Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.378
Filtrar
1.
Sci Transl Med ; 16(760): eadi2245, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141703

RESUMO

Antisense oligonucleotides (ASOs) are promising therapeutics for treating various neurological disorders. However, ASOs are unable to readily cross the mammalian blood-brain barrier (BBB) and therefore need to be delivered intrathecally to the central nervous system (CNS). Here, we engineered a human transferrin receptor 1 (TfR1) binding molecule, the oligonucleotide transport vehicle (OTV), to transport a tool ASO across the BBB in human TfR knockin (TfRmu/hu KI) mice and nonhuman primates. Intravenous injection and systemic delivery of OTV to TfRmu/hu KI mice resulted in sustained knockdown of the ASO target RNA, Malat1, across multiple mouse CNS regions and cell types, including endothelial cells, neurons, astrocytes, microglia, and oligodendrocytes. In addition, systemic delivery of OTV enabled Malat1 RNA knockdown in mouse quadriceps and cardiac muscles, which are difficult to target with oligonucleotides alone. Systemically delivered OTV enabled a more uniform ASO biodistribution profile in the CNS of TfRmu/hu KI mice and greater knockdown of Malat1 RNA compared with a bivalent, high-affinity TfR antibody. In cynomolgus macaques, an OTV directed against MALAT1 displayed robust ASO delivery to the primate CNS and enabled more uniform biodistribution and RNA target knockdown compared with intrathecal dosing of the same unconjugated ASO. Our data support systemically delivered OTV as a potential platform for delivering therapeutic ASOs across the BBB.


Assuntos
Barreira Hematoencefálica , Oligonucleotídeos Antissenso , RNA Longo não Codificante , Receptores da Transferrina , Animais , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/metabolismo , Humanos , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Camundongos , Transporte Biológico , Macaca fascicularis , Técnicas de Silenciamento de Genes , Distribuição Tecidual
2.
Drugs R D ; 24(2): 253-262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38949758

RESUMO

BACKGROUND: Vupanorsen is a GalNAc3-conjugated antisense oligonucleotide targeting angiopoietin-like 3 (ANGPTL3) mRNA shown to reduce atherogenic lipoproteins in individuals with dyslipidemia. OBJECTIVES: The aim of this study was to satisfy Chinese regulatory requirements and support ethnic sensitivity assessment by evaluating pharmacokinetics (PK), pharmacodynamics (PD), and safety of vupanorsen in healthy Chinese adults with elevated triglycerides (TG). METHODS: In this phase I, parallel-cohort, open-label study, 18 Chinese adults with elevated fasting TG (≥ 90 mg/dL) were randomized 1:1 to receive a single subcutaneous dose of vupanorsen 80 mg or 160 mg. PK parameters, PD markers (including ANGPTL3, TG, non-high-density lipoprotein cholesterol [non-HDL-C]), and safety were assessed. RESULTS: Absorption of vupanorsen was rapid (median time to maximum concentration [Tmax]: 2.0 h for both doses), followed by a multiphasic decline (mean terminal half-life 475.9 [80 mg] and 465.2 h [160 mg]). Exposure (area under curve [AUC] and maximum plasma concentration [Cmax]) generally increased in a greater than dose-proportional manner from 80 mg to 160 mg. Time-dependent reductions in ANGPTL3 and lipid parameters were observed. Mean percentage change from baseline for the 80-mg and 160-mg doses, respectively, were - 59.7% and - 69.5% for ANGPTL3, - 41.9% and - 52.5% for TG, and - 23.2% and - 25.4% for non-HDL-C. No serious or severe adverse events (AEs), deaths, or discontinuations due to AEs were reported. Three participants experienced treatment-related AEs; all were mild and resolved by end of study. CONCLUSIONS: This study provided the first clinical vupanorsen data in China. In Chinese participants with elevated TG, PK and PD parameters were consistent with those reported previously in non-Chinese participants, including in Japanese individuals. No safety concerns were noted. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04916795.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Povo Asiático , Oligonucleotídeos Antissenso , Triglicerídeos , Humanos , Masculino , Feminino , Adulto , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/farmacologia , Triglicerídeos/sangue , Pessoa de Meia-Idade , Relação Dose-Resposta a Droga , Adulto Jovem , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/sangue , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos/administração & dosagem , Proteínas Semelhantes a Angiopoietina/antagonistas & inibidores , China
3.
Lancet Neurol ; 23(9): 901-912, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059407

RESUMO

BACKGROUND: Hexanucleotide repeat expansion of C9orf72 is a common genetic cause of amyotrophic lateral sclerosis (ALS). No C9orf72-targeted treatments are available. BIIB078 is an investigational antisense oligonucleotide targeting C9orf72 sense RNA. We aimed to assess the safety, tolerability, and pharmacokinetics of BIIB078 in participants with C9orf72-associated ALS. METHODS: This phase 1, randomised controlled trial was done at 22 sites in six countries (Canada, Ireland, Netherlands, Switzerland, UK, and USA). Adults with ALS and a pathogenic repeat expansion in C9orf72 were randomly assigned within six cohorts, via Interactive Response Technology in a 3:1 ratio per cohort, to receive BIIB078 (5 mg, 10 mg, 20 mg, 35 mg, 60 mg, or 90 mg in cohorts 1-6, respectively) or placebo, via an intrathecal bolus injection. The treatment period consisted of three loading doses of study treatment, administered approximately once every 2 weeks, followed by monthly maintenance doses during a treatment period of about 3 months for cohorts 1-3 and about 6 months for cohorts 4-6. Patients and investigators were masked to treatment assignment. The primary endpoint was the incidence of adverse events and serious adverse events. This trial was registered with ClinicalTrials.gov (NCT03626012) and is completed. FINDINGS: Between Sept 10, 2018, and Nov 17, 2021, 124 patients were screened for inclusion in the study. 18 patients were excluded and 106 participants were enrolled and randomly assigned to receive 5 mg (n=6), 10 mg (n=9), 20 mg (n=9), 35 mg (n=19), 60 mg (n=18), or 90 mg (n=18) of BIIB078, or placebo (n=27). 58 (55%) of 106 patients were female. All patients received at least one dose of study treatment and were included in all analyses. All participants had at least one adverse event; most adverse events were mild or moderate in severity and did not lead to treatment discontinuation. The most common adverse events in BIIB078-treated participants were falls, procedural pain, headache, and post lumbar puncture syndrome. 14 (18%) of 79 patients who received any dose of BIIB078 reported serious adverse events, compared with nine (33%) of 27 patients who received placebo. Five participants who received BIIB078 and three participants who received placebo had fatal adverse events: respiratory failure in a participant who received 10 mg BIIB078, ALS worsening in two participants who received 35 mg BIIB078, traumatic intracerebral haemorrhage in one participant who received 35 mg BIIB078, pulmonary embolism in one participant who received 60 mg BIIB078, and respiratory failure in three participants who received placebo. All deaths were assessed as not related to the study treatment by the reporting investigator. INTERPRETATION: On the basis of these phase 1 study results, including secondary and exploratory findings showing no reduction in neurofilament levels and no benefit on clinical outcomes relative to the placebo cohort, BIIB078 clinical development has been discontinued. However, these results will be informative in furthering our understanding of the complex pathobiology of C9orf72-associated ALS. FUNDING: Biogen.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Oligonucleotídeos Antissenso , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Método Duplo-Cego , Proteína C9orf72/genética , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/farmacologia , Idoso , Adulto , Relação Dose-Resposta a Droga
4.
Kidney Int ; 106(1): 21-23, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38906653

RESUMO

Chronic hemodialysis patients exhibit an excessive cardiovascular risk and a marked increase in both thromboembolism and bleeding episodes. Factor XI inhibition may provide anticoagulation, with a low risk of bleeding, and several factor XI inhibitors, including fesomersen, an antisense oligonucleotide, are under development. Recently, a phase 2 study of fesomersen showed a good safety profile in chronic hemodialysis patients and suggested that clotting rates of the arteriovenous fistula and the dialysis circuit are lower.


Assuntos
Anticoagulantes , Fator XI , Hemorragia , Diálise Renal , Humanos , Diálise Renal/efeitos adversos , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Fator XI/antagonistas & inibidores , Fator XI/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/administração & dosagem , Tromboembolia/prevenção & controle , Tromboembolia/etiologia , Derivação Arteriovenosa Cirúrgica/efeitos adversos
5.
Int J Biol Macromol ; 272(Pt 2): 132890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848829

RESUMO

The lack of more effective therapies for breast cancer has enhanced mortality among breast cancer patients. Recent efforts have established efficient treatments to reduce breast cancer-related deaths. The ever-increasing attraction to employing biocompatible polysaccharide-based nanostructures as delivery systems has created interest in various disease therapies, especially breast cancer treatment. A wide range of therapeutic cargo comprising bioactive or chemical drugs, oligonucleotides, peptides, and targeted biomarkers have been considered to comprehend their anti-cancer effects against breast cancer. Some limitations of naked agents or undesired constructs, such as no or low bioavailability, enzymatic digestion, short-range stability, low-cellular uptake, poor solubility, and low surface area, have lessened their effectiveness. However, nanoscale formulations of therapeutic ingredients have provided a promising platform to address the mentioned concerns. For instance, some capable polysaccharides, including cellulose, pectin, chitosan, alginate, and dextran, were developed as breast cancer therapeutics with great nanoparticle structures. This review carefully examines the characteristics of beneficial polysaccharides that are utilized in the formation of nanoparticles (NPs). It also highlights the applications of antisense oligonucleotides (ASOs), and NPs made from polysaccharides in the treatment of breast cancer and suggests ways to enhance these particles for future research.


Assuntos
Neoplasias da Mama , Nanoestruturas , Oligonucleotídeos Antissenso , Polissacarídeos , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Polissacarídeos/química , Feminino , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/uso terapêutico , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanopartículas/química
6.
Int J Pharm ; 661: 124390, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38936443

RESUMO

In vivo studies investigating the inhalative efficacy of biotherapeutics, such as nucleic acids, usually do not perform an aerosolization step, rather the solution is directly administered into the lungs e.g. intratracheally. In addition, there is currently very little information on the behavior of nucleic acid solutions when subjected to the physical stress of the nebulization process. In this study, the aim was to assess the technical suitability of Locked Nucleic Acids (LNAs), as a model antisense oligonucleotide, towards nebulization using two commercially available nebulizers. A jet nebulizer (Pari LC Plus) and a vibrating mesh nebulizer (Aerogen Solo) were employed and solutions of five different LNAs investigated in terms of their physical and chemical stability to nebulization and the quality of the generated aerosols. The aerosol properties of the Aerogen Solo were mainly influenced by the viscosity of the solutions with the output rate and the droplet size decreasing with increasing viscosity. The Pari LC Plus was less susceptible to viscosity and overall the droplet size was smaller. The LNAs tolerated both nebulization processes and the integrity of the molecules was shown. Chemical stability of the molecules from the Aerogen Solo was confirmed, whereas aerosol generation with the Pari LC Plus jet nebulizer led to a slight increase of phosphodiester groups in a fully phosphorothiolated backbone of the LNAs. Overall, it could be shown that nebulization of different LNAs is possible and inhalation can therefore be considered a potential route of administration.


Assuntos
Aerossóis , Nebulizadores e Vaporizadores , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , Administração por Inalação , Viscosidade , Tamanho da Partícula , Estabilidade de Medicamentos
7.
Acta Neuropathol Commun ; 12(1): 75, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745295

RESUMO

In Parkinson's disease and other synucleinopathies, fibrillar forms of α-synuclein (aSyn) are hypothesized to structurally convert and pathologize endogenous aSyn, which then propagates through the neural connections, forming Lewy pathologies and ultimately causing neurodegeneration. Inoculation of mouse-derived aSyn preformed fibrils (PFFs) into the unilateral striatum of wild-type mice causes widespread aSyn pathologies in the brain through the neural network. Here, we used the local injection of antisense oligonucleotides (ASOs) against Snca mRNA to confine the area of endogenous aSyn protein reduction and not to affect the PFFs properties in this model. We then varied the timing and location of ASOs injection to examine their impact on the initiation and propagation of aSyn pathologies in the whole brain and the therapeutic effect using abnormally-phosphorylated aSyn (pSyn) as an indicator. By injecting ASOs before or 0-14 days after the PFFs were inoculated into the same site in the left striatum, the reduction in endogenous aSyn in the striatum leads to the prevention and inhibition of the regional spread of pSyn pathologies to the whole brain including the contralateral right hemisphere. ASO post-injection inhibited extension from neuritic pathologies to somatic ones. Moreover, injection of ASOs into the right striatum prevented the remote regional spread of pSyn pathologies from the left striatum where PFFs were inoculated and no ASO treatment was conducted. This indicated that the reduction in endogenous aSyn protein levels at the propagation destination site can attenuate pSyn pathologies, even if those at the propagation initiation site are not inhibited, which is consistent with the original concept of prion-like propagation that endogenous aSyn is indispensable for this regional spread. Our results demonstrate the importance of recruiting endogenous aSyn in this neural network propagation model and indicate a possible potential for ASO treatment in synucleinopathies.


Assuntos
Camundongos Endogâmicos C57BL , Rede Nervosa , Oligonucleotídeos Antissenso , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Rede Nervosa/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/administração & dosagem , RNA Mensageiro/metabolismo
8.
Biomed Pharmacother ; 175: 116737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749176

RESUMO

Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.


Assuntos
Apolipoproteínas E , Barreira Hematoencefálica , Camundongos Transgênicos , Oligonucleotídeos Antissenso , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/farmacocinética , Humanos , Apolipoproteínas E/metabolismo , Camundongos , Morfolinos/administração & dosagem , Morfolinos/farmacocinética , Morfolinos/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos Penetradores de Células/química
9.
STAR Protoc ; 5(2): 103094, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38796847

RESUMO

SCN2A loss-of-function variants cause a range of neurodevelopmental disorders. Here, we present a protocol to induce severe Scn2a insufficiency in mice. We describe steps for intracerebroventricular (ICV) antisense oligonucleotide (ASO) injection that causes a selective downregulation of Scn2a and ASO-mediated mRNA degradation. We then detail procedures for qPCR and western blot protocol to measure Scn2a mRNA and protein. This protocol can be used as a mouse model for behavioral and in vivo two-photon Ca2+ imaging.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.2 , Oligonucleotídeos Antissenso , Animais , Camundongos , Modelos Animais de Doenças , Injeções Intraventriculares , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Lakartidningen ; 1212024 Apr 26.
Artigo em Sueco | MEDLINE | ID: mdl-38666665

RESUMO

We present a patient with familial amyotrophic lateral sclerosis caused by an aggressive A4S mutation in the SOD1 gene. In 2020, the patient was enrolled in the VALOR SOD1 gene therapy phase-3 trial. At screening, the ALSFRS-R score was 41 (48 is normal) and the level of CSF-neurofilament L (an indicator of ongoing neuronal damage) was 11 000 ng/L (ref <650 ng/L). In the four years following enrollment, the patient received monthly intrathecal treatment with tofersen, an antisense oligonucleotide compound that inhibits SOD1 protein expression and hence lowers the synthesis of toxic SOD1 protein species. Side effects have been minimal and mostly attributed to the spinal taps. The patient remains ambulatory with an active social lifestyle. The ALSFRS-R score has in the past 18 months stabilized around 35-37, CSF-NfL is 1 290 ng/L and plasma-NfL is 12 (reference <13). This is the first documented arresting intervention in a patient with ALS in Sweden.


Assuntos
Esclerose Lateral Amiotrófica , Progressão da Doença , Terapia Genética , Superóxido Dismutase-1 , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/terapia , Superóxido Dismutase-1/genética , Masculino , Pessoa de Meia-Idade , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos/administração & dosagem
11.
Bioconjug Chem ; 35(5): 623-632, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659333

RESUMO

Nanodiamonds (NDs) are considered promising delivery platforms, but inaccurate and uncontrolled release of drugs at target sites is the biggest challenge of NDs in precision medicine. This study presents the development of phototriggerable ND-based drug delivery systems, utilizing ortho-nitrobenzyl (o-NB) molecules as photocleavable linkers between drugs and nanocarriers. UV irradiation specifically cleaved o-NB molecules and then was followed by releasing antisense oligonucleotides from ND-based carriers in both buffer and cellular environments. This ND system carried cell nonpermeable therapeutic agents for bypassing lysosomal trapping and degradation. The presence of fluorescent nitrogen-vacancy centers also allowed NDs to serve as biological probes for tracing in cells. We successfully demonstrated phototriggered release of antisense oligonucleotides from ND-based nanocarriers, reactivating their antisense functions. This highlights the potential of NDs, photocleavable linkers, and light stimuli to create advanced drug delivery systems for controlled drug release in disease therapy, opening possibilities for targeted and personalized treatments.


Assuntos
Sistemas de Liberação de Medicamentos , Nanodiamantes , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/administração & dosagem , Humanos , Nanodiamantes/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Raios Ultravioleta , Luz
12.
J Pharm Sci ; 113(7): 1749-1768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679232

RESUMO

Oligonucleotide drug products commercially approved in the US and the EU are reviewed. A total of 20 products that includes 1 aptamer, 12 antisense oligonucleotides (ASOs), 6 small interfering ribonucleic acids (siRNAs), and 1 mixture of single-stranded and double-stranded polydeoxyribonucleotides have been identified. A typical oligonucleotide formulation is composed of an oligonucleotide with buffering agent(s), pH adjusting agents, and a tonicity adjusting agent. All the products are presented as 2.1 - 200 mg/mL solutions at pH between 6 and 8.7. Majority of the products are approved for intravenous (IV) and subcutaneous (SC) routes, with two for intravitreal (IVT), two for intrathecal (IT), and one for intramuscular (IM) routes. The primary packaging includes vials and prefilled syringes (PFS). Products approved for IV and IT administration routes and requiring >1.5 mL dose volumes are supplied in vials, while those approved for SC, IM, and IVT and requiring ≤1.5 mL dose volume are supplied in PFS. Based on the compiled dataset, we propose a generalized starting point for an oligonucleotide formulation during early phase development for IV, SC, and IT administration routes. Overall, we believe this harmonized evaluation and understanding of various oligonucleotide drug product attributes will help derive platform generalizations and allows for accelerated early phase development for first-in-human studies.


Assuntos
Oligonucleotídeos , Humanos , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , Aprovação de Drogas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Estados Unidos , Embalagem de Medicamentos/métodos , Química Farmacêutica/métodos
13.
Br J Clin Pharmacol ; 90(6): 1503-1513, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504437

RESUMO

AIMS: The aim of this study was to characterize the population pharmacokinetics of AZD8233, an antisense oligonucleotide (ASO) that targets the PCSK9 transcript to reduce hepatocyte PCSK9 protein production and plasma levels. AZD8233 utilizes generation 2.5 S-constrained ethyl motif (cET) chemistry and is conjugated to a triantennary N-acetylgalactosamine (GalNAc3) ligand for targeted hepatocyte uptake. METHODS: A non-linear mixed-effect modelling approach utilizing NONMEM software was applied to AZD8233 concentration-time data from 3416 samples in 219 participants from four phase 1-2 studies, one in healthy volunteers (NCT03593785) and three in patients with dyslipidaemia (NCT04155645, NCT04641299 and NCT04823611). RESULTS: The final model described the AZD8233 plasma concentration-time profile from four phase 1-2 studies in healthy volunteers or participants with dyslipidaemia, covering a dose range of 4 to 120 mg. The pharmacokinetics of AZD8233 were adequately described by a two-compartment model with first-order absorption. The supra-proportional increase in maximum plasma concentration (Cmax) across the observed dose range was described by non-linear Michaelis-Menten elimination (maximum elimination rate, 9.9 mg/h [12% relative standard error]; concentration yielding half-maximal elimination rate, 4.8 mg/L [18% relative standard error]). Body weight, sex, estimated glomerular filtration rate and disease status (healthy participant vs. patient with dyslipidaemia) were identified as factors affecting exposure to AZD8233. CONCLUSIONS: Covariate analysis showed body weight to be the main factor affecting exposure to AZD8233, which largely explained the higher Cmax observed in the Asian population relative to non-Asians.


Assuntos
Dislipidemias , Oligonucleotídeos Antissenso , Pró-Proteína Convertase 9 , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Dislipidemias/sangue , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Pró-Proteína Convertase 9/genética , Adulto Jovem , Voluntários Saudáveis , Modelos Biológicos , Idoso , Relação Dose-Resposta a Droga , Adolescente
14.
Adv Healthc Mater ; 13(16): e2303510, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38545904

RESUMO

Targeted drug delivery and the reduction of off-target effects are crucial for the promising clinical application of nucleic acid drugs. To address this challenge, a new approach for treating osteoarthritis (OA) that accurately delivers antisense oligonucleotides (ASO) targeting matrix metalloproteinase-13 (ASO-MMP13) to chondrocytes, is developed. Small extracellular vesicles (exos) are ligated with chondrocyte affinity peptide (CAP) using Sortase A and subsequently incubated with cholesterol-modified ASO-MMP13 to construct a chondrocyte-targeted drug delivery exo (CAP-exoASO). Compared with exos without CAP (ExoASO), CAP-exoASOs attenuate IL-1ß-induced chondrocyte damage and prolong the retention time of ASO-MMP13 in the joint without distribution in major organs following intra-articular injection. Notably, CAP-exoASOs decrease MMP13 expression (P < 0.001) and upregulate COL2A1 expression (P = 0.006), resulting in reorganization of the cartilage matrix and alleviation of progression in the OA model. Furthermore, the Osteoarthritis Research Society International (OARSI) score of articular cartilage tissues treated with CAP-exoASO is comparable with that of healthy rats (P = 0.148). A mechanistic study demonstrates that CAP-exoASO may reduce inflammation by suppressing the IL-17 and TNF signaling pathways. Based on the targeted delivery effect, CAP-exoASOs successfully accomplish cartilage repair and have considerable potential for development as a promising therapeutic modality for satisfactory OA therapy.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Condrócitos , Cisteína Endopeptidases , Vesículas Extracelulares , Metaloproteinase 13 da Matriz , Osteoartrite , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Animais , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Condrócitos/metabolismo , Ratos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Masculino , Sistemas de Liberação de Medicamentos/métodos , Ratos Sprague-Dawley , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/administração & dosagem , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia
15.
Eur J Heart Fail ; 26(3): 674-682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38269451

RESUMO

AIM: Inhibition of microRNA (miR)-132 effectively prevents and reverses adverse cardiac remodelling, making it an attractive heart failure (HF) target. CDR132L, a synthetic antisense oligonucleotide selectively blocking pathologically elevated miR-132, demonstrated beneficial effects on left ventricular (LV) structure and function in relevant preclinical models, and was safe and well tolerated in a Phase 1b study in stable chronic HF patients. Patients with acute myocardial infarction (MI) and subsequent LV dysfunction and remodelling have limited therapeutic options, and may profit from early CDR132L treatment. METHODS: The HF-REVERT (Phase 2, multicenter, randomized, parallel, 3-arm, placebo-controlled Study to Assess Efficacy and Safety of CDR132L in Patients with Reduced Left Ventricular Ejection Fraction after Myocardial Infarction) evaluates the efficacy and safety of CDR132L in HF patients post-acute MI (n = 280), comparing the effect of 5 and 10 mg/kg CDR132L, administered as three single intravenous doses 28 days apart, in addition to standard of care. Key inclusion criteria are the diagnosis of acute MI, the development of systolic dysfunction (LV ejection fraction ≤45%) and elevated N-terminal pro-B-type natriuretic peptide. The study consists of a 6-month double-blinded treatment period with the primary endpoint LV end-systolic volume index and relevant secondary endpoints, followed by a 6-month open-label observation period. CONCLUSION: The HF-REVERT trial may underpin the concept of miR-132 inhibition to prevent or reverse cardiac remodelling in post-MI HF. The results will inform the design of subsequent outcome trials to test CDR132L in HF.


Assuntos
Infarto do Miocárdio , Volume Sistólico , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/complicações , Volume Sistólico/fisiologia , Masculino , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/etiologia , Resultado do Tratamento , MicroRNAs , Remodelação Ventricular/efeitos dos fármacos , Pessoa de Meia-Idade , Idoso , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/administração & dosagem , Método Duplo-Cego , Função Ventricular Esquerda/fisiologia , Função Ventricular Esquerda/efeitos dos fármacos
16.
Nucleic Acids Res ; 51(14): 7109-7124, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37188501

RESUMO

Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the central nervous system (CNS). By modulating RNA, they hold the promise of targeting root molecular causes of disease and hold potential to treat myriad CNS disorders. Realization of this potential requires that ASOs must be active in the disease-relevant cells, and ideally, that monitorable biomarkers also reflect ASO activity in these cells. The biodistribution and activity of such centrally delivered ASOs have been deeply characterized in rodent and non-human primate (NHP) models, but usually only in bulk tissue, limiting our understanding of the distribution of ASO activity across individual cells and across diverse CNS cell types. Moreover, in human clinical trials, target engagement is usually monitorable only in a single compartment, CSF. We sought a deeper understanding of how individual cells and cell types contribute to bulk tissue signal in the CNS, and how these are linked to CSF biomarker outcomes. We employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and NHPs treated with an ASO against PRNP. Pharmacologic activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target RNA suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect ASO pharmacodynamic effect in disease-relevant cells in a neuronal disorder. Our results provide a reference dataset for ASO activity distribution in the CNS and establish single nucleus sequencing as a method for evaluating cell type specificity of oligonucleotide therapeutics and other modalities.


Antisense oligonucleotide (ASO) drugs are a type of chemically modified DNA that can be injected into cerebrospinal fluid in order to enter brain cells and reduce the amount of RNA from a specific gene. The brain is a complex mixture of hundreds of billions of cells. When an ASO lowers a target gene's RNA by 50%, is that a 50% reduction in 100% of cells, or a 100% reduction in 50% of cells? Are the many different cell types of the brain affected equally? This new study uses single cell RNA sequencing to answer these questions, finding that ASOs are broadly active across cell types and individual cells, and linking reduction of target protein in cerebrospinal fluid to disease-relevant cells.


Assuntos
Encéfalo , Oligonucleotídeos Antissenso , Animais , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/análise , RNA/metabolismo , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Líquido Cefalorraquidiano/química , Doenças do Sistema Nervoso Central/terapia
17.
N Engl J Med ; 387(21): 1957-1968, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346079

RESUMO

BACKGROUND: Bepirovirsen is an antisense oligonucleotide that targets all hepatitis B virus (HBV) messenger RNAs and acts to decrease levels of viral proteins. METHODS: We conducted a phase 2b, randomized, investigator-unblinded trial involving participants with chronic HBV infection who were receiving or not receiving nucleoside or nucleotide analogue (NA) therapy. Participants were randomly assigned (in a 3:3:3:1 ratio) to receive weekly subcutaneous injections of bepirovirsen at a dose of 300 mg for 24 weeks (group 1), bepirovirsen at a dose of 300 mg for 12 weeks then 150 mg for 12 weeks (group 2), bepirovirsen at a dose of 300 mg for 12 weeks then placebo for 12 weeks (group 3), or placebo for 12 weeks then bepirovirsen at a dose of 300 mg for 12 weeks (group 4). Groups 1, 2, and 3 received loading doses of bepirovirsen. The composite primary outcome was a hepatitis B surface antigen (HBsAg) level below the limit of detection and an HBV DNA level below the limit of quantification maintained for 24 weeks after the planned end of bepirovirsen treatment, without newly initiated antiviral medication. RESULTS: The intention-to-treat population comprised 457 participants (227 receiving NA therapy and 230 not receiving NA therapy). Among those receiving NA therapy, a primary-outcome event occurred in 6 participants (9%; 95% credible interval, 0 to 31) in group 1, in 6 (9%; 95% credible interval, 0 to 43) in group 2, in 2 (3%; 95% credible interval, 0 to 16) in group 3, and 0 (0%; post hoc credible interval, 0 to 8) in group 4. Among participants not receiving NA therapy, a primary-outcome event occurred in 7 participants (10%; 95% credible interval, 0 to 38), 4 (6%; 95% credible interval, 0 to 25), 1 (1%; post hoc credible interval, 0 to 6), and 0 (0%; post hoc credible interval, 0 to 8), respectively. During weeks 1 through 12, adverse events, including injection-site reactions, pyrexia, fatigue, and increased alanine aminotransferase levels, were more common with bepirovirsen (groups 1, 2, and 3) than with placebo (group 4). CONCLUSIONS: In this phase 2b trial, bepirovirsen at a dose of 300 mg per week for 24 weeks resulted in sustained HBsAg and HBV DNA loss in 9 to 10% of participants with chronic HBV infection. Larger and longer trials are required to assess the efficacy and safety of bepirovirsen. (Funded by GSK; B-Clear ClinicalTrials.gov number, NCT04449029.).


Assuntos
Antivirais , Hepatite B Crônica , Oligonucleotídeos Antissenso , RNA Viral , Humanos , Antivirais/efeitos adversos , Antivirais/uso terapêutico , DNA Viral/sangue , Antígenos E da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/uso terapêutico , Resultado do Tratamento , RNA Viral/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Injeções Subcutâneas
18.
N Engl J Med ; 387(12): 1099-1110, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36129998

RESUMO

BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).


Assuntos
Esclerose Lateral Amiotrófica , Oligonucleotídeos Antissenso , Superóxido Dismutase-1 , Adulto , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Método Duplo-Cego , Humanos , Injeções Espinhais , Proteínas de Neurofilamentos/sangue , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Superóxido Dismutase-1/líquido cefalorraquidiano , Superóxido Dismutase-1/genética
19.
Nucleic Acids Res ; 50(15): 8418-8430, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35920332

RESUMO

The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.


Assuntos
Células Endoteliais , Fibroblastos/efeitos dos fármacos , Pulmão/citologia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Fibroblastos/metabolismo , Inativação Gênica , Pulmão/efeitos dos fármacos , Camundongos , Oligonucleotídeos/administração & dosagem , Traqueia/metabolismo
20.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269571

RESUMO

Inherited cardiomyopathy caused by the p.(Arg14del) pathogenic variant of the phospholamban (PLN) gene is characterized by intracardiomyocyte PLN aggregation and can lead to severe dilated cardiomyopathy. We recently reported that pre-emptive depletion of PLN attenuated heart failure (HF) in several cardiomyopathy models. Here, we investigated if administration of a Pln-targeting antisense oligonucleotide (ASO) could halt or reverse disease progression in mice with advanced PLN-R14del cardiomyopathy. To this aim, homozygous PLN-R14del (PLN-R14 Δ/Δ) mice received PLN-ASO injections starting at 5 or 6 weeks of age, in the presence of moderate or severe HF, respectively. Mice were monitored for another 4 months with echocardiographic analyses at several timepoints, after which cardiac tissues were examined for pathological remodeling. We found that vehicle-treated PLN-R14 Δ/Δ mice continued to develop severe HF, and reached a humane endpoint at 8.1 ± 0.5 weeks of age. Both early and late PLN-ASO administration halted further cardiac remodeling and dysfunction shortly after treatment start, resulting in a life span extension to at least 22 weeks of age. Earlier treatment initiation halted disease development sooner, resulting in better heart function and less remodeling at the study endpoint. PLN-ASO treatment almost completely eliminated PLN aggregates, and normalized levels of autophagic proteins. In conclusion, these findings indicate that PLN-ASO therapy may have beneficial outcomes in PLN-R14del cardiomyopathy when administered after disease onset. Although existing tissue damage was not reversed, further cardiomyopathy progression was stopped, and PLN aggregates were resolved.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Substituição de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/química , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Feminino , Testes de Função Cardíaca/efeitos dos fármacos , Humanos , Masculino , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Agregados Proteicos/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...