Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.161
Filtrar
1.
Sci Adv ; 10(27): eadn8356, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968348

RESUMO

Eukaryotic phytoplankton, also known as algae, form the basis of marine food webs and drive marine carbon sequestration. Algae must regulate their motility and gravitational sinking to balance access to light at the surface and nutrients in deeper layers. However, the regulation of gravitational sinking remains largely unknown, especially in motile species. Here, we quantify gravitational sinking velocities according to Stokes' law in diverse clades of unicellular marine microalgae to reveal the cell size, density, and nutrient dependency of sinking velocities. We identify a motile algal species, Tetraselmis sp., that sinks faster when starved due to a photosynthesis-driven accumulation of carbohydrates and a loss of intracellular water, both of which increase cell density. Moreover, the regulation of cell sinking velocities is connected to proliferation and can respond to multiple nutrients. Overall, our work elucidates how cell size and density respond to environmental conditions to drive the vertical migration of motile algae.


Assuntos
Tamanho Celular , Nutrientes , Nutrientes/metabolismo , Gravitação , Fitoplâncton/fisiologia , Fitoplâncton/metabolismo , Fotossíntese , Microalgas/metabolismo
2.
J Environ Sci (China) ; 146: 91-102, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969465

RESUMO

In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.


Assuntos
Filtração , Hidroponia , Nutrientes , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Nutrientes/análise , Nutrientes/metabolismo , Cerâmica , Membranas Artificiais , Poluentes Químicos da Água/análise , Gravitação , Fertilizantes
3.
Sci Rep ; 14(1): 15028, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951538

RESUMO

Honey bees are important insect pollinators that provide critical pollination services to fruit and nut crops in the US. They face challenges likely due to pressures associated with agricultural intensification related habitat loss. To better understand this, pollen preferences of foraging bees and the nutritional profile of pollen brought into hives by foraging bees in crop fields and nut orchards can provide valuable information. We trained bees to forage on bee-collected pollen from hives placed for pollination services in almond orchards, sunflower fields, or mixed species from inter-row plantings. Using bees trained to a certain kind of hive pollen, we applied a binary scoring system, to test preferences of these preconditioned foragers. We also performed metabolomic analyses of the hive pollen used for training and testing to elucidate their nutritional content. Irrespective of preconditioning, bees collected all the available choice pollen types, predominantly choosing hive-collected mixed species pollen (MSP), followed by almond orchard pollen. The hive-collected MSP was chemically diverse, richest in cholesterol, vitamins, and phytochemicals quercetin, kaempferol, coumarin, and quinine, but was not consistently high for essential amino acids and polyunsaturated fatty acids. Although diversity in chemical profiles may not directly relate to plant species diversity, our results suggest that foragers collect a variety of pollen types when available reiterating the importance of diverse floral resources.


Assuntos
Nutrientes , Pólen , Polinização , Abelhas/fisiologia , Animais , Nutrientes/análise , Nutrientes/metabolismo , Prunus dulcis , Comportamento Alimentar/fisiologia
5.
Front Immunol ; 15: 1415794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957469

RESUMO

Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.


Assuntos
Endocitose , Troca Materno-Fetal , Humanos , Gravidez , Endocitose/imunologia , Feminino , Troca Materno-Fetal/imunologia , Animais , Transporte Biológico , Nutrientes/metabolismo , Tolerância Imunológica , Placenta/imunologia , Placenta/metabolismo
6.
Sci Rep ; 14(1): 15062, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956110

RESUMO

Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.


Assuntos
Carvão Vegetal , Fotossíntese , Folhas de Planta , Estresse Salino , Spinacia oleracea , Óxido de Zinco , Zinco , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Fotossíntese/efeitos dos fármacos , Zinco/farmacologia , Zinco/metabolismo , Nutrientes/metabolismo , Clorofila/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Antioxidantes/metabolismo , Solo/química , Estresse Oxidativo/efeitos dos fármacos , Salinidade
7.
Trop Anim Health Prod ; 56(6): 201, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990398

RESUMO

The aim of this study was to explore the effect of replacing protein pellets with soybean grain in high-concentrate diets with or without the addition of silage, on the intake, digestibility, and rumen and blood parameters of feedlot cattle in tropical regions. Four cannulated, crossbred steers were used, 4.5 ± 0.5 years old, with an average weight of 685.55 ± 111.78 kg. The steers were distributed in a 4 × 4 Latin square, in a 2 × 2 factorial scheme (two sources of protein: protein pellets or whole soybean grain, with or without added dietary bulk). There was no effect (P ≥ 0.109) from the interaction between the source of protein and the addition of silage to the diet on dry matter (DM) and nutrient intake, or the digestibility (P ≥ 0.625) of DM or crude protein (CP). However, both factors affected (P ≤ 0.052) the intake of DM, neutral detergent fiber (NDF), and non-fiber carbohydrates (NFC), as well as the independent digestibility (P ≤ 0.099) of fat, NFC, total carbohydrates (TC), and total cholesterol concentration. There was an effect (P ≤ 0.053) from the interaction between the source of protein and the addition of silage to the diet on the digestibility of NDF and total digestible nutrients (TDN), as well as on the glycose concentration (P = 0.003). Blood parameters (i.e. protein, albumin, creatinine, triglycerides, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)) were not affected (P ≥ 0.139) by the source of protein, the addition of silage, or their interaction. Lastly, including 150 g/kg silage DM in a high-grain diet, and using soybean grain as a source of protein in substitution of protein pellet could be a suitable nutritional strategy to ensure adequate DM and nutrient intake and digestibility, with no detrimental effects on rumen and blood parameters of feedlot cattle in the tropics.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Digestão , Glycine max , Rúmen , Clima Tropical , Animais , Bovinos/sangue , Bovinos/fisiologia , Bovinos/metabolismo , Rúmen/metabolismo , Masculino , Ração Animal/análise , Digestão/fisiologia , Dieta/veterinária , Silagem/análise , Proteínas Alimentares/metabolismo , Proteínas Alimentares/administração & dosagem , Nutrientes/metabolismo
8.
Sci Rep ; 14(1): 16007, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992147

RESUMO

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Assuntos
Ração Animal , Fezes , Solo , Urina , Animais , Fezes/química , Bovinos , Solo/química , Ovinos , Urina/química , Ração Animal/análise , Nutrientes/análise , Nutrientes/metabolismo , Ruminantes/fisiologia , Nitrogênio/metabolismo , Nitrogênio/urina , Nitrogênio/análise , Fósforo/urina , Fósforo/análise , Fósforo/metabolismo
9.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000100

RESUMO

Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.


Assuntos
Ferro , Fósforo , Plantas , Solo , Fósforo/metabolismo , Ferro/metabolismo , Solo/química , Plantas/metabolismo , Nutrientes/metabolismo , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Microbiologia do Solo
10.
Sci Rep ; 14(1): 16305, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009646

RESUMO

The agronomic stability and nutritional importance of 30 (Test genotypes: 29 + Check: 1 = 30) promising horse gram mutants were evaluated in this multi-environment-based experiment (MEE). Attempts were made to (i) identify stable mutants for agronomic traits through AMMI and GGE biplot models, (ii) quantify nutritional traits, (iii) understand the linkage between yield and nutritional traits, and (iv) estimate physical (PP) and cooking properties (CP) of selected genotypes to fix their food-chain usability. The ANOVA of the pooled data exhibited significant differences among environments (E), genotypes (G), and GxE interaction. The combined AMMI and GGE results helped to identify a few good-yielding and stable genotypes (GYSM) (G1, G25, G3, and G27). The yield advantages of these GYSMs over the parent PAIYUR 2 are 42.99%, 34.63%, 28.68%, and 30.59% respectively. The nutrient profiling of mutants revealed (i) a significant coefficient of variation for macronutrients (fat: 29.98%; fibre: 20.72%, and protein: 5.01%), (ii) a good range of variation for micronutrients, and (iii) helped to identify macro (MaNSM) and micro nutrient-specific mutants (MiNSM). The relationship analysis between yield and nutrient traits ascertained that yield had (i) positivity with protein (r2 = 0.69) and negativity for micronutrients except for Mn (r2 = 0.63), Cu (r2 = 0.46), and B (r2 = 0.01) in GYSM, (ii) positivity with protein and fibre in MaNSM, and (iii) negativity with micronutrients in MiNSM. Of the GYSM, G1 and G25 offer scope for commercial exploitation, and their PP and CP analyses revealed that G1 can be used for pastry and baked product preparation while G25 for weaning foods. Cooking time exhibited positivity with seed size parameters and negativity with water absorption capacity (r2 = - 0.53). An LC-MS-MS-based amino acid (AA) fractionation study showed the effect of induced mutagenesis on the contents of amino acids and also revealed the significance of horse gram for its lysine and methionine contents.


Assuntos
Genótipo , Mutação , Valor Nutritivo , Fabaceae/genética , Nutrientes/metabolismo , Nutrientes/análise
11.
GM Crops Food ; 15(1): 233-247, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39008437

RESUMO

Advances in genetic modification (GM) techniques have generated huge interest in improving nutrient utilization, maximizing nutrient uptake, and conserving soil in the pursuit of sustainable agriculture. Unfortunately, little is still known about the recent advancements in the application of GM tactics to enhance each of these areas. This review explores the latest GM strategies intended to support soil conservation, maximize nutrient uptake, and improve nutrient utilization in farming, highlighting the critical roles that soil health and nutrient management play in sustainable farming. GM strategies such as improving the efficiency of nutrient uptake through enhanced root systems and increased nutrient transport mechanisms are well discussed. This study suggests that addressing potential obstacles, such as ethical and regulatory concerns, is a necessity for long-term sustainability applications of GM technologies to raise agricultural yields.


Assuntos
Produtos Agrícolas , Nutrientes , Solo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Nutrientes/metabolismo , Plantas Geneticamente Modificadas/genética , Agricultura/métodos , Conservação dos Recursos Naturais/métodos
12.
Sci Rep ; 14(1): 16546, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019951

RESUMO

Intercropping systems have garnered attention as a sustainable agricultural approach for efficient land use, increased ecological diversity in farmland, and enhanced crop yields. This study examined the effect of intercropping on the kiwifruit rhizosphere to gain a deeper understanding of the relationships between cover plants and kiwifruit in this sustainable agricultural system. Soil physicochemical properties and bacterial communities were analyzed using the Kiwifruit-Agaricus blazei intercropping System. Moreover, a combined analysis of 16S rRNA gene sequencing and metabolomic sequencing was used to identify differential microbes and metabolites in the rhizosphere. Intercropping led to an increase in soil physicochemical and enzyme activity, as well as re-shaping the bacterial community and increasing microbial diversity. Proteobacteria, Bacteroidota, Myxococcota, and Patescibacteria were the most abundant and diverse phyla in the intercropping system. Expression analysis further revealed that the bacterial genera BIrii41, Acidibacter, and Altererythrobacter were significantly upregulated in the intercropping system. Moreover, 358 differential metabolites (DMs) were identified between the monocropping and intercropping cultivation patterns, with fatty acyls, carboxylic acids and derivatives, and organooxygen compounds being significantly upregulated in the intercropping system. The KEGG metabolic pathways further revealed considerable enrichment of DMs in ABC transporters, histidine metabolism, and pyrimidine metabolism. This study identified a significant correlation between 95 bacterial genera and 79 soil metabolites, and an interactive network was constructed to explore the relationships between these differential microbes and metabolites in the rhizosphere. This study demonstrated that Kiwifruit-Agaricus blazei intercropping can be an effective, labor-saving, economic, and sustainable practice for reshaping bacterial communities and promoting the accumulation and metabolism of beneficial microorganisms in the rhizosphere.


Assuntos
Actinidia , Agaricus , Bactérias , Rizosfera , Microbiologia do Solo , Actinidia/microbiologia , Actinidia/crescimento & desenvolvimento , Agaricus/crescimento & desenvolvimento , Agaricus/metabolismo , Agaricus/genética , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Agricultura/métodos , Solo/química , Microbiota , Nutrientes/metabolismo , Produção Agrícola/métodos
13.
BMC Plant Biol ; 24(1): 684, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020284

RESUMO

Malus sieversii, commonly known as wild apples, represents a Tertiary relict plant species and serves as the progenitor of globally cultivated apple varieties. Unfortunately, wild apple populations are facing significant degradation in localized areas due to a myriad of factors. To gain a comprehensive understanding of the nutrient status and spatiotemporal variations of M. sieversii, green leaves were collected in May and July, and the fallen leaves were collected in October. The concentrations of leaf nitrogen (N), phosphorus (P), and potassium (K) were measured, and the stoichiometric ratios as well as nutrient resorption efficiencies were calculated. The study also explored the relative contributions of soil, topographic, and biotic factors to the variation in nutrient traits. The results indicate that as the growing period progressed, the concentrations of N and P in the leaves significantly decreased (P < 0.05), and the concentration of K in October was significantly lower than in May and July. Throughout plant growth, leaf N-P and N-K exhibited hyperallometric relationships, while P-K showed an isometric relationship. Resorption efficiency followed the order of N < P < K (P < 0.05), with all three ratios being less than 1; this indicates that the order of nutrient limitation is K > P > N. The resorption efficiencies were mainly regulated by nutrient concentrations in fallen leaves. A robust spatial dependence was observed in leaf nutrient concentrations during all periods (70.1-97.9% for structural variation), highlighting that structural variation, rather than random factors, dominated the spatial variation. Nutrient resorption efficiencies (NRE, PRE, and KRE) displayed moderate structural variation (30.2-66.8%). The spatial patterns of nutrient traits varied across growth periods, indicating they are influenced by multifactorial elements (in which, soil property showed the highest influence). In conclusion, wild apples manifested differentiated spatiotemporal variability and influencing factors across various leaf nutrient traits. These results provide crucial insights into the spatiotemporal patterns and influencing factors of leaf nutrient traits of M. sieversii at the permanent plot scale for the first time. This work is of great significance for the ecosystem restoration and sustainable management of degrading wild fruit forests.


Assuntos
Malus , Nitrogênio , Fósforo , Folhas de Planta , Potássio , Folhas de Planta/metabolismo , Malus/metabolismo , Malus/crescimento & desenvolvimento , Malus/fisiologia , China , Fósforo/metabolismo , Fósforo/análise , Nitrogênio/metabolismo , Potássio/metabolismo , Potássio/análise , Florestas , Nutrientes/metabolismo , Nutrientes/análise , Solo/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Análise Espaço-Temporal
14.
Environ Geochem Health ; 46(9): 328, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012544

RESUMO

Alpine ecosystems are important terrestrial carbon (C) pools, and microbial decomposers play a key role in litter decomposition. Microbial metabolic limitations in these ecosystems, however, remain unclear. The objectives of this study aim to elucidate the characteristics of microbial nutrient limitation and their C use efficiency (CUE), and to evaluate their response to environmental factors. Five ecological indicators were utilized to assess and compare the degree of microbial elemental homeostasis and the nutrient limitations of the microbial communities among varying stages of litter decomposition (L, F, and H horizon) along an altitudinal gradient (2800, 3000, 3250, and 3500 m) under uniform vegetation (Abies fabri) on Gongga Mountain, eastern Tibetan Plateau. In this study, microorganisms in the litter reached a strictly homeostatic of C content exclusively during the middle stage of litter decomposition (F horizon). Based on the stoichiometry of soil enzymes, we observed that microbial N- and P-limitation increased during litter degradation, but that P-limitation was stronger than N-limitation at the late stages of degradation (H horizon). Furthermore, an increase in microbial CUE corresponded with a reduction in microbial C-limitation. Additionally, redundancy analysis (RDA) based on forward selection further showed that microbial biomass C (MBC) is closely associated with the enzyme activities and their ratios, and MBC was also an important factor in characterizing changes in microbial nutrient limitation and CUE. Our findings suggest that variations in MBC, rather than N- and P-related components, predominantly influence microbial metabolic processes during litter decomposition on Gongga Mountain, eastern Tibetan Plateau.


Assuntos
Carbono , Microbiologia do Solo , Carbono/metabolismo , Nitrogênio/metabolismo , Tibet , Fósforo/metabolismo , Nutrientes/metabolismo , Folhas de Planta/metabolismo , Solo/química , Biomassa , Ecossistema , Bactérias/metabolismo
16.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959864

RESUMO

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Proteômica , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Feminino , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , Nutrientes/metabolismo , Adulto , Glucose/metabolismo , Idoso , Ácidos Graxos/metabolismo
17.
FASEB J ; 38(13): e23799, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38979938

RESUMO

Maternal Zika virus (ZIKV) infection during pregnancy has been associated with severe intrauterine growth restriction (IUGR), placental damage, metabolism disturbances, and newborn neurological abnormalities. Here, we investigated the impact of maternal ZIKV infection on placental nutrient transporters and nutrient-sensitive pathways. Immunocompetent (C57BL/6) mice were injected with Low (103 PFU-ZIKVPE243) or High (5 × 107 PFU-ZIKVPE243) ZIKV titers at gestational day (GD) 12.5, and tissue was collected at GD18.5 (term). Fetal-placental growth was impaired in male fetuses, which exhibited higher placental expression of the ZIKV infective marker, eukaryotic translation initiation factor 2 (eIF2α), but lower levels of phospho-eIF2α. There were no differences in fetal-placental growth in female fetuses, which exhibited no significant alterations in placental ZIKV infective markers. Furthermore, ZIKV promoted increased expression of glucose transporter type 1 (Slc2a1/Glut1) and decreased levels of glucose-6-phosphate in female placentae, with no differences in amino acid transport potential. In contrast, ZIKV did not impact glucose transporters in male placentae but downregulated sodium-coupled neutral amino acid 2 (Snat2) transporter expression. We also observed sex-dependent differences in the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation in ZIKV-infected pregnancies, showing that ZIKV can disturb placental nutrient sensing. Our findings highlight molecular alterations in the placenta caused by maternal ZIKV infection, shedding light on nutrient transport, sensing, and availability. Our results also suggest that female and male placentae employ distinct coping mechanisms in response to ZIKV-induced metabolic changes, providing insights into therapeutic approaches for congenital Zika syndrome.


Assuntos
Desenvolvimento Fetal , Camundongos Endogâmicos C57BL , Placenta , Transdução de Sinais , Infecção por Zika virus , Zika virus , Animais , Feminino , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Gravidez , Camundongos , Placenta/metabolismo , Placenta/virologia , Masculino , Desenvolvimento Fetal/fisiologia , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/metabolismo , Nutrientes/metabolismo , Transportador de Glucose Tipo 1/metabolismo
18.
Physiol Plant ; 176(4): e14435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036950

RESUMO

This study examined how the nutrient flow environment affects lettuce root morphology in hydroponics using multi-omics analysis. The results indicate that increasing the nutrient flow rate initially increased indicators such as fresh root weight, root length, surface area, volume, and average diameter before declining, which mirrors the trend observed for shoot fresh weight. Furthermore, a high-flow environment significantly increased root tissue density. Further analysis using Weighted Gene Co-expression Network Analysis (WGCNA) and Weighted Protein Co-expression Network Analysis (WPCNA) identified modules that were highly correlated with phenotypes and hormones. The analysis revealed a significant enrichment of hormone signal transduction pathways. Differences in the expression of genes and proteins related to hormone synthesis and transduction pathways were observed among the different flow conditions. These findings suggest that nutrient flow may regulate hormone levels and signal transmission by modulating the genes and proteins associated with hormone biosynthesis and signaling pathways, thereby influencing root morphology. These findings should support the development of effective methods for regulating the flow of nutrients in hydroponic contexts.


Assuntos
Hidroponia , Lactuca , Reguladores de Crescimento de Plantas , Raízes de Plantas , Transdução de Sinais , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Lactuca/genética , Lactuca/metabolismo , Lactuca/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Nutrientes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Multiômica
19.
Vet Med Sci ; 10(4): e1470, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923734

RESUMO

BACKGROUND: The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep. METHODS: Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively. RESULTS: Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05). CONCLUSION: Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.


Assuntos
Ração Animal , Betaína , Creatina , Dieta , Suplementos Nutricionais , Digestão , Glicina , Animais , Suplementos Nutricionais/análise , Betaína/metabolismo , Betaína/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Masculino , Digestão/efeitos dos fármacos , Creatina/metabolismo , Glicina/análogos & derivados , Glicina/administração & dosagem , Glicina/metabolismo , Ovinos/fisiologia , Ovinos/metabolismo , Carneiro Doméstico/fisiologia , Carneiro Doméstico/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Distribuição Aleatória , Nutrientes/metabolismo
20.
Physiol Rep ; 12(12): e16114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38886098

RESUMO

Although the liver is the largest metabolic organ in the body, it is not alone in functionality and is assisted by "an organ inside an organ," the gut microbiota. This review attempts to shed light on the partnership between the liver and the gut microbiota in the metabolism of macronutrients (i.e., proteins, carbohydrates, and lipids). All nutrients absorbed by the small intestines are delivered to the liver for further metabolism. Undigested food that enters the colon is metabolized further by the gut microbiota that produces secondary metabolites, which are absorbed into portal circulation and reach the liver. These microbiota-derived metabolites and co-metabolites include ammonia, hydrogen sulfide, short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. Further, the liver produces several compounds, such as bile acids that can alter the gut microbial composition, which can in turn influence liver health. This review focuses on the metabolism of these microbiota metabolites and their influence on host physiology. Furthermore, the review briefly delineates the effect of the portosystemic shunt on the gut microbiota-liver axis, and current understanding of the treatments to target the gut microbiota-liver axis.


Assuntos
Microbioma Gastrointestinal , Fígado , Microbioma Gastrointestinal/fisiologia , Humanos , Fígado/metabolismo , Animais , Nutrientes/metabolismo , Ácidos e Sais Biliares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...