (NLP) processed from a related precursor nucleobindin 1 (NUCB1). Here we determined if NLP, like NESF-1, regulates lipid accumulation in vitro, and tested if the disruption of nucb1 gene affects hepatic lipid metabolism genes in mice. Hepatocytes (HepG2/C3A cells) express NLP and NESF-1 and both peptides significantly reduced lipogenic enzyme mRNAs and enhanced beta-oxidation enzyme mRNAs. Lipid contents in oleic acid induced HepG2/C3A cells were attenuated by NESF-1 and NLP. The inhibitory effect on cellular lipid content was blocked by compound C, an inhibitor of AMPK. The disruption of nucb1 gene affected lipid metabolism-related enzyme mRNAs, endogenous nucb2 mRNA and AMPK phosphorylation. The lipid-lowering effects identified here highlights the potential of nucleobindins and peptides processed from them to address lipid disorders, and its possible benefits in metabolic disease management.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Hepatócitos , Metabolismo dos Lipídeos , Proteínas do Tecido Nervoso , Nucleobindinas , Nucleobindinas/metabolismo , Nucleobindinas/genética , Animais , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células Hep G2 , Masculino , Camundongos Endogâmicos C57BL
2.
Cell Commun Signal ; 22(1): 298, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812013

RESUMO

BACKGROUND: Nucleobindin-2 (Nucb2) and nesfatin-1 (N1) are widely distributed hormones that regulate numerous physiological processes, from energy homeostasis to carcinogenesis. However, the role of nesfatin-2 (N2), the second product of Nucb2 proteolytic processing, remains elusive. To elucidate the relationship between the structure and function of nesfatins, we investigated the properties of chicken and human homologs of N1, as well as a fragment of Nucb2 consisting of N1 and N2 conjoined in a head-to-tail manner (N1/2). RESULTS: Our findings indicate that Zn(II) sensing, in the case of N1, is conserved between chicken and human species. However, the data presented here reveal significant differences in the molecular features of the analyzed peptides, particularly in the presence of Zn(II). We demonstrated that Zn(II) has a Janus effect on the M30 region (a crucial anorexigenic core) of N1 and N1/2. In N1 homologs, Zn(II) binding results in the concealment of the M30 region driven by a disorder-to-order transition and adoption of the amyloid fold. In contrast, in N1/2 molecules, Zn(II) binding causes the exposure of the M30 region and its destabilization, resulting in strong exposure of the region recognized by prohormone convertases within the N1/2 molecule. CONCLUSIONS: In conclusion, we found that Zn(II) binding is conserved between chicken and human N1. However, despite the high homology of chicken and human N1, their interaction modes with Zn(II) appear to differ. Furthermore, Zn(II) binding might be essential for regulating the function of nesfatins by spatiotemporally hindering the N1 anorexigenic M30 core and concomitantly facilitating N1 release from Nucb2.


Assuntos
Galinhas , Nucleobindinas , Zinco , Nucleobindinas/metabolismo , Zinco/metabolismo , Humanos , Animais , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética
3.
Sci Rep ; 14(1): 11261, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760405

RESUMO

Here, we focused on the role of Nucleobindin 2 (NUCB2), a multifunctional protein, in gastric carcinoma (GC) progression. NUCB2 expression was investigated in 150 GC cases (20 non-invasive (pT1) and 130 invasive (pT2/pT3/pT4) tumors) by immunohistochemistry (IHC), and in situ hybridization for detection of the mRNA in 21 cases. Using GC cell lines, we determined whether NUCB2 expression was associated with specific cellular phenotypes. In GC clinical samples, NUCB2 was transcriptionally upregulated when compared to normal tissues. High NUCB2 expression was associated with clinicopathological factors including deep tumor invasion, lymphovascular invasion, lymph node metastasis, and advanced clinical stages, and was a significant independent predictor of unfavorable progression-free survival in 150 non-invasive and invasive GC patients. Similar findings were also evident in 72 invasive GC cases in which patients received post-operative chemotherapy, but not in 58 invasive tumors from patients who did not receive the chemotherapy. In cell lines, NUCB2 knockout inhibited proliferation, susceptibility to apoptosis, and migration capability by inducting cellular senescence; this was consistent with higher proliferation and apoptotic indices in the NUCB2 IHC-high compared to NUCB2 IHC-low GC cases. NUCB2-dependent inhibition of senescence in GC engenders aggressive tumor behavior by modulating proliferation, apoptosis, and migration.


Assuntos
Senescência Celular , Nucleobindinas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Nucleobindinas/metabolismo , Feminino , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Idoso , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Apoptose , Movimento Celular , Prognóstico
4.
Bioelectromagnetics ; 45(5): 209-217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369591

RESUMO

In recent years exposure of living beings to radiofrequency radiation (RFR) emitted from wireless equipment has increased. In this study, we investigated the effects of 3.5-GHz RFR on hormones that regulate energy metabolism in the body. Twenty-eight rats were divided into four groups: healthy sham (n = 7), healthy RFR (n = 7), diabetic sham (n = 7), and diabetic RFR (n = 7). Over a month, each group spent 2 h/day in a Plexiglas carousel. The rats in the experimental group were exposed to RFR, but the sham groups were not. At the end of the experiment, blood and adipose tissues were collected from euthanized rats. Total antioxidant, total oxidant, hydrogen peroxide, ghrelin, nesfatin-1, and irisin were determined. Insulin expression in pancreatic tissues was examined by immunohistochemical analysis. Whole body specific absorption rate was 37 mW/kg. For the parameters analyzed in blood and fat, the estimated effect size varied within the ranges of 0.215-0.929 and 0.503-0.839, respectively. The blood and adipose nesfatin-1 (p = 0.002), blood and pancreatic insulin are decreased, (p = 0.001), gherelin (p = 0.020), irisin (p = 0.020), and blood glucose (p = 0.040) are increased in healthy and diabetic rats exposed to RFR. While nesfatin-1 are negatively correlated with oxidative stress, hyperglycemia and insulin, ghrelin and irisin are positively correlated with oxidative stress and hyperglycemia. Thus, RFR may have deleterious effects on energy metabolism, particularly in the presence of diabetes.


Assuntos
Tecido Adiposo , Fibronectinas , Grelina , Insulina , Nucleobindinas , Ondas de Rádio , Animais , Ondas de Rádio/efeitos adversos , Grelina/sangue , Grelina/metabolismo , Nucleobindinas/metabolismo , Masculino , Fibronectinas/metabolismo , Fibronectinas/sangue , Ratos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos da radiação , Insulina/metabolismo , Insulina/sangue , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/sangue , Metabolismo Energético/efeitos da radiação , Proteínas de Ligação ao Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos da radiação , Ratos Wistar
5.
J Chem Neuroanat ; 136: 102400, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38342331

RESUMO

Neuropeptides are involved in numerous brain activities being responsible for a wide spectrum of higher mental functions. The purpose of this concise, structural and qualitative investigation was to map the possible immunoreactivity of the novel regulatory peptides: spexin (SPX) and nesfatin-1 within the human claustrum. SPX is a newly identified peptide, a natural ligand for the galanin receptors (GALR) 2/3, with no molecular structure similarities to currently known regulatory factors. SPX seems to have multiple physiological functions, with an involvement in reproduction and food-intake regulation recently revealed in animal studies. Nesfatin-1, a second pleiotropic neuropeptide, which is a derivative of the nucleobindin-2 (NUCB-2) protein, is characterized by a wide distribution in the brain. Nesfatin-1 is a substance with a strong anorexigenic effect, playing an important role in the neuronal circuits of the hypothalamus that regulate food intake and energy homeostasis. On the other hand, nesfatin-1 may be involved in several important brain functions such as sleep, reproductive behaviour, cognitive processes, stress responses and anxiety. For the first time we detected and described a population of nesfatin-1 and SPX expressing neurons in the human claustrum using immunohistochemical and fluorescent methods. The study presents the novel identification of SPX and nesfatin-1 immunopositive neurons in the human claustrum and their assemblies show similar patterns of distribution in the whole structure.


Assuntos
Claustrum , Neuropeptídeos , Animais , Humanos , Masculino , Nucleobindinas/metabolismo , Claustrum/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Neurônios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339201

RESUMO

Previous studies have shown that nuclear binding protein 2 (NUCB2) is expressed in the human placenta and increases with an increase in the syncytialization of trophoblast cells. This study aimed to investigate the role of NUCB2 in the differentiation and fusion of trophectoderm cells. In this study, the expression levels of NUCB2 and E-cadherin in the placentas of rats at different gestation stages were investigated. The results showed that there was an opposite trend between the expression of placental NUCB2 and E-cadherin in rat placentas in different trimesters. When primary human trophoblast (PHT) and BeWo cells were treated with high concentrations of Nesfatin-1, the trophoblast cell syncytialization was significantly inhibited. The effects of NUCB2 knockdown in BeWo cells and Forskolin-induced syncytialization were investigated. These cells showed a significantly decreased cell fusion rate. The mechanism underlying NUCB2-regulated trophoblast cell syncytialization was explored using RNA-Seq and the results indicated that the epidermal growth factor receptor (EGFR)-phospholipase C gamma 1 (PLCG1)-calmodulin-dependent protein kinase IV (CAMK4) pathway might be involved. The results suggested that the placental expression of NUCB2 plays an important role in the fusion of trophoblasts during differentiation via the EGFR-PLCG1-CAMK4 pathway.


Assuntos
Nucleobindinas , Placenta , Placentação , Trofoblastos , Animais , Feminino , Gravidez , Ratos , Caderinas/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Fusão Celular , Receptores ErbB/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipase C gama/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Nucleobindinas/metabolismo
7.
Brain Res Bull ; 204: 110788, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844783

RESUMO

Xenin is a 25-amino acid peptide identified in human gastric mucosa, which is widely expressed in peripheral and central tissues. It is known that the central or peripheral administration of xenin decreases food intake in rodents. Nesfatin-1/NUCB2 (nesfatin-1) has been identified as an anorexic neuropeptide, it is often found co-localized with many peptides in the central nervous system. After the intracerebroventricular administration of xenin on nesfain-1-like immunoreactivity (LI) neurons, we examined its effects on food intake and water intake in rats. As a result, Fos-LI neurons were observed in the organum vasculosum of the laminae terminalis (OVLT), the median preoptic nucleus (MnPO), the subfornical organ (SFO), the supraoptic nucleus (SON), the paraventricular nucleus (PVN), the arcuate nucleus (Arc), the lateral hypothalamic area (LHA), the central amygdaloid nucleus (CAN), the dorsal raphe nucleus (DR), the locus coeruleus (LC), the area postrema (AP) and the nucleus of the solitary tract (NTS). After the administration, the number of Fos-LI neurons was significantly increased in the LC and the OVLT, the MnPO, the SFO, the SON, the PVN, the Arc, the LHA, the CAN, the DR, the AP and the NTS, compared with the control group. After the administration of xenin, we conducted double immunohistochemistry for Fos and nesfatin-1, and found that the number of nesfatin-1-LI neurons expressing Fos were significantly increased in the SON, the PVN, the Arc, the LHA, the CAN, the DR, the AP and the NTS, compared with the control group. The pretreatment of nesfatin-1 antisense significantly attenuated this xenin-induced feeding suppression, while that of nesfatin-1 missense showed no improvement. These results indicate that central administered xenin may have anorexia effects associated with activated central nesfatin-1 neurons.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Humanos , Ratos , Animais , Proteínas de Ligação a DNA/metabolismo , Nucleobindinas/metabolismo , Nucleobindinas/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Neurônios/metabolismo
8.
J Transl Med ; 21(1): 362, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277807

RESUMO

BACKGROUND: Reprogramming lipid metabolism for tumor metastasis is essential in breast cancer, and NUCB2/Nesfatin-1 plays a crucial role in regulating energy metabolism. Its high expression is associated with poor prognosis in breast cancer. Here, we studied whether NUCB2/Nesfatin-1 promotes breast cancer metastasis through reprogramming cholesterol metabolism. METHODS: ELISA was employed to measure the concentration of Nesfatin-1 in the serum of breast cancer patients and the control group. Database analysis suggested that NUCB2/Nesfatin-1 might be acetylated in breast cancer, which was confirmed by treating the breast cancer cells with acetyltransferase inhibitors. Transwell migration and Matrigel invasion assays were conducted, and nude mouse lung metastasis models were established to examine the effect of NUCB2/Nesfatin-1 on breast cancer metastasis in vitro and in vivo. The Affymetrix gene expression chip results were analyzed using IPA software to identify the critical pathway induced by NUCB2/Nesfatin-1. We evaluated the effect of NUCB2/Nesfatin-1 on cholesterol biosynthesis through the mTORC1-SREBP2-HMGCR axis by utilizing mTORC1 inhibitor and rescue experiments. RESULTS: NUCB2/Nesfatin-1 was found to be overexpressed in the breast cancer patients, and its overexpression was positively correlated with poor prognosis. NUCB2 was potentially acetylated, leading to high expression in breast cancer. NUCB2/Nesfatin-1 promoted metastasis in vitro and in vivo, while Nesfatin-1 rescued impaired cell metastasis induced by NUCB2 depletion. Mechanistically, NUCB2/Nesfatin-1 upregulated cholesterol synthesis via the mTORC1 signal pathway, contributing to breast cancer migration and metastasis. CONCLUSIONS: Our findings demonstrate that the NUCB2/Nesfatin-1/mTORC1/SREBP2 signal pathway is critical in regulating cholesterol synthesis, essential for breast cancer metastasis. Thus, NUCB2/Nesfatin-1 might be utilized as a diagnostic tool and also used in cancer therapy for breast cancer in the future.


Assuntos
Neoplasias da Mama , Proteínas de Ligação ao Cálcio , Animais , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Colesterol , Proteínas de Ligação a DNA/metabolismo , Nucleobindinas/genética , Nucleobindinas/metabolismo , Regulação para Cima , Humanos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia
9.
Am J Pathol ; 193(8): 1116-1128, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169340

RESUMO

Epithelial-mesenchymal transition is a hallmark of uterine carcinosarcoma (UCS). Here, shotgun proteomics analysis used to identify biomarkers associated with blebbistatin-mediated epithelial-mesenchymal transition in UCS indicated up-regulation of nucleobindin-2 (NUCB2) in endometrial carcinoma (Em Ca) cells. Expression of N-cadherin, Snail, Slug, and ZEB1 was reduced in NUCB2 knockout Em Ca cells, whereas ZEB1, Twist1, and vimentin were up-regulated in NUCB2-overexpressing Em Ca cells. NUCB2 knockout reduced cell proliferation and migration, whereas NUCB2 overexpression had the opposite effect. Treatment of Em Ca cells with transforming growth factor (TGF)-ß1 dramatically altered morphology toward a fibroblastic appearance; concomitantly, expression of NUCB2 and ZEB1 increased. The NUCB2 promoter was also activated by transfection of Smad2. In UCS tissues, NUCB2 expression was significantly higher in sarcomatous compared with carcinomatous components, which was consistent with increased TGF-ß1 mRNA expression in stromal and sarcomatous components compared with carcinomatous components. In addition, NUCB2 score correlated positively with ZEB1 and vimentin scores, whereas ZEB1 score correlated positively with Slug and vimentin scores and inversely with the E-cadherin score. Collectively, these data indicate that TGF-ß-dependent up-regulation of NUCB2 and ZEB1 contributes to the phenotypic characteristics of sarcomatous components in UCS.


Assuntos
Carcinossarcoma , Neoplasias Uterinas , Humanos , Feminino , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Nucleobindinas/genética , Nucleobindinas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo , Genes Homeobox , Caderinas/genética , Caderinas/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Fenótipo , Carcinossarcoma/genética , Carcinossarcoma/patologia , Dedos de Zinco , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral
10.
J Orthop Surg Res ; 18(1): 153, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859270

RESUMO

Autophagy and cytoskeleton integrity of chondrocytes are a considered as major factors in the progression of osteoarthritis (OA) involving excessive chondrocyte apoptosis and senescence. Nesfatin-1, an adipokine, has been reported to be closely related to cell autophagy and cytoskeleton malfunction. Our previous study found that nesfatin-1 was highly correlated with OA progress in OA patient, and the expression of nesfatin-1 rises in knee articular tissue, serum and chondrocytes. In current study, we aimed to explore the therapeutic effect of nesfatin-1 on OA and its molecular mechanism related to chondrocyte autophagy and cytoskeleton malfunction. We firstly demonstrated that nesfatin-1 effectively suppressed excessive autophagy of OA chondrocytes at both gene and protein levels. Meanwhile, we also found that nesfatin-1 significantly improved cytoskeleton integrity by showing higher F-actin/G-actin ratio, as well as more organized actin fiber structure. Mechanistically, utility of RhoA activator and inhibitor revealed that regulation of autophagy and cytoskeleton integrity via nesfatin-1 was realized via RhoA/ROCK pathway. We also confirmed that nesfatin-1 significantly ameliorated IL-1ß induced cartilage degeneration via destabilization of the medial meniscus (DMM) model. Overall, our study indicates that nesfatin-1 might be a promising therapeutic molecule for OA intervention.


Assuntos
Condrócitos , Nucleobindinas , Osteoartrite , Humanos , Actinas , Autofagia , Citoesqueleto , Proteína rhoA de Ligação ao GTP/metabolismo , Nucleobindinas/metabolismo , Quinases Associadas a rho/metabolismo
11.
Brain Behav ; 12(11): e2778, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271663

RESUMO

AIMS: Spinal cord injury (SCI) is one of the most severe neurological diseases. However, there is still no effective treatment for it. Nesfatin, a precursor neuropeptide derived from nucleobindin 2 (NUCB2), has displayed a wide range of protective effects in different types of cells and tissue. However, the effects of nesfatin-1 in SCI have not been reported before. MATERIALS AND METHODS: A SCI model was established. The behavior of mice was assessed using the Basso, Beattie, and Bresnahan (BBB) assessment. RESULTS: Here, we report that the administration of nesfatin-1 improved neurological recovery in SCI mice by increasing BBB scores, reducing lesion area volume and spinal cord water content. Also, nesfatin-1 ameliorated oxidative stress by reducing reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. We also found that nesfatin-1 prevented neuronal apoptosis in SCI mice by reducing caspase 3 activity and the expression of Bax, as well as increasing B-cell lymphoma-2 (Bcl-2). Additionally, nesfatin-1 reduced the levels of interleukin 6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α). Nesfatin-1 also promoted microglia towards M2 polarization by increasing the marker CD206 but reducing CD16. Importantly, nesfatin-1 enhanced the phosphorylation of signal transducer and activator of transcription 1 (STAT1) but reduced the expression levels of toll-like receptor 4 (TLR4) and phosphorylated nuclear factor kappa-B p65 (p-NF-κB p65). CONCLUSION: Our findings imply that nesfatin-1 exerts neuroprotective actions in SCI by promoting the activation of M2 microglia, and its underlying mechanisms might be related to the activation of STAT1 and inhibition of the TLR4/NF-κB signaling pathway.


Assuntos
Doenças Neuroinflamatórias , Nucleobindinas , Traumatismos da Medula Espinal , Animais , Camundongos , NF-kappa B/metabolismo , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Nucleobindinas/metabolismo , Neuroproteção
12.
Front Public Health ; 10: 882686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045734

RESUMO

Aims: To evaluate the correlation of nesfatin-1, GSH and SOD levels with ß-cell insulin secretion and their influence on insulin secretion in the development of type 2 diabetes mellitus (T2DM). Materials and methods: 75 patients with T2DM, 67 with prediabetes and 37 heathy participants were recruited in this study. Serum levels of nesfatin-1, GSH and SOD were quantified and statistically analyzed. Results: The levels of nesfatin-1, GSH and SOD in T2DM were significantly decreased (P < 0.001) compared to either in prediabetes or in healthy control, and significant reduction of these biomarkers was also observed in prediabetes when compared to the control (P < 0.001). Circulating nesfatin-1, GSH and SOD were not only strongly correlated with ß-cell insulin secretion, but also exerted remarkable influence on the secretion. Conclusion: Serum nesfatin-1, GSH and SOD are important factors involving insulin secretion in the development of T2DM, which may help provide new ideas for forthcoming investigations on the roles of these factors in pathogenesis of T2DM, as well as for active prediction and prevention of prediabetes before it develops into overt T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Glutationa/metabolismo , Nucleobindinas/metabolismo , Estado Pré-Diabético , Superóxido Dismutase-1/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Glutationa/sangue , Humanos , Secreção de Insulina , Nucleobindinas/sangue , Estado Pré-Diabético/sangue , Estado Pré-Diabético/metabolismo , Superóxido Dismutase , Superóxido Dismutase-1/sangue
13.
J Cardiothorac Surg ; 17(1): 206, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36008865

RESUMO

Acute lung injury (ALI) is a continuum of lung changes associated with uncontrolled excessive lung inflammation. However, the pathogenesis of ALI is still complicated and effective clinical pharmacological management is required. Various signaling pathways are involved in the inflammatory responses of ALI. Here, we aimed to explore the role of nesfatin-1, an amino-acid peptide with anti-inflammatory action, in an LPS-induced ALI mice model, and its role in regulating macrophages in response to LPS stimulation in vitro. This was to clarify the underlying mechanisms of regulating the inflammatory response in the development of ALI. The results show that nesfatin-1 expression was downregulated in the lung tissues of ALI mice compared to control mice. Nesfatin-1 treatment ameliorated the inflammatory response and lung tissue damage in LPS-induced ALI in mice. In vitro studies showed that nesfatin-1 attenuated the generation and release of proinflammatory cytokines interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in LPS-induced RAW 264.7 cells. Nesfatin-1 also inhibited reactive oxygen species production and improved superoxide dismutase (SOD) activity in LPS-induced RAW 264.7 cells. These findings suggest that nesfatin-1 exerted a crucial role in regulating the LPS-mediated activation of M1 macrophages. Further mechanism investigations indicated that nesfatin-1 inhibited the activation of p38 MAPK/c-Jun and NF-κB pathways in LPS-induced RAW 264.7 cells, as evidenced by decreased expression levels of p-p38, p-c-Fos, and p-p65. Overall, nesfatin-1 alleviated LPS-induced ALI, which might be attributed to regulating inflammatory response through macrophages modulation.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Nucleobindinas/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Células RAW 264.7
14.
Turk J Pediatr ; 64(2): 239-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611412

RESUMO

BACKGROUND: Current studies claim that peptides such as leptin, adiponectin, ghrelin, and nesfatin-1 found in breast milk may be responsible for the growth of infants. Therefore, we aimed to determine the association between breast milk total ghrelin and nesfatin-1 levels and anthropometric measurements of infants who were small for gestational age (SGA). METHODS: 20 SGA and 20 appropriate for gestational age (AGA) infants were enrolled in the study. Anthropometric measurements of infants were carried out at birth, 1st, and 4th months. In addition, total ghrelin and nesfatin-1 levels in the breast milk were concomitantly measured. RESULTS: Total ghrelin at the 4th month in breast milk waslower-level in the SGA group (p=0.015). In both groups, nesfatin-1 levels at the 4th month were lower than the values at the 1st month. Additionally, nesfatin-1 levels of SGA infants at the 4th month were higher (p=0.035). CONCLUSIONS: Breast milk total ghrelin and nesfatin-1 levels differed in both groups, and it is probably referred to the growth discrepancy of these infants during the first months of life. Furthermore, we consider that higher breast milk nesfatin-1 levels at the 4th month may be a preventive against obesity in SGA infants who have potential risk for obesity in childhood and adulthood.


Assuntos
Grelina , Recém-Nascido Pequeno para a Idade Gestacional , Leite Humano , Nucleobindinas , Adiponectina , Adulto , Feminino , Grelina/metabolismo , Humanos , Lactente , Recém-Nascido , Leite Humano/metabolismo , Nucleobindinas/metabolismo , Obesidade Infantil/prevenção & controle
15.
Transpl Immunol ; 74: 101626, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35569717

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) are at increased risk of developing renal cell carcinoma (RCC). Accumulating evidence has demonstrated that circular RNAs (circRNAs) are essential players in tumor advancement. However, the functions of circ_0000274 in renal cell carcinoma (RCC) are barely explored. METHODS: The primary RCC cell lines 786-O and A498 were used in this study. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was employed for the RNA levels of circ_0000274, microRNA-338-3p (miR-338-3p) and nucleobindin 2 (NUCB2). RNase R assay was conducted to analyze the feature of circ_0000274.Cell Counting Kit-8 (CCK-8) assay, colony formation assay, transwell assay, tube formation assay and flow cytometry analysis were conducted for cell viability, colony formation, metastasis, angiogenesis and apoptosis, respectively. Western blot assay was utilized for protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were adopted to analyze the associations of circ_0000274 RNA, miR-338-3p RNA and NUCB2 protein. Murine xenograft model was established to explore the function of circ_0000274 RNA in vivo. Immunohistochemistry (IHC) assay was used to analyze NUCB2 protein level in xenograft tumors. RESULTS: Compared to normal tissues and cells, circ_0000274 RNA level was elevated in RCC tissues and cells. Knockdown of circ_0000274 RNA suppressed cell viability, colony formation, metastasis and tube formation and promoted apoptosis in RCC cells in vitro. Circ_0000274 RNA sponged miR-338-3p RNA to positively regulate NUCB2 protein in RCC cells. Inhibition of miR-338-3p reversed the impacts of circ_0000274 knockdown on RCC cell malignant behaviors. MiR-338-3p RNA overexpression repressed the malignant phenotypes of RCC cells, while NUCB2 protein elevation could abrogate the effect. Moreover, circ_0000274 RNA knockdown blocked tumorigenesis in vivo. Besides, circ_0000274 RNA knockdown inactivated the JAK1/STAT3 protein signaling pathway. CONCLUSION: Circ_0000274 RNA functioned as an oncogene in RCC development by regulating miR-338-3p RNA/NUCB2 protein axis and activating the JAK1/STAT3 protein signaling pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Circular , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , MicroRNAs/genética , Nucleobindinas/genética , Nucleobindinas/metabolismo , RNA Circular/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
16.
Nutrients ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406022

RESUMO

BACKGROUND: Excess adipose tissue accumulation and obesity are characterised by chronic, low-grade, systemic inflammation. Nestfatin-1 is a neuropeptide derived from the precursor protein nucleobindin-2 (NUCB2), which was initially reported to exert anorexigenic effects. The present study aimed to investigate the effects of an obesogenic diet (OD; high-fat, high-sugar) in NUCB2 knockout (KO) mice and of nesfatin-1 treatment in LPS-stimulated 3T3-L1 preadipocytes. METHODS: Subcutaneous white adipose tissue (Sc-WAT) samples from wild type (WT) and NUCB2 KO mice that were fed a normal diet (ND), or the OD for 12 weeks were used for RNA and protein extraction, as well as immunohistochemistry. 3T3-L1 cells were treated with 100 nM nesfatin-1 during differentiation and stimulated with 1 µg/mL LPS for measuring the expression and secretion of pro-inflammatory mediators by qPCR, western blotting, immunofluorescence, Bioplex, and ELISA. RESULTS: Following the OD, the mRNA, protein and cellular expression of pro-inflammatory mediators (Tnfα, Il-6, Il-1ß, Adgre1, Mcp1, TLR4, Hmbgb1 and NF-kB) significantly increased in the ScWAT of NUCB2 KO mice compared to ND controls. Adiponectin and Nrf2 expression significantly decreased in the ScWAT of OD-fed NUCB2 KO, without changes in the OD-fed WT mice. Furthermore, nesfatin-1 treatment in LPS-stimulated 3T3-L1 cells significantly reduced the expression and secretion of pro-inflammatory cytokines (Tnfα, Il-6, Il-1ß, Mcp1) and hmgb1. CONCLUSION: An obesogenic diet can induce significant inflammation in the ScWAT of NUCB2 KO mice, involving the HMGB1, NRF2 and NF-kB pathways, while nesfatin-1 reduces the pro-inflammatory response in LPS-stimulated 3T3-L1 cells. These findings provide a novel insight into the metabolic regulation of inflammation in WAT.


Assuntos
Tecido Adiposo Branco , Dieta , Nucleobindinas , Tecido Adiposo Branco/metabolismo , Animais , Dieta/efeitos adversos , Proteína HMGB1/metabolismo , Inflamação , Mediadores da Inflamação , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas/metabolismo , Gordura Subcutânea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Cell Mol Life Sci ; 79(3): 169, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239020

RESUMO

Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.


Assuntos
Diabetes Mellitus/metabolismo , Grelina/metabolismo , Nucleobindinas/metabolismo , Animais , Humanos
18.
Lab Invest ; 102(8): 859-871, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292759

RESUMO

Nesfatin-1, a newly identified energy-regulating peptide, has been reported to possess antioxidant, anti-inflammatory, and antiapoptotic properties; however, to date, its effect on rheumatoid arthritis (RA) has not been previously explored in detail. We previously showed that activation of acid-sensing ion channel 1a (ASIC1a) by acidosis plays an important role in RA pathogenesis. Therefore, in this study, we evaluated the effects of nesfatin-1 on acidosis-stimulated chondrocyte injury in vitro and in vivo and examined the involvement of ASIC1a and the mechanism underlying the effects of nesfatin-1 on RA. Acid-stimulated articular chondrocytes were used to examine one of the several possible mechanisms underlying RA pathogenesis in vitro. The mRNA expression profile of acid-induced chondrocytes treated or not treated with nesfatin-1 was investigated by RNA sequencing. The effects of nesfatin-1 on oxidative stress, inflammation, and apoptosis in acid-induced chondrocytes were measured. The mechanistic effect of nesfatin-1 on ASIC1a expression and intracellular Ca2+ in acid-stimulated chondrocytes was studied. Rats with adjuvant-induced arthritis (AA) were used for in vivo analysis of RA pathophysiology. Cartilage degradation and ASIC1a expression in chondrocytes were detected in rats with AA after intraarticular nesfatin-1 injection. The in vitro experiments showed that nesfatin-1 decreased acidosis-induced cytotoxicity and elevation of intracellular Ca2+ levels in chondrocytes. Moreover, it attenuated acid-induced oxidative stress, inflammation, and apoptosis in chondrocytes. Nesfatin-1 decreased ASIC1a protein levels in acid-stimulated chondrocytes via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and nuclear factor kappa-B (NF-κB) signaling pathways. In vivo analysis showed that nesfatin-1 ameliorated cartilage degradation and decreased ASIC1a expression in the chondrocytes of rats with AA. Collectively, nesfatin-1 suppressed acidosis-induced oxidative stress, inflammation, and apoptosis in acid-stimulated chondrocytes and alleviated arthritis symptoms in rats with AA, and its mechanism may be related to its ability to decrease ASIC1a protein levels via the MAPK/ERK and NF-κB pathways.


Assuntos
Canais Iônicos Sensíveis a Ácido , Acidose , Artrite Experimental , Cartilagem Articular , Nucleobindinas , Canais Iônicos Sensíveis a Ácido/metabolismo , Acidose/metabolismo , Acidose/patologia , Animais , Artrite Experimental/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Nucleobindinas/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Life Sci ; 294: 120376, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123998

RESUMO

AIMS: We aimed to investigate putative neuroprotective effects of nesfatin-1 on oxidative brain injury and memory dysfunction induced by a single epileptic seizure and to compare these effects with those of antiepileptic phenytoin. MAIN METHODS: Wistar albino rats were randomly divided into a control group and pentylenetetrazole (PTZ)-seizure groups pretreated intraperitoneally (ip) with saline or nesfatin-1 (NES-1; 0.3, 1 or 3 µg/kg/day) or phenytoin (PHE; 40 mg/kg/day) or PHE + NES-1 (0.3 µg/kg/day) at 30 min before the single-dose PTZ injection (45 mg/kg; ip). All treatments were repeated at the 24th and 48th h of the provoked epileptic seizure. Passive-avoidance test was performed to assess memory function. The rats were decapitated at the 72nd hour of seizures and brain tissues were analyzed for histopathological changes and for measuring levels of malondialdehyde, glutathione, myeloperoxidase activity and reactive oxygen/nitrogen species. KEY FINDINGS: In parallel to the effects of phenytoin, NES-1 reduced seizure score, elevated antioxidant glutathione content, depressed generation of nitric oxide and protected against seizure-induced neuronal damage. Additionally, increased malondialdehyde levels and elevated glial fibrillary acidic protein immunoreactivity in the cortex and hippocampus were decreased and memory dysfunction was improved by NES-1. However, NES-1 had no impact on myeloperoxidase activity or production of reactive oxygen species in the brain. SIGNIFICANCE: The findings of the present study demonstrate that nesfatin-1 treatment provides neuroprotection against seizure-induced oxidative damage and memory dysfunction by inhibiting reactive nitrogen species and upregulating antioxidant capacity, indicating its potential in alleviating memory deficits and increasing the effectiveness of conventional anti-convulsant therapies.


Assuntos
Lesões Encefálicas/prevenção & controle , Epilepsia/complicações , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Nucleobindinas/metabolismo , Estresse Oxidativo , Convulsões/complicações , Animais , Anticonvulsivantes/farmacologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Epilepsia/patologia , Glutationa/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Óxido Nítrico/metabolismo , Nucleobindinas/genética , Fenitoína/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Convulsões/patologia
20.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681721

RESUMO

Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.


Assuntos
Grelina/metabolismo , Nucleobindinas/metabolismo , Reprodução/genética , Feminino , Grelina/sangue , Grelina/genética , Humanos , Hipotálamo/metabolismo , Nucleobindinas/sangue , Nucleobindinas/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...