Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.957
Filtrar
1.
BMC Oral Health ; 24(1): 857, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069613

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is an inherited disorder characterized by bone fragility and skeletal alterations. The administration of bisphosphonates (BPs) to patients with OI reduces pain, thereby improving their quality of life. The main mechanism of action of BPs is the inhibition of osteoclast action. In the oral cavity of children with OI during growth and development, physiological processes that require the function of osteoclasts occur. The aim of this investigation was to study the dental development of premolars and the root resorption of primary molars in children with OI medicated with BPs according to age and sex. METHODS: An observational and analytical study was designed. The study sample consisted of 26 6- to 12-year-old children with a confirmed diagnosis of OI treated with BPs with available panoramic radiographs. The control group consisted of 395 children with available panoramic radiographs. Both groups were divided into subgroups according to sex and age. The third quadrant was studied, focusing on the first left temporary molar (7.4), the second left temporary molar (7.5), the first left permanent premolar (3.4) and the second left permanent premolar (3.5). The Demirjian method was used to study the dental development of 3.4 and 3.5, and the Haavikko method was used to study the root resorption of 7.4 and 7.5. The Mann‒Whitney U test was used for comparisons, and p < 0.05 indicated statistical significance. RESULTS: The mean chronological age of the 421 patients was 9.21 years (95% CI 9.05-9.37). The sample was reasonably balanced by sex, with 52.5% (221 patients) boys versus 47.5% (200 patients) girls. Delayed exfoliation and tooth development were described in children with OI (p = 0.05). According to sex, the root resorption of primary molars and tooth development were significantly lower in boys in both groups and in girls in the OI group, but the differences between the age groups were not significant. CONCLUSIONS: Children with OI treated with BPs exhibit delayed dental development of the premolars and delayed root resorption of the primary molars. Boys exhibited delays in both variables, but the differences by age subgroup were not significant. These clinical findings support the importance of clinically and radiographically monitoring the dental development and root resorption of primary teeth in children with OI treated with BPs to avoid alterations of the eruptive process.


Assuntos
Dente Pré-Molar , Difosfonatos , Dente Molar , Osteogênese Imperfeita , Radiografia Panorâmica , Reabsorção da Raiz , Dente Decíduo , Humanos , Criança , Feminino , Masculino , Reabsorção da Raiz/diagnóstico por imagem , Reabsorção da Raiz/etiologia , Dente Decíduo/diagnóstico por imagem , Difosfonatos/uso terapêutico , Dente Molar/diagnóstico por imagem , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/diagnóstico por imagem , Dente Pré-Molar/diagnóstico por imagem , Dente Pré-Molar/anormalidades , Fatores Sexuais , Fatores Etários , Conservadores da Densidade Óssea/uso terapêutico , Odontogênese/efeitos dos fármacos
2.
J Contemp Dent Pract ; 25(4): 313-319, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956844

RESUMO

AIMS: This study aims to assess the synergistic effect of utilizing a bioceramic sealer, NeoPutty, with photobiomodulation (PBM) on dental pulp stem cells (DPSCs) for odontogenesis. MATERIALS AND METHODS: Dental pulp stem cells were collected from 10 premolars extracted from healthy individuals. Dental pulp stem cells were characterized using an inverted-phase microscope to detect cell shape and flow cytometry to detect stem cell-specific surface antigens. Three experimental groups were examined: the NP group, the PBM group, and the combined NP and PBM group. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) experiment was conducted to assess the viability of DPSCs. The odontogenic differentiation potential was analyzed using Alizarin red staining, RT-qPCR analysis of odontogenic genes DMP-1, DSPP, and alkaline phosphatase (ALP), and western blot analysis for detecting BMP-2 and RUNX-2 protein expression. An analysis of variance (ANOVA) followed by a post hoc t-test was employed to examine and compare the mean values of the results. RESULTS: The study showed a notable rise in cell viability when NP and PBM were used together. Odontogenic gene expression and the protein expression of BMP-2 and RUNX-2 were notably increased in the combined group. The combined effect of NeoPutty and PBM was significant in enhancing the odontogenic differentiation capability of DPSCs. CONCLUSION: The synergistic effect of NeoPutty and PBM produced the most positive effect on the cytocompatibility and odontogenic differentiation potential of DPSCs. CLINICAL SIGNIFICANCE: Creating innovative regenerative treatments to efficiently and durably repair injured dental tissues. How to cite this article: Alshawkani HA, Mansy M, Al Ankily M, et al. Regenerative Potential of Dental Pulp Stem Cells in Response to a Bioceramic Dental Sealer and Photobiomodulation: An In Vitro Study. J Contemp Dent Pract 2024;25(4):313-319.


Assuntos
Proteína Morfogenética Óssea 2 , Diferenciação Celular , Polpa Dentária , Terapia com Luz de Baixa Intensidade , Odontogênese , Células-Tronco , Polpa Dentária/citologia , Humanos , Células-Tronco/efeitos dos fármacos , Terapia com Luz de Baixa Intensidade/métodos , Diferenciação Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Materiais Restauradores do Canal Radicular/farmacologia , Fosfatase Alcalina/metabolismo , Técnicas In Vitro , Sobrevivência Celular/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Cerâmica , Proteínas da Matriz Extracelular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core , Sialoglicoproteínas , Fosfoproteínas
3.
Anat Histol Embryol ; 53(5): e13093, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39056435

RESUMO

The dental pulp is a highly innervated tissue transmitting pain-related sensations in the tooth. Consequently, understanding the intricacies of its innervation mechanism in odontogenesis is crucial for gaining insights into dental pain and developing dental pain-modulating agents. This study examined neuroregulatory molecules such as neurotrophic factors (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin-4 [NTF-4], and neurturin [NRTN]) and neuroinhibitory factors (slit2, ephrin isoforms and netrin-1) in developing rat teeth with follicles. NGF, BDNF and NRTN transcriptions showed time-dependent upregulation, particularly during the root formation stage. In contrast, NTF-4 mRNA was highly expressed at the cap stage, but became downregulated over time. Slit2 and ephrin-B2 expression was distinct at the cap stage and then downregulated in a time-dependent manner. Ephrin-A5 and netrin-1 expression did not significantly change. Immunofluorescence analysis revealed a robust expression of both ephrin-B2 and slit2 in the outer and inner dental epithelia of the enamel organ, a non-neurogenic tissue, during the cap stage of 3rd molar germs. In contrast, BDNF was predominantly localized in dental papilla cells and odontoblasts during the root formation stage. These results suggest that neuroregulatory molecules, such as BDNF, slit2 and ephrin-B2, may be important in identifying therapeutic targets for modulating dental pulp pain.


Assuntos
Polpa Dentária , Animais , Polpa Dentária/inervação , Ratos , Odontogênese/fisiologia , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Masculino
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000154

RESUMO

Putatively, tooth agenesis was attributed to the initiation failure of tooth germs, though little is known about the histological and molecular alterations. To address if constitutively active FGF signaling is associated with tooth agenesis, we activated Fgf8 in dental mesenchyme with Osr-cre knock-in allele in mice (Osr2-creKI; Rosa26R-Fgf8) and found incisor agenesis and molar microdontia. The cell survival assay showed tremendous apoptosis in both the Osr2-creKI; Rosa26R-Fgf8 incisor epithelium and mesenchyme, which initiated incisor regression from cap stage. In situ hybridization displayed vanished Shh transcription, and immunostaining exhibited reduced Runx2 expression and enlarged mesenchymal Lef1 domain in Osr2-creKI; Rosa26R-Fgf8 incisors, both of which were suggested to enhance apoptosis. In contrast, Osr2-creKI; Rosa26R-Fgf8 molar germs displayed mildly suppressed Shh transcription, and the increased expression of Ectodin, Runx2 and Lef1. Although mildly smaller than WT controls prenatally, the Osr2-creKI; Rosa26R-Fgf8 molar germs produced a miniature tooth with impaired mineralization after a 6-week sub-renal culture. Intriguingly, the implanted Osr2-creKI; Rosa26R-Fgf8 molar germs exhibited delayed odontoblast differentiation and accelerated ameloblast maturation. Collectively, the ectopically activated Fgf8 in dental mesenchyme caused incisor agenesis by triggering incisor regression and postnatal molar microdontia. Our findings reported tooth agenesis resulting from the regression from the early bell stage and implicated a correlation between tooth agenesis and microdontia.


Assuntos
Fator 8 de Crescimento de Fibroblasto , Incisivo , Mesoderma , Dente Molar , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Camundongos , Incisivo/anormalidades , Incisivo/metabolismo , Mesoderma/metabolismo , Mesoderma/patologia , Dente Molar/anormalidades , Dente Molar/metabolismo , Anodontia/genética , Anodontia/metabolismo , Anodontia/patologia , Apoptose , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Odontogênese/genética , Camundongos Transgênicos
5.
Cells ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38994993

RESUMO

The reparative and regenerative capabilities of dental pulp stem cells (DPSCs) are crucial for responding to pulp injuries, with protein phosphatase 1 (PP1) playing a significant role in regulating cellular functions pertinent to tissue healing. Accordingly, this study aimed to explore the effects of a novel cell-penetrating peptide Modified Sperm Stop 1-MSS1, that disrupts PP1, on the proliferation and odontogenic differentiation of DPSCs. Employing MSS1 as a bioportide, DPSCs were cultured and characterized for metabolic activity, cell proliferation, and cell morphology alongside the odontogenic differentiation through gene expression and alkaline phosphatase (ALP) activity analysis. MSS1 exposure induced early DPSC proliferation, upregulated genes related to odontogenic differentiation, and increased ALP activity. Markers associated with early differentiation events were induced at early culture time points and those associated with matrix mineralization were upregulated at mid-culture stages. This investigation is the first to document the potential of a PP1-disrupting bioportide in modulating DPSC functionality, suggesting a promising avenue for enhancing dental tissue regeneration and repair.


Assuntos
Diferenciação Celular , Proliferação de Células , Polpa Dentária , Odontogênese , Proteína Fosfatase 1 , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Humanos , Proteína Fosfatase 1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/metabolismo , Células Cultivadas , Fosfatase Alcalina/metabolismo
6.
PLoS One ; 19(6): e0304455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935640

RESUMO

OBJECTIVE: The patterning cascade model of crown morphogenesis has been studied extensively in a variety of organisms to elucidate the evolutionary history surrounding postcanine tooth form. The current research is the first to use a large modern human sample to examine whether the crown configuration of lower deciduous and permanent molars aligns with expectations derived from the model. This study has two main goals: 1) to determine if metameric and antimeric pairs significantly differ in size, accessory trait expression, and relative intercusp spacing, and 2) assess whether the relative distance among early-forming cusps accounts for observed variation in accessory cusp expression. METHODS: Tooth size, intercusp distance, and morphological trait expression data were collected from 3D scans of mandibular dental casts representing participants of the Harvard Solomon Islands Project. Paired tests were utilized to compare tooth size, accessory trait expression, and relative intercusp distance between diphyodont metameres and permanent antimeres. Proportional odds logistic regression was implemented to investigate how the odds of greater accessory cusp expression vary as a function of the distance between early-developing cusps. RESULTS/SIGNIFICANCE: Comparing paired molars, significant differences were identified for tooth size and cusp 5 expression. Several relative intercusp distances emerged as important predictors of cusp 6 expression, however, results for cusp 5 and cusp 7 did not match expected patterns. These findings support previous quantitative genetic results and suggest the development of neighboring crown structures represents a zero-sum partitioning of cellular territory and resources. As such, this study contributes to a better understanding of the foundations of deciduous and permanent molar crown variation in humans.


Assuntos
Dentição Permanente , Dente Molar , Coroa do Dente , Humanos , Coroa do Dente/anatomia & histologia , Coroa do Dente/crescimento & desenvolvimento , Dente Molar/anatomia & histologia , Dente Molar/crescimento & desenvolvimento , Morfogênese , Dente Decíduo , Odontogênese , Masculino , Criança , Feminino
7.
PLoS One ; 19(6): e0303628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843230

RESUMO

Genes strictly regulate the development of teeth and their surrounding oral structures. Alteration of gene regulation leads to tooth disorders and developmental anomalies in tooth, oral, and facial regions. With the advancement of gene sequencing technology, genomic data is rapidly increasing. However, the large sets of genomic and proteomic data related to tooth development and dental disorders are currently dispersed in many primary databases and literature, making it difficult for users to navigate, extract, study, or analyze. We have curated the scattered genetic data on tooth development and created a knowledgebase called 'Bioinformatics for Dentistry' (https://dentalbioinformatics.com/). This database compiles genomic and proteomic data on human tooth development and developmental anomalies and organizes them according to their roles in different stages of tooth development. The database is built by systemically curating relevant data from the National Library of Medicine (NCBI) GenBank, OMIM: Online Mendelian Inheritance in Man, AlphaFold Protein Structure Database, Reactome pathway knowledgebase, Wiki Pathways, and PubMed. The accuracy of the included data was verified from supporting primary literature. Upon data curation and validation, a simple, easy-to-navigate browser interface was created on WordPress version 6.3.2, with PHP version 8.0. The website is hosted in a cloud hosting service to provide fast and reliable data transfer rate. Plugins are used to ensure the browser's compatibility across different devices. Bioinformatics for Dentistry contains four embedded filters for complex and specific searches and free-text search options for quick and simple searching through the datasets. Bioinformatics for Dentistry is made freely available worldwide, with the hope that this knowledgebase will improve our understanding of the complex genetic regulation of tooth development and will open doors to research initiatives and discoveries. This database will be expanded in the future by incorporating resources and built-in sequence analysis tools, and it will be maintained and updated annually.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Dente , Humanos , Biologia Computacional/métodos , Dente/crescimento & desenvolvimento , Odontogênese/genética , Odontologia , Proteômica/métodos , Genômica/métodos
8.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824241

RESUMO

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Assuntos
Diferenciação Celular , Papila Dentária , Luz , Odontogênese , Osteogênese , RNA Circular , Células-Tronco , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Odontogênese/genética , Papila Dentária/citologia , Papila Dentária/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ontologia Genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Regulação da Expressão Gênica/efeitos da radiação , Luz Azul
9.
Arch Oral Biol ; 165: 106026, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875772

RESUMO

OBJECTIVE: This study aimed to reveal the effects of SET domain bifurcated 1 (SETDB1) on epithelial cells during tooth development. DESIGN: We generated conditional knockout mice (Setdb1fl/fl,Keratin14-Cre+ mice), in which Setdb1 was deleted only in epithelial cells. At embryonic day 14.5 (E14.5), immunofluorescence staining was performed to confirm the absence of SETDB1 within the epithelium of tooth embryos from Setdb1fl/fl,Keratin14-Cre+ mice. Mouse embryos were harvested after reaching embryonic day 13.5 (E13.5), and sections were prepared for histological analysis. To observe tooth morphology in detail, electron microscopy and micro-CT analysis were performed at postnatal months 1 (P1M) and 6 (P6M). Tooth embryos were harvested from postnatal day 7 (P7) mice, and the epithelial components of the tooth embryos were isolated and examined using quantitative RT-PCR for the expression of genes involved in tooth development. RESULTS: Setdb1fl/fl,Keratin14-Cre+ mice exhibited enamel hypoplasia, brittle and fragile dentition, and significant abrasion. Coronal sections displayed abnormal ameloblast development, including immature polarization, and a thin enamel layer that detached from the dentinoenamel junction at P7. Electron microscopic analysis revealed characteristic findings such as an uneven surface and the absence of an enamel prism. The expression of Msx2, Amelogenin (Amelx), Ameloblastin (Ambn), and Enamelin (Enam) was significantly downregulated in the epithelial components of tooth germs in Setdb1fl/fl,Keratin14-Cre+ mice. CONCLUSIONS: These results indicate that SETDB1 in epithelial cells is important for tooth development and clarify the relationship between the epigenetic regulation of SETDB1 and amelogenesis imperfecta for the first time.


Assuntos
Células Epiteliais , Histona-Lisina N-Metiltransferase , Dente , Animais , Camundongos , Ameloblastos/metabolismo , Amelogenina , Esmalte Dentário/embriologia , Células Epiteliais/metabolismo , Histona-Lisina N-Metiltransferase/genética , Camundongos Knockout , Microscopia Eletrônica , Odontogênese , Reação em Cadeia da Polimerase em Tempo Real , Dente/embriologia , Dente/crescimento & desenvolvimento , Microtomografia por Raio-X
10.
Arch Oral Biol ; 165: 106031, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38905870

RESUMO

OBJECTIVE: The aim of this study was to explore the effect and mechanism of programmed cell death ligand 1 (PD-L1) in promoting the proliferation and osteo/odontogenic-differentiation of human dental pulp stem cells (hDPSCs) by mediating CCCTC-binding factor (CTCF) expression. DESIGN: The interaction between PD-L1 and CTCF was verified through co-immunoprecipitation. hDPSCs transfected with PD-L1 overexpression and CTCF knockdown vectors were treated with lipopolysaccharide or an osteogenic-inducing medium. Inflammatory cytokines and osteo/odontogenic-differentiation related genes were measured. Osteo/odontogenic-differentiation of hDPSCs was assessed using alkaline phosphatase (ALP) and alizarin red S staining. RESULTS: Overexpression of PD-L1 inhibited LPS-induced pro-inflammatory cytokine upregulation, cell proliferation, ALP activity, and calcium deposition in hDPSCs and elevated the expression of osteo/odontogenic-differentiation related genes; however, such expression patterns could be reversed by CTCF knockdown. Co-immunoprecipitation results confirmed the binding of PD-L1 to CTCF, indicating that PD-L1 overexpression in hDPSCs increases CTCF expression, thus inhibiting the inflammatory response and increasing osteo/odontogenic-differentiation of hDPSCs. CONCLUSION: PD-L1 overexpression in hDPSCs enhances the proliferation and osteo/odontogenic-differentiation of hDPSCs and inhibit the inflammatory response by upregulating CTCF expression.


Assuntos
Antígeno B7-H1 , Fator de Ligação a CCCTC , Diferenciação Celular , Proliferação de Células , Polpa Dentária , Lipopolissacarídeos , Osteogênese , Células-Tronco , Humanos , Fosfatase Alcalina/metabolismo , Antígeno B7-H1/metabolismo , Western Blotting , Fator de Ligação a CCCTC/metabolismo , Células Cultivadas , Citocinas/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Imunoprecipitação , Lipopolissacarídeos/farmacologia , Odontogênese/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/metabolismo , Regulação para Cima
11.
Sci Rep ; 14(1): 13633, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871845

RESUMO

Notum is a direct target of Wnt/ß-catenin signaling and plays a crucial role as a Wnt inhibitor within a negative feedback loop. In the tooth, Notum is known to be expressed in odontoblasts, and severe dentin defects and irregular tooth roots have been reported in Notum-deficient mice. However, the precise expression pattern of Notum in early tooth development, and the role of Notum in crown and root patterns remain elusive. In the present study, we identified a novel Notum expression in primary enamel knot (EK), secondary EKs, and dental papilla during tooth development. Notum-deficient mice exhibited enlarged secondary EKs, resulting in broader cusp tips, altered cusp patterns, and reduced concavity in crown outline. These alterations in crown outline led to a reduction in cervical tongue length, thereby inducing root fusion in Notum-deficient mice. Overall, these results suggest that the secondary EK size, regulated by the Wnt/Notum negative feedback loop, has a significant impact on the patterns of crown and root during tooth morphogenesis.


Assuntos
Dente Molar , Coroa do Dente , Raiz Dentária , Animais , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Dente Molar/metabolismo , Dente Molar/crescimento & desenvolvimento , Odontogênese , Receptores Acoplados a Proteínas G , Coroa do Dente/crescimento & desenvolvimento , Coroa do Dente/metabolismo , Raiz Dentária/crescimento & desenvolvimento , Raiz Dentária/metabolismo , Via de Sinalização Wnt
12.
ACS Appl Mater Interfaces ; 16(22): 28029-28040, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775012

RESUMO

Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.


Assuntos
Adesão Celular , Diferenciação Celular , Polpa Dentária , Estimulação Elétrica , Odontogênese , Polivinil , Células-Tronco , Polpa Dentária/citologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Humanos , Adesão Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Polivinil/química , Animais , Células Cultivadas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Propriedades de Superfície
13.
Biomed Mater ; 19(4)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740053

RESUMO

This study aimed to investigate the effects of magnesium-doped bioactive glass (Mg-BG) on the mineralization, odontogenesis, and anti-inflammatory abilities of human dental pulp stem cells (hDPSCs). Mg-BG powders with different Mg concentrations were successfully synthesized via the sol-gel method and evaluated using x-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Apatite formation was observed on the surfaces of the materials after soaking in simulated body fluid. hDPSCs were cultured with Mg-BG powder extracts in vitro, and no evident cytotoxicity was observed. Mg-BG induced alkaline phosphatase (ALP) expression and mineralization of hDPSCs and upregulated the expression of odontogenic genes, including those encoding dentin sialophosphoprotein, dentin matrix protein 1, ALP, osteocalcin, and runt-related transcription factor 2. Moreover, Mg-BG substantially suppressed the secretion of inflammatory cytokines (interleukin [IL]-4, IL-6, IL-8, and tumor necrosis factor-alpha). Collectively, the results of this study suggest that Mg-BG has excellent in vitro bioactivity and is a potential material for vital pulp therapy of inflamed pulps.


Assuntos
Anti-Inflamatórios , Polpa Dentária , Vidro , Magnésio , Células-Tronco , Humanos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Magnésio/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células-Tronco/citologia , Células-Tronco/metabolismo , Vidro/química , Odontogênese/efeitos dos fármacos , Citocinas/metabolismo , Células Cultivadas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Fosfatase Alcalina/metabolismo , Cerâmica/química , Cerâmica/farmacologia , Teste de Materiais , Pós , Microscopia Eletrônica de Varredura
14.
Biomed Mater ; 19(4)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740059

RESUMO

Cell-based tissue engineering often requires the use of scaffolds to provide a three-dimensional (3D) framework for cell proliferation and tissue formation. Polycaprolactone (PCL), a type of polymer, has good printability, favorable surface modifiability, adaptability, and biodegradability. However, its large-scale applicability is hindered by its hydrophobic nature, which affects biological properties. Composite materials can be created by adding bioactive materials to the polymer to improve the properties of PCL scaffolds. Osteolectin is an odontogenic factor that promotes the maintenance of the adult skeleton by promoting the differentiation of LepR+ cells into osteoblasts. Therefore, the aim of this study was to evaluate whether 3D-printed PCL/osteolectin scaffolds supply a suitable microenvironment for the odontogenic differentiation of human dental pulp cells (hDPCs). The hDPCs were cultured on 3D-printed PCL scaffolds with or without pores. Cell attachment and cell proliferation were evaluated using EZ-Cytox. The odontogenic differentiation of hDPCs was evaluated by alizarin red S staining and alkaline phosphatase assays. Western blot was used to evaluate the expression of the proteins DSPP and DMP-Results: The attachment of hDPCs to PCL scaffolds with pores was significantly higher than to PCL scaffolds without pores. The odontogenic differentiation of hDPCs was induced more in PCL/osteolectin scaffolds than in PCL scaffolds, but there was no statistically significant difference. 3D-printed PCL scaffolds with pores are suitable for the growth of hDPCs, and the PCL/osteolectin scaffolds can provide a more favorable microenvironment for the odontogenic differentiation of hDPCs.


Assuntos
Diferenciação Celular , Proliferação de Células , Polpa Dentária , Odontogênese , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Humanos , Polpa Dentária/citologia , Poliésteres/química , Alicerces Teciduais/química , Diferenciação Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Células Cultivadas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Osteoblastos/citologia
15.
J Dent ; 146: 105028, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719135

RESUMO

AIM: Three-dimensional (3D) cell culture systems perform better in resembling tissue or organism structures compared with traditional 2D models. Organs-on-chips (OoCs) are becoming more efficient 3D models. This study aimed to create a novel simplified dentin-on-a-chip using microfluidic chip technology and tissue engineering for screening dental materials. METHODOLOGY: A microfluidic device with three channels was designed for creating 3D dental tissue constructs using stem cells from the apical papilla (SCAP) and gelatin methacrylate (GelMA). The study investigated the effect of varying cell densities and GelMA concentrations on the layer features formed within the microfluidic chip. Cell viability and distribution were evaluated through live/dead staining and nuclei/F-actin staining. The osteo/odontogenic potential was assessed through ALP staining and Alizarin red staining. The impact of GelMA concentrations (5 %, 10 %) on the osteo/odontogenic differentiation trajectory of SCAP was also studied. RESULTS: The 3D tissue constructs maintained high viability and favorable spreading within the microfluidic chip for 3-7 days. A cell seeding density of 2 × 104 cells/µL was found to be the most optimal choice, ensuring favorable cell proliferation and even distribution. GelMA concentrations of 5 % and 10 % proved to be most effective for promoting cell growth and uniform distribution. Within the 5 % GelMA group, SCAP demonstrated higher osteo/odontogenic differentiation than that in the 10 % GelMA group. CONCLUSION: In 3D culture, GelMA concentration was found to regulate the osteo/odontogenic differentiation of SCAP. The study recommends a seeding density of 2 × 104 cells/µL of SCAP within 5 % GelMA for constructing simplified dentin-on-a-chip. CLINICAL SIGNIFICANCE: This study built up the 3D culture protocol, and induced odontogenic differentiation of SCAP, thus forming the simplified dentin-on-a-chip and paving the way to be used as a well-defined biological model for regenerative endodontics. It may serve as a potential testing platform for cell differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Papila Dentária , Dentina , Gelatina , Dispositivos Lab-On-A-Chip , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Papila Dentária/citologia , Células-Tronco/citologia , Odontogênese , Osteogênese/fisiologia , Metacrilatos , Técnicas de Cultura de Células , Microfluídica/métodos , Microfluídica/instrumentação , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Células Cultivadas
16.
Biomed Mater ; 19(4)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38756029

RESUMO

Hard tissue engineering scaffolds especially 3D printed scaffolds were considered an excellent strategy for craniomaxillofacial hard tissue regeneration, involving crania and facial bones and teeth. Porcine treated dentin matrix (pTDM) as xenogeneic extracellular matrix has the potential to promote the stem cell differentiation and mineralization as it contains plenty of bioactive factors similar with human-derived dentin tissue. However, its application might be impeded by the foreign body response induced by the damage-associated molecular patterns of pTDM, which would cause strong inflammation and hinder the regeneration. Ceria nanoparticles (CNPs) show a great promise at protecting tissue from oxidative stress and influence the macrophages polarization. Using 3D-bioprinting technology, we fabricated a xenogeneic hard tissue scaffold based on pTDM xenogeneic TDM-polycaprolactone (xTDM/PCL) and we modified the scaffolds by CNPs (xTDM/PCL/CNPs). Through series ofin vitroverification, we found xTDM/PCL/CNPs scaffolds held promise at up-regulating the expression of osteogenesis and odontogenesis related genes including collagen type 1, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein-2, osteoprotegerin, alkaline phosphatase (ALP) and DMP1 and inducing macrophages to polarize to M2 phenotype. Regeneration of bone tissues was further evaluated in rats by conducting the models of mandibular and skull bone defects. Thein vivoevaluation showed that xTDM/PCL/CNPs scaffolds could promote the bone tissue regeneration by up-regulating the expression of osteogenic genes involving ALP, RUNX2 and bone sialoprotein 2 and macrophage polarization into M2. Regeneration of teeth evaluated on beagles demonstrated that xTDM/PCL/CNPs scaffolds expedited the calcification inside the scaffolds and helped form periodontal ligament-like tissues surrounding the scaffolds.


Assuntos
Cério , Matriz Extracelular , Nanopartículas , Osteogênese , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Suínos , Matriz Extracelular/metabolismo , Cério/química , Nanopartículas/química , Ratos , Poliésteres/química , Dentina/química , Humanos , Regeneração Óssea/efeitos dos fármacos , Odontogênese , Diferenciação Celular , Regeneração , Macrófagos/metabolismo , Crânio , Ratos Sprague-Dawley
17.
PLoS One ; 19(5): e0303154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739591

RESUMO

BACKGROUND: Flowable resin composites (FRC) are tooth-colored restorative materials that contain a lower filler particle content, and lower viscosity than their bulk counterparts, making them useful for specific clinical applications. Yet, their chemical makeup may impact the cellular population of the tooth pulp. This in-vitro study assessed the cytocompatibility and odontogenic differentiation capacity of dental pulp stem cells (DPSCs) in response to two recent FRC material extracts. METHODS: Extracts of the FRC Aura easyflow (AEF) and Polofil NHT Flow (PNF) were applied to DPSCs isolated from extracted human teeth. Cell viability of DPSCs was assessed using MTT assay on days 1, 3 and 7. Cell migration was assessed using the wound healing assay. DPSCs' capacity for osteo/odontogenic differentiation was assessed by measuring the degree of mineralization by Alizarin Red S staining, alkaline phosphatase enzyme (ALP) activity, and monitoring the expression of osteoprotegerin (OPG), RUNX Family Transcription Factor 2 (RUNX2), and the odontogenic marker dentin sialophosphoprotein (DSPP) by RT-PCR. Monomer release from the FRC was also assessed by High-performance liquid chromatography analysis (HPLC). RESULTS: DPSCs exposed to PNF extracts showed significantly higher cell viability, faster wound closure, and superior odontogenic differentiation. This was apparent through Alizarin Red staining of calcified nodules, elevated alkaline phosphatase activity, and increased expression of osteo/odontogenic markers. Moreover, HPLC analysis revealed a higher release of TEDGMA, UDMA, and BISGMA from AEF. CONCLUSIONS: PNF showed better cytocompatibility and enhancement of odontogenic differentiation than AEF.


Assuntos
Diferenciação Celular , Resinas Compostas , Polpa Dentária , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Humanos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Diferenciação Celular/efeitos dos fármacos , Resinas Compostas/química , Resinas Compostas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas
18.
J Nanobiotechnology ; 22(1): 265, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760763

RESUMO

BACKGROUND: Pulp regeneration is a novel approach for the treatment of immature permanent teeth with pulp necrosis. This technique includes the combination of stem cells, scaffolds, and growth factors. Recently, stem cell-derived extracellular vesicles (EVs) have emerged as a new methodology for pulp regeneration. Emerging evidence has proven that preconditioning is an effective scheme to modify EVs for better therapeutic potency. Meanwhile, proper scaffolding is of great significance to protect EVs from rapid clearance and destruction. This investigation aims to fabricate an injectable hydrogel loaded with EVs from pre-differentiated stem cells from human exfoliated deciduous teeth (SHEDs) and examine their effects on pulp regeneration. RESULTS: We successfully employed the odontogenic induction medium (OM) of SHEDs to generate functional EV (OM-EV). The OM-EV at a concentration of 20 µg/mL was demonstrated to promote the proliferation and migration of dental pulp stem cells (DPSCs). The results revealed that OM-EV has a better potential to promote odontogenic differentiation of DPSCs than common EVs (CM-EV) in vitro through Alizarin red phalloidin, alkaline phosphatase staining, and assessment of the expression of odontogenic-related markers. High-throughput sequencing suggests that the superior effects of OM-EV may be attributed to activation of the AMPK/mTOR pathway. Simultaneously, we prepared a photocrosslinkable gelatin methacryloyl (GelMA) to construct an OM-EV-encapsulated hydrogel. The hydrogel exhibited sustained release of OM-EV and good biocompatibility for DPSCs. The released OM-EV from the hydrogel could be internalized by DPSCs, thereby enhancing their survival and migration. In tooth root slices that were subcutaneously transplanted in nude mice, the OM-EV-encapsulated hydrogel was found to facilitate dentinogenesis. After 8 weeks, there was more formation of mineralized tissue, as well as higher levels of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1). CONCLUSIONS: The effects of EV can be substantially enhanced by preconditioning of SHEDs. The functional EVs from SHEDs combined with GelMA are capable of effectively promoting dentinogenesis through upregulating the odontogenic differentiation of DPSCs, which provides a promising therapeutic approach for pulp regeneration.


Assuntos
Diferenciação Celular , Polpa Dentária , Vesículas Extracelulares , Gelatina , Metacrilatos , Odontogênese , Regeneração , Células-Tronco , Dente Decíduo , Polpa Dentária/citologia , Humanos , Vesículas Extracelulares/química , Gelatina/química , Gelatina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Animais , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Regeneração/efeitos dos fármacos , Dente Decíduo/citologia , Metacrilatos/química , Metacrilatos/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Células Cultivadas , Hidrogéis/química , Hidrogéis/farmacologia , Movimento Celular/efeitos dos fármacos
19.
Int J Dev Biol ; 68(1): 19-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591690

RESUMO

Tooth formation is a process tightly regulated by reciprocal interactions between epithelial and mesenchymal tissues. These epithelial-mesenchyme interactions regulate the expression of target genes via transcription factors. Among the regulatory elements governing this process, Epiprofin/Sp6 is a zinc finger transcription factor which is expressed in the embryonic dental epithelium and in differentiating pre-odontoblasts. Epiprofin knockout (Epfn-/-) mice present severe dental abnormalities, such as supernumerary teeth and enamel hypoplasia. Here, we describe dentin defects in molars and incisors of Epfn-/- mice. We observed that in the absence of Epfn, markers of early odontoblast differentiation, such as alkaline phosphatase activity, Dsp/Dpp expression, and Collagen Type I deposition, are downregulated. In addition, the expression of tight and gap junction proteins was severely impaired in the predontoblastic cell layer of developing Epfn-/- molars. Altogether, our data shows that Epfn is crucial for the proper differentiation of dental mesenchymal cells towards functional odontoblasts and subsequent dentin-matrix deposition.


Assuntos
Displasia da Dentina , Odontoblastos , Camundongos , Animais , Odontoblastos/metabolismo , Displasia da Dentina/metabolismo , Diferenciação Celular , Odontogênese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Cell Mol Med ; 28(8): e18297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613351

RESUMO

Autophagy is a cellular process that is evolutionarily conserved, involving the sequestration of damaged organelles and proteins into autophagic vesicles, which subsequently fuse with lysosomes for degradation. Autophagy controls the development of many diseases by influencing apoptosis, inflammation, the immune response and different cellular processes. Autophagy plays a significant role in the aetiology of disorders associated with dentistry. Autophagy controls odontogenesis. Furthermore, it is implicated in the pathophysiology of pulpitis and periapical disorders. It enhances the survival, penetration and colonization of periodontal pathogenic bacteria into the host periodontal tissues and facilitates their escape from host defences. Autophagy plays a crucial role in mitigating exaggerated inflammatory reactions within the host's system during instances of infection and inflammation. Autophagy also plays a role in the relationship between periodontal disease and systemic diseases. Autophagy promotes wound healing and may enhance implant osseointegration. This study reviews autophagy's dento-alveolar effects, focusing on its role in odontogenesis, periapical diseases, periodontal diseases and dental implant surgery, providing valuable insights for dentists on tooth development and dental applications. A thorough examination of autophagy has the potential to discover novel and efficacious treatment targets within the field of dentistry.


Assuntos
Implantes Dentários , Doenças Periodontais , Humanos , Autofagia , Odontogênese , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...