Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.378
Filtrar
1.
Mol Reprod Dev ; 91(6): e23763, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895803

RESUMO

Estrogen is an important hormone that plays a role in regulating follicle development and oocyte maturation. Transzonal projections (TZPs) act as communication bridges between follicle somatic cells and oocytes, and their dynamic changes are critical for oocyte development and maturation. However, the roles and mechanisms of estrogen in regulating TZPs during follicular development are not yet understood. We found that the proportion of oocytes spontaneously resuming meiosis increases as the follicle grows, which is accompanied by rising estrogen levels in follicles and decreasing TZPs in cumulus-oocyte complex. To further explore the effect of elevated estrogen levels on TZP assembly, additional estrogen was added to the culture system. The increased estrogen level significantly decreased the mRNA and protein expression levels of TZP assembly-related genes. Subsequent research revealed that TZP regulation by estrogen was mediated by the membrane receptor GPER and downstream ERK1/2 signaling pathway. In summary, our study suggests that estrogen may regulate goat oocyte meiosis arrest by decreasing TZP numbers via estrogen-mediated GPER activation during follicle development.


Assuntos
Células do Cúmulo , Estrogênios , Cabras , Oócitos , Folículo Ovariano , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Animais , Oócitos/metabolismo , Oócitos/citologia , Feminino , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrogênio/metabolismo , Estrogênios/metabolismo , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/citologia , Meiose/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia
2.
Open Biol ; 14(6): 240065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896085

RESUMO

The transition from oocyte to embryo requires translation of maternally provided transcripts that in Drosophila is activated by Pan Gu kinase to release a rapid succession of 13 mitotic cycles. Mitotic entry is promoted by several protein kinases that include Greatwall/Mastl, whose Endosulfine substrates antagonize Protein Phosphatase 2A (PP2A), facilitating mitotic Cyclin-dependent kinase 1/Cyclin B kinase activity. Here we show that hyperactive greatwallScant can not only be suppressed by mutants in its Endos substrate but also by mutants in Pan Gu kinase subunits. Conversely, mutants in me31B or trailer hitch, which encode a complex that represses hundreds of maternal mRNAs, enhance greatwallScant . Me31B and Trailer Hitch proteins, known substrates of Pan Gu kinase, copurify with Endos. This echoes findings that budding yeast Dhh1, orthologue of Me31B, associates with Igo1/2, orthologues of Endos and substrates of the Rim15, orthologue of Greatwall. endos-derived mutant embryos show reduced Me31B and elevated transcripts for the mitotic activators Cyclin B, Polo and Twine/Cdc25. Together, our findings demonstrate a previously unappreciated conservation of the Greatwall-Endosulfine pathway in regulating translational repressors and its interactions with the Pan Gu kinase pathway to regulate translation and/or stability of maternal mRNAs upon egg activation.


Assuntos
Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Oócitos , Proteína Fosfatase 2 , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Oócitos/metabolismo , Oócitos/citologia , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Biossíntese de Proteínas , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Mutação , Feminino , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Embrião não Mamífero/metabolismo , Estabilidade de RNA , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética , RNA Helicases DEAD-box
3.
Front Endocrinol (Lausanne) ; 15: 1365260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887270

RESUMO

Anti-Müllerian hormone (AMH) is a key paracrine/autocrine factor regulating folliculogenesis in the postnatal ovary. As antral follicles mature to the preovulatory stage, AMH production tends to be limited to cumulus cells. Therefore, the present study investigated the role of cumulus cell-derived AMH in supporting maturation and competence of the enclosed oocyte. Cumulus-oocyte complexes (COCs) were isolated from antral follicles of rhesus macaque ovaries for in vitro maturation with or without AMH depletion. Oocyte meiotic status and embryo cleavage after in vitro fertilization were assessed. In vitro maturation with AMH depletion was also performed using COCs from antral follicles of human ovarian tissue. Oocyte maturation and morphology were evaluated. The direct AMH action on mural granulosa cells of the preovulatory follicle was further assessed using human granulosa cells cultured with or without AMH supplementation. More macaque COCs produced metaphase II oocytes with AMH depletion than those of the control culture. However, preimplantation embryonic development after in vitro fertilization was comparable between oocytes derived from COCs cultured with AMH depletion and controls. Oocytes resumed meiosis in human COCs cultured with AMH depletion and exhibited a typical spindle structure. The confluency and cell number decreased in granulosa cells cultured with AMH supplementation relative to the control culture. AMH treatment did not induce cell death in cultured human granulosa cells. Data suggest that reduced AMH action in COCs could be beneficial for oocyte maturation. Cumulus cell-derived AMH is not essential for supporting oocyte competence or mural granulosa cell viability.


Assuntos
Hormônio Antimülleriano , Células do Cúmulo , Técnicas de Maturação in Vitro de Oócitos , Macaca mulatta , Oócitos , Hormônio Antimülleriano/metabolismo , Oócitos/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Feminino , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Animais , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oogênese/fisiologia , Oogênese/efeitos dos fármacos , Células Cultivadas , Fertilização in vitro/métodos , Meiose/fisiologia , Meiose/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/citologia , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Desenvolvimento Embrionário/fisiologia
4.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892259

RESUMO

Differences in structural and functional properties between oocytes and cumulus cells (CCs) may cause low vitrification efficiency for cumulus-oocyte complexes (COCs). We have suggested that the disconnection of CCs and oocytes in order to further cryopreservation in various ways will positively affect the viability after thawing, while further co-culture in vitro will contribute to the restoration of lost intercellular gap junctions. This study aimed to determine the optimal method of cryopreservation of the suspension of CCs to mature GV oocytes in vitro and to determine the level of mRNA expression of the genes (GJA1, GJA4; BCL2, BAX) and gene-specific epigenetic marks (DNMT3A) after cryopreservation and in vitro maturation (IVM) in various culture systems. We have shown that the slow freezing of CCs in microstraws preserved the largest number of viable cells with intact DNA compared with the methods of vitrification and slow freezing in microdroplets. Cryopreservation caused the upregulation of the genes Cx37 and Cx43 in the oocytes to restore gap junctions between cells. In conclusion, the presence of CCs in the co-culture system during IVM of oocytes played an important role in the regulation of the expression of the intercellular proteins Cx37 and Cx43, apoptotic changes, and oocyte methylation. Slow freezing in microstraws was considered to be an optimal method for cryopreservation of CCs.


Assuntos
Criopreservação , Células do Cúmulo , Junções Comunicantes , Oócitos , Animais , Oócitos/metabolismo , Oócitos/citologia , Criopreservação/métodos , Junções Comunicantes/metabolismo , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Bovinos , Feminino , Conexina 43/metabolismo , Conexina 43/genética , Conexinas/metabolismo , Conexinas/genética , Vitrificação , Técnicas de Cocultura/métodos , Sobrevivência Celular , Técnicas de Maturação in Vitro de Oócitos/métodos
5.
Sci Rep ; 14(1): 13606, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871781

RESUMO

In mammalian females, quiescent primordial follicles serve as the ovarian reserve and sustain normal ovarian function and egg production via folliculogenesis. The loss of primordial follicles causes ovarian aging. Cellular senescence, characterized by cell cycle arrest and production of the senescence-associated secretory phenotype (SASP), is associated with tissue aging. In the present study, we report that some quiescent primary oocytes in primordial follicles become senescent in adult mouse ovaries. The senescent primary oocytes share senescence markers characterized in senescent somatic cells. The senescent primary oocytes were observed in young adult mouse ovaries, remained at approximately 15% of the total primary oocytes during ovarian aging from 6 to 12 months, and accumulated in aged ovaries. Administration of a senolytic drug ABT263 to 3-month-old mice reduced the percentage of senescent primary oocytes and the transcription of the SASP factors in the ovary, in addition, led to increased numbers of primordial and total follicles and a higher rate of oocyte maturation. Our study provides experimental evidence that primary oocytes, a germline cell type that is arrested in meiosis, become senescent in adult mouse ovaries and that senescent cell clearance reduced primordial follicle loss and mitigated ovarian aging phenotypes.


Assuntos
Envelhecimento , Senescência Celular , Oócitos , Ovário , Animais , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/citologia , Feminino , Camundongos , Envelhecimento/fisiologia , Ovário/metabolismo , Ovário/citologia , Ovário/fisiologia , Sulfonamidas/farmacologia , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/citologia , Compostos de Anilina/farmacologia , Fenótipo Secretor Associado à Senescência , Senoterapia/farmacologia
6.
Cryo Letters ; 45(4): 240-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809788

RESUMO

BACKGROUND: Vitrification is a technique of cryopreservation that has been proposed as a promising alternative method for the preservation of oocytes, embryos and gonadal tissue. OBJECTIVE: To determine the effect of different antioxidants on post-thaw viability, morphology of retrieved oocytes and histology of vitrified ovarian tissue. MATERIALS AND METHODS: Four different antioxidants [i.e., resveratrol (20 uM), ZnSO4 (500 uM), curcumin (25 uM) and quercetin (1 uM)] were evaluated after their addition to the vitrification and warming media for their effects on the viability and morphology of retrieved oocytes and the histology of vitrified ovarian tissue. RESULTS: The number of oocytes retrieved from ovarian tissue from the above mentioned antioxidants and vitrified control were 34, 41, 26, 31 and 46 respectively. Among these the number of viable oocytes were found to be 24 (70.6%), 30 (73.1 %), 20 (76.9%), 26 (83.9%) and 33 (71.7%) and the number of oocytes found morphologically normal were 24 (70.6%), 26 (63.4%), 18 (69.2%), 21 (67.7%) and 34 (73.9%) for the above mentioned different antioxidants and vitrified control, respectively. Non-significant (P. > 0.05) differences were found between different treatment groups. Histomorphological evaluation of the ovarian cortical tissue showed that the percentage of intact follicles was significantly (P < 0.05) higher in the fresh control (84.19±3.9) than in other groups. Non-significant differences were found between resveratrol (50.2±5.5), curcumin (48.7±5.7), quercetin (51.6±4.8) and the vitrified control (42.7±6.1) groups; however, the ZnSO4 supplemented group (23.1±8.54) differed significantly (P < 0.05) from other antioxidant groups but was non-significant (P > 0.05) with the vitrified control group (42.7±6.1). CONCLUSION: The addition of antioxidants resveratrol, curcumin and quercetin at these concentrations tended to non-significantly improve the follicular integrity after vitrification. Doi.org/10.54680/fr24410110212.


Assuntos
Antioxidantes , Criopreservação , Crioprotetores , Curcumina , Oócitos , Ovário , Quercetina , Resveratrol , Vitrificação , Vitrificação/efeitos dos fármacos , Feminino , Antioxidantes/farmacologia , Animais , Criopreservação/métodos , Criopreservação/veterinária , Quercetina/farmacologia , Ovário/efeitos dos fármacos , Resveratrol/farmacologia , Curcumina/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/citologia , Oócitos/fisiologia , Crioprotetores/farmacologia , Ovinos , Sulfato de Zinco/farmacologia , Sobrevivência Celular/efeitos dos fármacos
7.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722097

RESUMO

Bez is a Class B scavenger receptor in Drosophila that is yet to be characterised. In a new study, Margret Bülow and colleagues uncover a role for Bez in mobilising lipids from Drosophila adipocytes into the ovary for oocyte maturation. To find out more about the people behind the paper, we caught up with first author, Pilar Carrera, and corresponding author, Margret Bülow, Group Leader at the University of Bonn.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Drosophila , História do Século XXI , Humanos , Adipócitos/citologia , Adipócitos/metabolismo , História do Século XX , Biologia do Desenvolvimento/história , Oócitos/metabolismo , Oócitos/citologia , Drosophila melanogaster , Ovário/metabolismo , Ovário/citologia
8.
Sci Rep ; 14(1): 10569, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719918

RESUMO

Within the medical field of human assisted reproductive technology, a method for interpretable, non-invasive, and objective oocyte evaluation is lacking. To address this clinical gap, a workflow utilizing machine learning techniques has been developed involving automatic multi-class segmentation of two-dimensional images, morphometric analysis, and prediction of developmental outcomes of mature denuded oocytes based on feature extraction and clinical variables. Two separate models have been developed for this purpose-a model to perform multiclass segmentation, and a classifier model to classify oocytes as likely or unlikely to develop into a blastocyst (Day 5-7 embryo). The segmentation model is highly accurate at segmenting the oocyte, ensuring high-quality segmented images (masks) are utilized as inputs for the classifier model (mask model). The mask model displayed an area under the curve (AUC) of 0.63, a sensitivity of 0.51, and a specificity of 0.66 on the test set. The AUC underwent a reduction to 0.57 when features extracted from the ooplasm were removed, suggesting the ooplasm holds the information most pertinent to oocyte developmental competence. The mask model was further compared to a deep learning model, which also utilized the segmented images as inputs. The performance of both models combined in an ensemble model was evaluated, showing an improvement (AUC 0.67) compared to either model alone. The results of this study indicate that direct assessments of the oocyte are warranted, providing the first objective insights into key features for developmental competence, a step above the current standard of care-solely utilizing oocyte age as a proxy for quality.


Assuntos
Blastocisto , Aprendizado de Máquina , Oócitos , Humanos , Blastocisto/citologia , Blastocisto/fisiologia , Oócitos/citologia , Feminino , Desenvolvimento Embrionário , Adulto , Fertilização in vitro/métodos , Processamento de Imagem Assistida por Computador/métodos
9.
Cryo Letters ; 45(3): 185-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709190

RESUMO

BACKGROUND: Characterization of intracellular ice formation (IIF) in oocytes during the freezing and thawing processes will contribute to optimizing their cryopreservation. However, the observation of the ice formation process in oocytes is limited by the spatiotemporal resolution of the cryomicroscope systems. OBJECTIVE: To observe the intracellular icing of oocytes during cooling and rewarming, and to study the mechanism of formation and growth of intracellular ice in oocytes. MATERIALS AND METHODS: Mouse oocytes were frozen at different cooling rates to induce intracellular ice formation using a cryomicroscopy system consisting of a microscope equipped with a cryogenic cold stage, an automatic cooling system, a temperature control system, and a high-speed camera. The growth patterns of intracellular ice in oocytes were analyzed from the images recorded. Finally, the growth rate of intracellular ice formation in oocytes was calculated using an automatic intracellular ice tracking method. RESULTS: The IIF temperature decreased gradually with the increase in cooling rate. Initiation sites of IIF could be classified into three categories: marginal type, internal type and coexisting type. There was a strong predominance for ice crystal initiation site in the oocytes, with up to 80% of the initiation sites located in the marginal region. The intracellular ice growth modes of darkening and twitching cells were characterized by "spreading" and "clustering", respectively. In addition, twitching cells started to recrystallize during rewarming, while darkening cells did not. The instantaneous maximal growth rate of ice crystals in twitching cells was about 10 times higher than that in darkening cells. CONCLUSION: By visualising the growth of ice crystals in mouse oocytes during cooling and rewarming, we obtained valuable information on the kinetics of ice formation and melting in these cells. This information can help us understand how ice formation and melting affect the viability and quality of oocytes after cryopreservation. Doi.org/10.54680/fr24310110412.


Assuntos
Criopreservação , Gelo , Oócitos , Animais , Camundongos , Oócitos/citologia , Oócitos/fisiologia , Criopreservação/métodos , Feminino , Congelamento , Cristalização , Microscopia/métodos
10.
Mol Biol Rep ; 51(1): 621, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709430

RESUMO

BACKGROUND: To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS: MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION: Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.


Assuntos
Desenvolvimento Embrionário , Vesículas Extracelulares , Oócitos , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Feminino , Oócitos/metabolismo , Oócitos/citologia , Fertilização in vitro/métodos , Blastocisto/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Proteínas de Choque Térmico HSP90/metabolismo
11.
PLoS One ; 19(5): e0299602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696439

RESUMO

PURPOSE: The purposes of this study were to determine whether biomechanical properties of mature oocytes could predict usable blastocyst formation better than morphological information or maternal factors, and to demonstrate the safety of the aspiration measurement procedure used to determine the biomechanical properties of oocytes. METHODS: A prospective split cohort study was conducted with patients from two IVF clinics who underwent in vitro fertilization. Each patient's oocytes were randomly divided into a measurement group and a control group. The aspiration depth into a micropipette was measured, and the biomechanical properties were derived. Oocyte fertilization, day 3 morphology, and blastocyst development were observed and compared between measured and unmeasured cohorts. A predictive classifier was trained to predict usable blastocyst formation and compared to the predictions of four experienced embryologists. RESULTS: 68 patients and their corresponding 1252 oocytes were included in the study. In the safety analyses, there was no significant difference between the cohorts for fertilization, while the day 3 and 5 embryo development were not negatively affected. Four embryologists predicted usable blastocyst development based on oocyte morphology with an average accuracy of 44% while the predictive classifier achieved an accuracy of 71%. Retaining the variables necessary for normal fertilization, only data from successfully fertilized oocytes were used, resulting in a classifier an accuracy of 81%. CONCLUSIONS: To date, there is no standard guideline or technique to aid in the selection of oocytes that have a higher likelihood of developing into usable blastocysts, which are chosen for transfer or vitrification. This study provides a comprehensive workflow of extracting biomechanical properties and building a predictive classifier using these properties to predict mature oocytes' developmental potential. The classifier has greater accuracy in predicting the formation of usable blastocysts than the predictions provided by morphological information or maternal factors. The measurement procedure did not negatively affect embryo culture outcomes. While further analysis is necessary, this study shows the potential of using biomechanical properties of oocytes to predict embryo developmental outcomes.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Fertilização in vitro , Oócitos , Humanos , Blastocisto/fisiologia , Blastocisto/citologia , Feminino , Oócitos/fisiologia , Oócitos/citologia , Adulto , Fenômenos Biomecânicos , Fertilização in vitro/métodos , Desenvolvimento Embrionário/fisiologia , Estudos Prospectivos
12.
Nat Commun ; 15(1): 4200, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760342

RESUMO

The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Diferenciação Celular , Matriz Extracelular , Células Germinativas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citologia , Diferenciação Celular/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Linhagem da Célula/genética , Oócitos/metabolismo , Oócitos/citologia
13.
Front Endocrinol (Lausanne) ; 15: 1338683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812812

RESUMO

Objective: To determine whether the late-follicular-phase progesterone to retrieved oocytes (P/O) ratio during in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) impacts pregnancy outcomes. Design: 12,874 cycles were retrospectively categorized into four groups according to the P/O ratio percentile, with divisions at the 25th, 50th and 75th percentiles. Results: The clinical pregnancy and live birth rates of fresh cycle embryos in Group D were significantly lower than those in the other three groups (45.1% and 39.0%, 43.2% and 37.2%, 39.6% and 33.5%, 33.4% and 28.2% in Group A, B, C, D, respectively; both P < 0.008). Multivariate logistic regression analysis revealed a significant negative correlation between the P/O ratio and live birth, particularly when the P/O ratio was ≥0.22 (OR = 0.862, 95% CI [0.774-0.959], P = 0.006). Conclusions: The P/O ratio has certain predictive value for IVF/ICSI pregnancy outcomes and can be used for decision-making decision regarding fresh embryo transfer.


Assuntos
Transferência Embrionária , Fertilização in vitro , Recuperação de Oócitos , Oócitos , Indução da Ovulação , Taxa de Gravidez , Progesterona , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Adulto , Transferência Embrionária/métodos , Indução da Ovulação/métodos , Fertilização in vitro/métodos , Oócitos/citologia , Recuperação de Oócitos/métodos , Injeções de Esperma Intracitoplásmicas/métodos , Fase Folicular , Resultado da Gravidez
14.
J Biomed Opt ; 29(6): 065002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812963

RESUMO

Significance: Preparation of a recipient cytoplast by oocyte enucleation is an essential task for animal cloning and assisted reproductive technologies in humans. The femtosecond laser is a precise and low-invasive tool for oocyte enucleation, and it should be an appropriate alternative to traditional enucleation by a microneedle aspiration. However, until recently, the laser enucleation was performed only with applying a fluorescent dye. Aim: This work is aimed to (1) achieve femtosecond laser oocyte enucleation without applying a fluorescent dye and (2) to study the effect of laser destruction of chromosomes on the structure and dynamics of the spindle. Approach: We applied polarized light microscopy for spindle visualization and performed stain-free mouse and human oocyte enucleation with a 1033 nm femtosecond laser. Also, we studied transformation of a spindle after metaphase plate elimination by a confocal microscopy. Results: We demonstrated a fundamental possibility of inactivating the metaphase plate in mouse and human oocytes by 1033 nm femtosecond laser radiation without applying a fluorescent dye. Irradiation of the spindle area, visualized by polarized light microscopy, resulted in partly or complete metaphase plate destruction but avoided the microtubules impairment. After the metaphase plate elimination, the spindle reorganized, however, it was not a complete depolymerization. Conclusions: This method of recipient cytoplast preparation is expected to be useful for animal cloning and assisted reproductive technologies.


Assuntos
Oócitos , Animais , Camundongos , Oócitos/citologia , Humanos , Feminino , Lasers , Fuso Acromático , Microscopia Confocal/métodos , Metáfase , Microscopia de Polarização/métodos
15.
Hum Reprod ; 39(6): 1176-1185, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38719791

RESUMO

STUDY QUESTION: Can fluorescence lifetime imaging microscopy (FLIM) detect associations between the metabolic state of cumulus cell (CC) samples and the clinical outcome of the corresponding embryos? SUMMARY ANSWER: FLIM can detect significant variations in the metabolism of CC associated with the corresponding embryos that resulted in a clinical pregnancy versus those that did not. WHAT IS KNOWN ALREADY: CC and oocyte metabolic cooperativity are known to be necessary for the acquisition of developmental competence. However, reliable CC biomarkers that reflect oocyte viability and embryo developmental competency have yet to be established. Quantitative measures of CC metabolism could be used to aid in the evaluation of oocyte and embryo quality in ART. STUDY DESIGN, SIZE, DURATION: A prospective observational study was carried out. In total, 223 patients undergoing IVF with either conventional insemination or ICSI at a tertiary care center from February 2018 to May 2020 were included, with no exclusion criteria applied. PARTICIPANTS/MATERIALS, SETTING, METHODS: This cohort had a mean maternal age of 36.5 ± 4.4 years and an average oocyte yield of 16.9 (range 1-50). One to four CC clusters from each patient were collected after oocyte retrieval and vitrified. CC metabolic state was assessed using FLIM to measure the autofluorescence of the molecules NAD(P)H and FAD+, which are essential for multiple metabolic pathways. CC clusters were tracked with their corresponding oocytes and associated embryos. Patient age, Day 3 and Day 5/6 embryo morphological grades, and clinical outcomes of embryos with traceable fate were recorded. Nine FLIM quantitative parameters were obtained for each CC cluster. We investigated associations between the FLIM parameters and patient maternal age, embryo morphological rank, ploidy, and clinical outcome, where false discovery rate P-values of <0.05 were considered statistically significant. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 851 CC clusters from 851 cumulus-oocyte complexes from 223 patients were collected. Of these CC clusters, 623 were imaged using FLIM. None of the measured CC FLIM parameters were correlated with Day 3 morphological rank or ploidy of the corresponding embryos, but FAD+ FLIM parameters were significantly associated with morphological rank of blastocysts. There were significant differences for FAD+ FLIM parameters (FAD+ fraction engaged and short lifetime) from CC clusters linked with embryos resulting in a clinical pregnancy compared with those that did not, as well as for CC clusters associated with embryos that resulted in a live birth compared those that did not. LIMITATIONS, REASONS FOR CAUTION: Our data are based on a relatively low number of traceable embryos from an older patient population. Additionally, we only assessed CCs from 1 to 4 oocytes from each patient. Future work in a younger patient population with a larger number of traceable embryos, as well as measuring the metabolic state of CCs from all oocytes from each patient, would provide a better understanding of the potential utility of this technology for oocyte/embryo selection. WIDER IMPLICATIONS OF THE FINDINGS: Metabolic imaging via FLIM is able to detect CC metabolic associations with maternal age and detects variations in the metabolism of CCs associated with oocytes leading to embryos that result in a clinical pregnancy and a live birth versus those that do not. Our findings suggest that FLIM of CCs may be used as a new approach to aid in the assessment of oocyte and embryo developmental competence in clinical ART. STUDY FUNDING/COMPETING INTEREST(S): National Institutes of Health grant NIH R01HD092550-03 (to C.R., and D.J.N.). Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. and C.R. are inventors on patent US20170039415A1. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Células do Cúmulo , Nascido Vivo , Humanos , Feminino , Gravidez , Células do Cúmulo/metabolismo , Adulto , Estudos Prospectivos , Microscopia de Fluorescência/métodos , Fertilização in vitro , Oócitos/metabolismo , Oócitos/citologia , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Transferência Embrionária/métodos
16.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785133

RESUMO

The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.


Assuntos
Meiose , Oócitos , Biossíntese de Proteínas , Fatores de Poliadenilação e Clivagem de mRNA , Animais , Oócitos/metabolismo , Oócitos/citologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fosforilação , Camundongos , Feminino , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais
17.
Stem Cell Res Ther ; 15(1): 115, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650029

RESUMO

BACKGROUND: Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS: In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS: Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS: The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.


Assuntos
Células-Tronco Mesenquimais , Oócitos , Ovário , Feminino , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Ovário/citologia , Oócitos/citologia , Oócitos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia
18.
Zygote ; 32(2): 170-174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619002

RESUMO

Oocytes with excessively large first polar bodies (PB1) often occur in assisted reproductive procedures. Many times these oocytes are discarded without insemination and, as a result, the application of this portion of oocytes has scarcely been reported to date. Few studies have examined large PB1 oocytes in infertile women and have virtually entirely studied genetic variations for large PB1 oocyte abnormalities. Here, we describe an unusual case of a live birth from a remarkably large PB1 oocyte in a frozen embryo transfer (FET) cycle. This is the first instance of a successful live birth resulting from a PB1 oocyte with an extremely large polar body measuring 80 µM × 40 µM in size. The large PB1 oocyte was performed by an early rescue intracytoplasmic sperm injection (r-ICSI) and was formed into a blastocyst on day 5. Following FET, a healthy boy baby weighing 3100 g was finally delivered by caesarean section at 37 weeks and 5 days after conception. Additionally, there were no complications throughout the antenatal period or the perinatal phase of this following full-term delivery. In this study, it is revealed for the first time that a huge PB1 oocyte can be fertilized, resulting in the growth of a blastocyst, a subsequent pregnancy, and a live birth. This new information prompts us to reconsider the use of large PB1 oocytes. More insightful talks should be given attention to prevent the waste of embryos because not all oocytes with aberrant morphology are unavailable.


Assuntos
Transferência Embrionária , Nascido Vivo , Oócitos , Corpos Polares , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Gravidez , Injeções de Esperma Intracitoplásmicas/métodos , Adulto , Oócitos/fisiologia , Oócitos/citologia , Masculino , Transferência Embrionária/métodos , Recém-Nascido , Blastocisto/citologia , Blastocisto/fisiologia , Criopreservação
19.
Dev Cell ; 59(8): 1058-1074.e11, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38460509

RESUMO

During oocyte maturation and early embryogenesis, changes in mRNA poly(A)-tail lengths strongly influence translation, but how these tail-length changes are orchestrated has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with millions of 3' UTR sequence variants) in frog oocytes and embryos and in fish embryos. Contrasting to previously proposed cytoplasmic polyadenylation elements (CPEs), we found that a shorter element, UUUUA, together with the polyadenylation signal (PAS), specify cytoplasmic polyadenylation, and we identified contextual features that modulate the activity of both elements. In maturing oocytes, this tail lengthening occurs against a backdrop of global deadenylation and the action of C-rich elements that specify tail-length-independent translational repression. In embryos, cytoplasmic polyadenylation becomes more permissive, and additional elements specify waves of stage-specific deadenylation. Together, these findings largely explain the complex tapestry of tail-length changes observed in early frog and fish development, with strong evidence of conservation in both mice and humans.


Assuntos
Regiões 3' não Traduzidas , Oócitos , Poli A , Poliadenilação , Biossíntese de Proteínas , RNA Mensageiro , Animais , Oócitos/metabolismo , Oócitos/citologia , Poli A/metabolismo , Poli A/genética , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Humanos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Xenopus laevis/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Citoplasma/metabolismo
20.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503281

RESUMO

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Assuntos
Nucléolo Celular , Proteínas Nucleares , Força Próton-Motriz , Nucléolo Celular/química , Núcleo Celular/química , Proteínas Nucleares/química , RNA/metabolismo , Separação de Fases , Proteínas Intrinsicamente Desordenadas/química , Animais , Xenopus laevis , Oócitos/química , Oócitos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA