RESUMO
Praziquantel (PZQ) is the sole drug used to treat schistosomiasis, and the probability of developing resistance is growing the longer it is relied upon, justifying the search for alternatives. Phosphodiesterases (PDEs), particularly the PDE4 family, have attracted considerable attention as drug targets, including in Schistosoma mansoni, and especially SmPDE4A. This study investigates the potential antischistosomal activity of human PDE4 and potent SmPDE4A inhibitor roflumilast, either alone or combined with PZQ. In vitro, roflumilast resulted in a significant, concentration-dependent reduction in egg production but not of worm viability. In vitro exposure to roflumilast in combination with a low concentration of PZQ was less effective than PZQ alone, pointing to antagonism. S. mansoni-infected mice treated with roflumilast showed significant reductions in worm burden (27%) as well as hepatic and intestinal egg burdens (~28%) two weeks post treatment. Scanning EM of worms isolated from roflumilast-treated and untreated mice did not reveal noticeable changes to their tegument. S. mansoni-infected mice treated with a fixed dosage of roflumilast and a variable dosage of PZQ resulted in a higher reduction in worm burden, reduced hepatic egg counts, absence of immature eggs and a marked increase in dead eggs, compared to PZQ alone. However, the combination resulted in increased animal mortality, probably attributable to pharmacodynamic interactions between the two drugs. Although this study marks the first report of in vivo antischistosomal potential by a PDE inhibitor, an important proof of concept, we conclude that the antischistosomal effects of roflumilast are insufficient to warrant further development.
Assuntos
Aminopiridinas/farmacologia , Anti-Helmínticos/farmacologia , Benzamidas/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/efeitos dos fármacos , Ciclopropanos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Concentração Inibidora 50 , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Oviposição/efeitos dos fármacos , Praziquantel/farmacologia , Schistosoma mansoni/enzimologia , Schistosoma mansoni/fisiologia , Schistosoma mansoni/ultraestruturaRESUMO
Drugs that inhibit cyclic nucleotide phosphodiesterase activity act to increase intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) content. In total, 11 families of these enzymes-which differ with respect to affinity for cAMP and cGMP, cellular expression, intracellular localization, and mechanisms of regulation-have been identified. Inhibitors of enzymes in the PDE3 family of cyclic nucleotide phosphodiesterases raise intracellular cAMP content in cardiac and vascular smooth muscle, with inotropic and, to a lesser extent, vasodilatory actions. These drugs have been used for many years in the treatment of patients with heart failure, but their long-term use has generally been shown to increase mortality through mechanisms that remain unclear. More recently, inhibitors of PDE5 cyclic nucleotide phosphodiesterases have been used as cGMP-raising agents in vascular smooth muscle. With respect to cardiovascular disease, there is evidence that these drugs are more efficacious in the pulmonary than in the systemic vasculature, for which reason they are used principally in patients with pulmonary hypertension. Effects attributable to inhibition of myocardial PDE5 activity are less well characterized. New information indicating that enzymes from the PDE1 family of cyclic nucleotide phosphodiesterases constitute the majority of cAMP- and cGMP-hydrolytic activity in human myocardium raises questions as to their role in regulating these signaling pathways in heart failure.