RESUMO
Three-dimensional (3D) chromosome structures are closely related to various chromosomal functions, and deep analysis of the structures is crucial for the elucidation of the functions. In recent years, chromosome conformation capture (3C) techniques combined with next-generation sequencing analysis have been developed to comprehensively reveal 3D chromosome structures. Micro-C is one such method that can detect the structures at nucleosome resolution. In this chapter, I provide a basic method for Micro-C analysis. I present and discuss a series of data analyses ranging from mapping to basic downstream analyses, including loop detection.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Cromossomos/genética , Biologia Computacional/métodos , Mapeamento Cromossômico/métodos , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismoRESUMO
H2A.Z-nucleosomes are present in both euchromatin and heterochromatin and it has proven difficult to interpret their disparate roles in the context of their stability features. Using an in situ assay of nucleosome stability and DT40 cells expressing engineered forms of the histone variant we show that native H2A.Z, but not C-terminally truncated H2A.Z (H2A.Z∆C), is released from nucleosomes of peripheral heterochromatin at unusually high salt concentrations. H2A.Z and H3K9me3 landscapes are reorganized in H2A.Z∆C-nuclei and overall sensitivity of chromatin to nucleases is increased. These tail-dependent differences are recapitulated upon treatment of HeLa nuclei with the H2A.Z-tail-peptide (C9), with MNase sensitivity being increased genome-wide. Fluorescence correlation spectroscopy revealed C9 binding to reconstituted nucleosomes. When introduced into live cells, C9 elicited chromatin reorganization, overall nucleosome destabilization and changes in gene expression. Thus, H2A.Z-nucleosomes influence global chromatin architecture in a tail-dependent manner, what can be modulated by introducing the tail-peptide into live cells.
Assuntos
Epigênese Genética , Heterocromatina , Histonas , Nucleossomos , Histonas/metabolismo , Histonas/genética , Humanos , Nucleossomos/metabolismo , Células HeLa , Heterocromatina/metabolismo , Heterocromatina/genética , Animais , Cromatina/metabolismo , Eucromatina/metabolismo , Eucromatina/genética , Núcleo Celular/metabolismoRESUMO
The fragmentation patterns of cell-free DNA (cfDNA) in plasma can potentially be utilized as diagnostic biomarkers in liquid biopsy. However, our knowledge of this biological process and the information encoded in fragmentation patterns remains preliminary. Here, we investigated the cfDNA fragmentomic characteristics against nucleosome positioning patterns in hematopoietic cells. cfDNA molecules with ends located within nucleosomes were relatively shorter with altered end motif patterns, demonstrating the feasibility of enriching tumor-derived cfDNA in patients with cancer through the selection of molecules possessing such ends. We then developed three cfDNA fragmentomic metrics after end selection, which showed significant alterations in patients with cancer and enabled cancer diagnosis. By incorporating machine learning, we further built high-performance diagnostic models, which achieved an overall area under the curve of 0.95 and 85.1% sensitivity at 95% specificity. Hence, our investigations explored the end characteristics of cfDNA fragmentomics and their merits in building accurate and sensitive cancer diagnostic models.
Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Aprendizado de Máquina , Biópsia Líquida/métodos , Nucleossomos/genética , Nucleossomos/metabolismo , Masculino , Feminino , Sensibilidade e Especificidade , Pessoa de Meia-IdadeRESUMO
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE.
Assuntos
Dinoflagellida , Histonas , Nucleossomos , Nucleossomos/metabolismo , Histonas/metabolismo , Dinoflagellida/metabolismo , Dinoflagellida/genética , Telômero/metabolismo , Telômero/genética , Membrana Nuclear/metabolismo , Cromossomos , MitoseRESUMO
Base excision repair (BER) is initialized by DNA glycosylases, which recognize and flip damaged bases out of the DNA duplex into the enzymes active site, followed by cleavage of the glycosidic bond. Recent studies have revealed that all types of DNA glycosylases repair base lesions less efficiently within nucleosomes, and their repair activity is highly depended on the lesion's location within the nucleosome. To reveal the underlying molecular mechanism of this phenomenon, we determine the 3.1 Å cryo-EM structure of human 8-oxoguanine-DNA glycosylase 1 (hOGG1) bound to a nucleosome core particle (NCP) containing a common oxidative base lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). Our structural analysis shows that hOGG1 can recognize and flip 8-oxodGuo even within NCPs; however, the interaction between 8-oxodGuo and hOGG1 in a NCP context is weaker than in free DNA due to competition for nucleosomal DNA by the histones. Binding of OGG1 and the flipping of 8-oxodGuo by hOGG1 leads to a partial detachment of DNA from the histone core and a ratchet-like inward movement of nucleosomal DNA. Our findings provide insights into how the dynamic structure of nucleosomes modulate the activity of repair enzymes within chromatin.
Assuntos
8-Hidroxi-2'-Desoxiguanosina , Microscopia Crioeletrônica , DNA Glicosilases , Reparo do DNA , Nucleossomos , DNA Glicosilases/metabolismo , DNA Glicosilases/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Humanos , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/química , DNA/metabolismo , DNA/química , Modelos Moleculares , Ligação Proteica , Histonas/metabolismo , Histonas/química , Dano ao DNARESUMO
Chromatin remodeling, carried out by four major subfamilies of ATP-dependent remodeler complexes across eukaryotes, alleviates the topological challenge posed by nucleosomes to regulate genome access. Recently, single-molecule and single-cell imaging techniques have been widely employed to probe this crucial process, both in vitro and in cellulo. Herein, we provide an integrated account of key recent efforts that leverage these approaches to visualize, quantify and map chromatin remodelers at work, elucidating diverse aspects of the remodeling process in both space and time, including molecular mechanisms of DNA wrapping/unwrapping, nucleosome translocation and histone exchange, dynamics of chromatin binding/target search and their intranuclear organization into hotspots or phase condensates, as well as functional coupling with transcription. The mechanistic insights and quantitative parameters revealed shed light on a multi-modal yet shared landscape for regulating remodeling across molecular and cellular scales, and pave the way for further interrogating the implications of its misregulation in disease contexts.
Assuntos
Montagem e Desmontagem da Cromatina , Nucleossomos , Imagem Individual de Molécula , Análise de Célula Única , Humanos , Imagem Individual de Molécula/métodos , Análise de Célula Única/métodos , Nucleossomos/metabolismo , Animais , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismoRESUMO
Recent studies showed an interphase chromosome architecture-a specific coiled nucleosome structure-derived from cryopreserved EM tomograms, and dispersed throughout the nucleus. The images were computationally processed to fill in the missing wedges of data caused by incomplete tomographic tilts. The resulting structures increased z-resolution enabling an extension of the proposed architecture to that of mitotic chromosomes. Here, we provide additional insights into the chromosome architecture that was recently published [M. Elbaum et al., Proc. Natl. Acad. Sci. U.S.A. 119, e2119101119 (2022)]. We build on the defined chromosomes time-dependent structures in an effort to probe their dynamics. Variants of the coiled chromosome structures, possibly further defining specific regions, are discussed. We propose, based on generalized specific uncoiling of mitotic chromosomes in telophase, large-scale reorganization of interphase chromosomes. Chromosome territories, organized as micron-sized small patches, are constructed, satisfying complex volume considerations. Finally, we unveiled the structures of replicated coiled chromosomes, still attached to centromeres, as part of chromosome architecture.
Assuntos
Interfase , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/genética , Interfase/genética , Humanos , Ciclo Celular/genética , Cromossomos/genética , Mitose , Centrômero/genética , Centrômero/metabolismoRESUMO
The organization of chromatin is critical for gene expression, yet the underlying mechanisms responsible for this organization remain unclear. Recent work has suggested that phase separation might play an important role in chromatin organization, yet the molecular forces that drive chromatin phase separation are poorly understood. In this work we interrogate a molecular model of chromatin to quantify the driving forces and thermodynamics of chromatin phase separation. By leveraging a multiscale approach, our molecular model is able to reproduce chromatin's chemical and structural details at the level of a few nanometers, yet remain efficient enough to simulate chromatin phase separation across 100 nm length scales. We first demonstrate that our model can reproduce key experiments of phase separating nucleosomal arrays, and then apply our model to quantify the interactions that drive their formation into chromatin condensates with either liquid- or solid-like material properties. We next use our model to characterize the molecular structure within chromatin condensates and find that this structure is irregularly ordered and is inconsistent with existing 30 nm fiber models. Lastly we examine how post-translational modifications can modulate chromatin phase separation and how the acetylation of chromatin can lead to chromatin decompaction while still preserving phase separation. Taken together, our work provides a molecular view into the structure and dynamics of phase-separated chromatin and provides new insights into how phase separation might manifest in the nucleus of living cells.
Assuntos
Cromatina , Cromatina/química , Cromatina/metabolismo , Termodinâmica , Nucleossomos/química , Nucleossomos/metabolismo , Simulação de Dinâmica Molecular , Modelos Moleculares , AcetilaçãoRESUMO
Base excision repair is the main pathway involved in active DNA demethylation. 5-formylcytosine and 5-carboxylcytosine, two oxidized moieties of methylated cytosine, are recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. Using single molecule fluorescence experiments, we study TDG in the presence and absence of 5-formylcytosine. TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of base modifications. TDG active site variants and truncated N-terminus, reveals these variants alter base modification search and recognition mechanism of TDG. On DNA containing an undamaged nucleosome, TDG is found to either bypass, colocalize with, or encounter but not bypass the nucleosome. Truncating the N-terminus reduces the number of interactions with the nucleosome. Our findings provide mechanistic insights into how TDG searches for modified DNA bases in chromatin.
Assuntos
Citosina , Reparo do DNA , DNA , Nucleossomos , Timina DNA Glicosilase , Humanos , Domínio Catalítico , Citosina/metabolismo , Citosina/análogos & derivados , DNA/metabolismo , DNA/química , Nucleossomos/metabolismo , Imagem Individual de Molécula , Timina DNA Glicosilase/metabolismo , Timina DNA Glicosilase/químicaRESUMO
The organization of DNA into nucleosomes is a ubiquitous and ancestral feature that was once thought to be exclusive to the eukaryotic domain of life. Intriguingly, several representatives of the Nucleocytoplasmic Large DNA Viruses (NCLDV) encode histone-like proteins that in Melbournevirus were shown to form nucleosome-like particles. Medusavirus medusae (MM), a distantly related giant virus, encodes all four core histone proteins and, unique amongst most giant viruses, a putative acidic protein with two domains resembling eukaryotic linker histone H1. Here, we report the structure of nucleosomes assembled with MM histones and highlight similarities and differences with eukaryotic and Melbournevirus nucleosomes. Our structure provides insight into how variations in histone tail and loop lengths are accommodated within the context of the nucleosome. We show that MM-histones assemble into tri-nucleosome arrays, and that the putative linker histone H1 does not function in chromatin compaction. These findings expand our limited understanding of chromatin organization by virus-encoded histones.
Assuntos
Histonas , Nucleossomos , Proteínas Virais , Histonas/metabolismo , Histonas/química , Histonas/genética , Nucleossomos/metabolismo , Nucleossomos/química , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Modelos Moleculares , Vírus de DNA/genética , Cromatina/metabolismo , Cromatina/química , Sequência de AminoácidosRESUMO
The analysis of tissues of origin of cell-free DNA (cfDNA) is of research and diagnostic interest. Many studies focused on bisulfite treatment or immunoprecipitation protocols to assess the tissues of origin of cfDNA. DNA loss often occurs during such processes. Fragmentomics of cfDNA molecules has uncovered a wealth of information related to tissues of origin of cfDNA. There is still much room for the development of tools for assessing contributions from various tissues into plasma using fragmentomic features. Hence, we developed an approach to analyze the relative contributions of DNA from different tissues into plasma, by identifying characteristic fragmentation patterns associated with selected histone modifications. We named this technique as FRAGmentomics-based Histone modification Analysis (FRAGHA). Deduced placenta-specific histone H3 lysine 27 acetylation (H3K27ac)-associated signal correlated well with the fetal DNA fraction in maternal plasma (Pearson's r = 0.96). The deduced liver-specific H3K27ac-associated signal correlated with the donor-derived DNA fraction in liver transplantation recipients (Pearson's r = 0.92) and was significantly increased in patients with hepatocellular carcinoma (HCC) (P < 0.01, Wilcoxon rank-sum test). Significant elevations of erythroblasts-specific and colon-specific H3K27ac-associated signals were observed in patients with ß-thalassemia major and colorectal cancer, respectively. Furthermore, using the fragmentation patterns from tissue-specific H3K27ac regions, a machine learning algorithm was developed to enhance HCC detection, with an area under the curve (AUC) of up to 0.97. Finally, genomic regions with H3K27ac or histone H3 lysine 4 trimethylation (H3K4me3) were found to exhibit different fragmentomic patterns of cfDNA. This study has shed light on the relationship between cfDNA fragmentomics and histone modifications, thus expanding the armamentarium of liquid biopsy.
Assuntos
Ácidos Nucleicos Livres , Fragmentação do DNA , Código das Histonas , Histonas , Nucleossomos , Humanos , Nucleossomos/metabolismo , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Histonas/metabolismo , Histonas/sangue , Feminino , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/genética , Gravidez , Acetilação , Placenta/metabolismo , MasculinoRESUMO
Chromosomes undergo dramatic compaction during mitosis, but accurately measuring their volume has been challenging. Employing serial block face scanning electron microscopy, Cisneros-Soberanis et al. (https://doi.org/10.1083/jcb.202403165) report that mitotic chromosomes compact to a nucleosome concentration of â¼760 µM.
Assuntos
Cromossomos , Mitose , Nucleossomos , Mitose/genética , Cromossomos/genética , Cromossomos/ultraestrutura , Nucleossomos/metabolismo , Nucleossomos/genética , Nucleossomos/ultraestrutura , Humanos , AnimaisRESUMO
We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions. The SR-EV rules of return generate conformationally defined domains observed by single-cell imaging techniques. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes occurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistant to an external forcing such as RAD21 degradation.
Assuntos
Cromatina , Cromatina/metabolismo , Cromatina/química , Nucleossomos/metabolismo , Nucleossomos/química , Humanos , Análise de Célula ÚnicaRESUMO
BACKGROUND: The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS: Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS: Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.
Assuntos
Dano ao DNA , Reparo do DNA , Histonas , Poli(ADP-Ribose) Polimerase-1 , Ubiquitinação , Histonas/metabolismo , Histonas/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Estresse Oxidativo , Nucleossomos/metabolismoRESUMO
Spreading of H3K27me3 is crucial for the maintenance of mitotically inheritable Polycomb-mediated chromatin silencing in animals and plants. However, how Polycomb repressive complex 2 (PRC2) accesses unmodified nucleosomes in spreading regions for spreading H3K27me3 remains unclear. Here, we show in Arabidopsis thaliana that the chromatin remodeler PICKLE (PKL) plays a specialized role in H3K27me3 spreading to safeguard cell identity during differentiation. PKL specifically localizes to H3K27me3 spreading regions but not to nucleation sites and physically associates with PRC2. Loss of PKL disrupts the occupancy of the PRC2 catalytic subunit CLF in spreading regions and leads to aberrant dedifferentiation. Nucleosome density increase endowed by the ATPase function of PKL ensures that unmodified nucleosomes are accessible to PRC2 catalytic activity for H3K27me3 spreading. Our findings demonstrate that PKL-dependent nucleosome compaction is critical for PRC2-mediated H3K27me3 read-and-write function in H3K27me3 spreading, thus revealing a mechanism by which repressive chromatin domains are established and propagated.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Histonas , Nucleossomos , Complexo Repressor Polycomb 2 , Nucleossomos/metabolismo , Nucleossomos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Histonas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Regulação da Expressão Gênica de Plantas , Cromatina/metabolismo , Cromatina/genéticaRESUMO
In this issue of Molecular Cell, Engeholm et al.1 present cryo-EM structures of the chromatin remodeler Chd1 bound to a hexasome-nucleosome complex, an intermediate state during transcription either with or without FACT to restore the missing H2A-H2B dimer. These two binding modes reveal how Chd1 and FACT cooperate in nucleosome re-establishment during transcription.
Assuntos
Microscopia Crioeletrônica , Proteínas de Ligação a DNA , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Histonas/genética , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Ligação Proteica , Transcrição Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/químicaRESUMO
Polycomb repressive complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit enhancer of zeste homolog 2 (EZH2) stimulates its activity by an unknown mechanism. Here, we show that human PRC2 forms a dimer on chromatin in which an inactive, automethylated PRC2 protomer is the allosteric activator of a second PRC2 that is poised to methylate H3 of a substrate nucleosome. Functional assays support our model of allosteric trans-autoactivation via EED, suggesting a previously unknown mechanism mediating context-dependent activation of PRC2. Our work showcases the molecular mechanism of auto-modification-coupled dimerization in the regulation of chromatin-modifying complexes.
Assuntos
Cromatina , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Complexo Repressor Polycomb 2 , Multimerização Proteica , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Humanos , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Metilação , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Nucleossomos/metabolismo , Nucleossomos/genética , Regulação Alostérica , Células HEK293 , Ligação ProteicaRESUMO
The yeast SWR1 complex catalyzes the exchange of histone H2A/H2B dimers in nucleosomes with Htz1/H2B dimers. We use cryoelectron microscopy to determine the structure of an enzyme-bound hexasome intermediate in the reaction pathway of histone exchange, in which an H2A/H2B dimer has been extracted from a nucleosome prior to the insertion of a dimer comprising Htz1/H2B. The structure reveals a key role for the Swc5 subunit in stabilizing the unwrapping of DNA from the histone core of the hexasome. By engineering a crosslink between an Htz1/H2B dimer and its chaperone protein Chz1, we show that this blocks histone exchange by SWR1 but allows the incoming chaperone-dimer complex to insert into the hexasome. We use this reagent to trap an SWR1/hexasome complex with an incoming Htz1/H2B dimer that shows how the reaction progresses to the next step. Taken together the structures reveal insights into the mechanism of histone exchange by SWR1 complex.
Assuntos
Microscopia Crioeletrônica , Histonas , Nucleossomos , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/genética , Histonas/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleossomos/genética , Modelos Moleculares , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Ligação Proteica , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Chaperonas de HistonasRESUMO
Splenic nodular lesions in dogs can be either benign or malignant. They might be discovered incidentally or, in case of rupture, they may lead to hemoabdomen. Nevertheless, splenectomy followed by histopathology is essential for diagnosis and to prevent rupture. Yet, this invasive procedure might be postponed for dogs with benign splenic nodular lesions. Conversely, owners may opt for euthanasia over surgery for malignancies with poor prognosis like hemangiosarcoma. Thus, anticipating diagnosis with non-invasive biomarkers is crucial for proper patient management. In this prospective study, plasma samples were collected from 66 dogs with histologically confirmed splenic nodular lesions. A canine-specific ELISA kit was applied to assess nucleosome concentration, with histopathology of the spleen serving as the gold standard. Nucleosome concentration was found to be significantly higher in dogs with malignant splenic nodular lesions, particularly in those with hemangiosarcoma and other malignancies. The presence of hemoabdomen, more prevalent in dogs with splenic malignancy, also resulted in increased plasmatic nucleosome concentrations. Plasma nucleosomes could serve as a biomarker for detecting malignant splenic nodular lesions in dogs. More research is needed to understand how nucleosome concentration relate to disease stage and prognosis in dogs with hemangiosarcoma.
Assuntos
Biomarcadores Tumorais , Doenças do Cão , Hemangiossarcoma , Nucleossomos , Neoplasias Esplênicas , Animais , Cães , Nucleossomos/metabolismo , Doenças do Cão/sangue , Doenças do Cão/diagnóstico , Doenças do Cão/patologia , Neoplasias Esplênicas/veterinária , Neoplasias Esplênicas/sangue , Neoplasias Esplênicas/diagnóstico , Neoplasias Esplênicas/patologia , Biomarcadores Tumorais/sangue , Masculino , Estudos Prospectivos , Feminino , Hemangiossarcoma/veterinária , Hemangiossarcoma/sangue , Hemangiossarcoma/patologia , Hemangiossarcoma/diagnóstico , Baço/patologia , Ensaio de Imunoadsorção Enzimática/veterináriaRESUMO
Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor ß (TGF-ß) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-ß and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-ß. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-ß gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.