Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.445
Filtrar
1.
Zhonghua Nan Ke Xue ; 30(3): 199-208, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-39177385

RESUMO

OBJECTIVE: To explore the potential impact of lipid metabolism-related single nucleotide polymorphisms (SNP) on semen quality in men. METHODS: We selected 284 semen samples from Xingtai Infertility Hospital and Hebei Human Sperm Bank collected between February and October 2023, 33 from oligozoospermia (OS), 97 from asthenozoospermia (AS) and 54 from oligoasthenozoospermia (OAS) patients and the other 100 from normal men. We performed computer-assisted semen analysis (CASA) of the samples, extracted blood DNA and, using the MassARRAY System, genotyped the target genes, determined the genotypes of 13 SNPs and compared their distribution, their correlation with BMI and semen quality in different groups. RESULTS: The mutant homozygous (TT) genotype of the FADS2 rs2727270 gene seemed to be a risk factor for AS (OR = 4.420, P= 0.047), while the APOA2 rs5082-A allele and MC4R rs17782313 heterozygous (TC) genotype important protective factors for OS (OR = 0.422 and 0.389; P= 0.045 and 0.043, respectively). A significantly higher sperm concentration was found associated with the MC4R rs17782313 heterozygous (TC) genotype than with the homozygous (CC) genotype. Stratification analysis showed that the protective effect of the TC genotype was decreased with increased BMI and remained with the interaction of the rs5082 and rs17782313 genotypes. CONCLUSION: FADS2 rs2727270, APOA2 rs5082 and MC4R rs17782313 were significantly correlated with the risk of abnormal semen parameters.


Assuntos
Genótipo , Metabolismo dos Lipídeos , Polimorfismo de Nucleotídeo Único , Análise do Sêmen , Humanos , Masculino , Metabolismo dos Lipídeos/genética , Astenozoospermia/genética , Ácidos Graxos Dessaturases/genética , Oligospermia/genética , Infertilidade Masculina/genética , Alelos , Adulto , Contagem de Espermatozoides , Fatores de Risco , Espermatozoides/metabolismo
2.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992144

RESUMO

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Assuntos
Homozigoto , Infertilidade Masculina , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Paquistão , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Adulto , Linhagem , Astenozoospermia/genética , Astenozoospermia/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Sequenciamento do Exoma , Oligospermia/genética , Oligospermia/patologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia
4.
PLoS One ; 19(6): e0303350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875276

RESUMO

In this cross-sectional prospective study, advanced next-generation sequencing technology was used to compare the molecular karyotyping of individual human sperm cells in infertile couples with severe oligoteratozoospermia (i.e., low sperm count and motility) to those of infertile couples with normal semen. Fourteen infertile couples who were patients at Ramathibodi Hospital in Bangkok, Thailand, were recruited from January to November 2023, and they were categorized into two groups based on semen analysis results. The study group comprised couples with severe oligoteratozoospermia, whereas the control group exhibited normal semen. Individual sperm cells from the semen samples were isolated by the micromanipulation technique for subsequent whole-genome amplification and next-generation sequencing, where the primary outcome was the aneuploidy rate. Seventy individual sperm cells were isolated with a 90% success rate for amplification. The next-generation sequencing results showed that the aneuploidy rate was 25%-75%, with a mean of 48.28% in the study group. In contrast, the control group exhibited aneuploidy rates of 0-75%, with a mean of 15.15%. The difference between the two groups was statistically significant (odds ratio: 5.8, 95% confidence interval: 1.30-26.03). Sperm cells of the study group showed a threefold higher aneuploidy rate than those in the control group, even though the sperm cells were selected by micromanipulation for their normal morphology. Comprehensive counseling is recommended to address elevated aneuploidy rates that potentially surpass those of the general infertile population. Guidance on preimplantation genetic testing is also recommended to ensure the transfer of embryos with normal chromosomes.


Assuntos
Aneuploidia , Oligospermia , Espermatozoides , Humanos , Masculino , Estudos Transversais , Estudos Prospectivos , Adulto , Espermatozoides/metabolismo , Oligospermia/genética , Oligospermia/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Análise do Sêmen/métodos , Cariotipagem/métodos , Infertilidade Masculina/genética , Análise de Célula Única/métodos
5.
BMC Urol ; 24(1): 123, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867229

RESUMO

BACKGROUND: Male infertility has become a global health problem, and genetic factors are one of the essential causes. Y chromosome microdeletion is the leading genetic factor cause of male infertility. The objective of this study is to investigate the correlation between male infertility and Y chromosome microdeletions in Hainan, the sole tropical island province of China. METHODS: We analyzed the semen of 897 infertile men from Hainan in this study. Semen analysis was measured according to WHO criteria by professionals at the Department of Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, where samples were collected. Y chromosome AZF microdeletions were confirmed by detecting six STS markers using multiple polymerase chain reactions on peripheral blood DNA. The levels of reproductive hormones, including FSH, LH, PRL, T, and E2, were quantified using the enzyme-linked immunosorbent assay (ELISA). RESULTS: The incidence of Y chromosome microdeletion in Hainan infertile men was 7.13%. The occurrence rate of Y chromosome microdeletion was 6.69% (34/508) in the oligozoospermia group and 7.71% (30/389) in the azoospermia group. The deletion of various types in the AZF subregion was observed in the group with azoospermia, whereas no AZFb deletion was detected in the oligozoospermia group. Among all patients with microdeletions, the deletion rate of the AZFc region was the higher at 68.75% (44 out of 64), followed by a deletion rate of 6.25% (4 out of 64) for the AZFa region and a deletion rate of 4.69% (3 out of 64) for the AZFb region. The deletion rate of the AZFa region was significantly higher in patients with azoospermia than in patients with oligozoospermia (0.51% vs. 0.39%, p < 0.001). In comparison, the deletion rate of the AZFc region was significantly higher in patients with oligozoospermia (3.08% vs. 6.30%, p < 0.001). Additionally, the AZFb + c subregion association deletion was observed in the highest proportion among all patients (0.89%, 8/897), followed by AZFa + b + c deletion (0.56%, 5/897), and exclusively occurred in patients with azoospermia. Hormone analysis revealed FSH (21.63 ± 2.01 U/L vs. 10.15 ± 0.96 U/L, p = 0.001), LH (8.96 ± 0.90 U/L vs. 4.58 ± 0.42 U/L, p < 0.001) and PRL (263.45 ± 21.84 mIU/L vs. 170.76 ± 17.10 mIU/L, p = 0.002) were significantly increased in azoospermia patients with microdeletions. Still, P and E2 levels were not significantly different between the two groups. CONCLUSIONS: The incidence of AZF microdeletion can reach 7.13% in infertile men in Hainan province, and the deletion of the AZFc subregion is the highest. Although the Y chromosome microdeletion rate is distinct in different regions or populations, the regions mentioned above of the Y chromosome may serve an indispensable role in regulating spermatogenesis. The analysis of Y chromosome microdeletion plays a crucial role in the clinical assessment and diagnosis of male infertility.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Y , Infertilidade Masculina , Técnicas de Reprodução Assistida , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual , Humanos , Masculino , Infertilidade Masculina/genética , Infertilidade Masculina/sangue , Infertilidade Masculina/epidemiologia , China/epidemiologia , Adulto , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/sangue , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/epidemiologia , Hormônio Luteinizante/sangue , Hormônio Foliculoestimulante/sangue , Azoospermia/genética , Azoospermia/sangue , Prolactina/sangue , Oligospermia/genética , Oligospermia/sangue , Testosterona/sangue , Estradiol/sangue , Análise do Sêmen
6.
JCI Insight ; 9(12)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912589

RESUMO

Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress-related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins' physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Camundongos Knockout , Isomerases de Dissulfetos de Proteínas , Espermatogênese , Testículo , Animais , Masculino , Espermatogênese/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Camundongos , Testículo/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Apoptose , Espermatócitos/metabolismo , Estresse do Retículo Endoplasmático , Oligospermia/genética , Oligospermia/metabolismo , Oligospermia/patologia
7.
BMC Genomics ; 25(1): 602, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886667

RESUMO

BACKGROUND: Spermatogenesis is a highly regulated and complex process in which DNA methylation plays a crucial role. This study aimed to explore the differential methylation profiles in sperm DNA between patients with asthenospermia (AS) and healthy controls (HCs), those with oligoasthenospermia (OAS) and HCs, and patients with AS and those with OAS. RESULTS: Semen samples and clinical data were collected from five patients with AS, five patients with OAS, and six age-matched HCs. Reduced representation bisulfite sequencing (RRBS) was performed to identify differentially methylated regions (DMRs) in sperm cells among the different types of patients and HCs. A total of 6520, 28,019, and 16,432 DMRs were detected between AS and HC, OAS and HC, and AS and OAS groups, respectively. These DMRs were predominantly located within gene bodies and mapped to 2868, 9296, and 9090 genes in the respective groups. Of note, 12, 9, and 8 DMRs in each group were closely associated with spermatogenesis and male infertility. Furthermore, BDNF, SMARCB1, PIK3CA, and DDX27; RBMX and SPATA17; ASZ1, CDH1, and CHDH were identified as strong differentially methylated candidate genes in each group, respectively. Meanwhile, the GO analysis of DMR-associated genes in the AS vs. HC groups revealed that protein binding, cytoplasm, and transcription (DNA-templated) were the most enriched terms in the biological process (BP), cellular component (CC), and molecular function (MF), respectively. Likewise, in both the OAS vs. HC and AS vs. OAS groups, GO analysis revealed protein binding, nucleus, and transcription (DNA-templated) as the most enriched terms in BP, CC, and MF, respectively. Finally, the KEGG analysis of DMR-annotated genes and these genes at promoters suggested that metabolic pathways were the most significantly associated across all three groups. CONCLUSIONS: The current study results revealed distinctive sperm DNA methylation patterns in the AS vs. HC and OAS vs. HC groups, particularly between patients with AS and those with OAS. The identification of key genes associated with spermatogenesis and male infertility in addition to the differentially enriched metabolic pathways may contribute to uncovering the potential pathogenesis in different types of abnormal sperm parameters.


Assuntos
Astenozoospermia , Metilação de DNA , Oligospermia , Humanos , Masculino , Astenozoospermia/genética , Adulto , Oligospermia/genética , Espermatozoides/metabolismo , Espermatogênese/genética , Estudos de Casos e Controles , Epigênese Genética
8.
Front Endocrinol (Lausanne) ; 15: 1354699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689733

RESUMO

Noonan syndrome (NS) is a genetic disorder characterized by multiple congenital defects caused by mutations in the RAS/mitogen-activated protein kinase pathway. Male fertility has been reported to be impaired in NS, but only a few studies have focused on fertility status in NS patients and underlying mechanisms are still incompletely understood. We describe the case of a 35-year-old man who underwent an andrological evaluation due to erectile dysfunction and severe oligospermia. A syndromic facial appearance and reduced testis size were present on clinical examination. Hormonal evaluation showed normal total testosterone level, high FSH level, and low-normal AMH and inhibin B, compatible with primary Sertoli cell dysfunction. Genetic analysis demonstrated the pathogenetic heterozygous variant c.742G>A, p.(Gly248Arg) of the LZTR1 gene (NM_006767.3). This case report provides increased knowledge on primary gonadal dysfunction in men with NS and enriches the clinical spectrum of NS from a rare variant in the novel gene LZTR1.


Assuntos
Síndrome de Noonan , Humanos , Masculino , Síndrome de Noonan/genética , Síndrome de Noonan/complicações , Adulto , Fatores de Transcrição/genética , Disfunção Erétil/genética , Oligospermia/genética , Infertilidade Masculina/genética , Mutação
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 513-518, 2024 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-38684293

RESUMO

OBJECTIVE: To determine the frequency and characteristics of AZF microdeletions of Y chromosome and karyotypic abnormalities among infertile male patients from southwest China. METHODS: 4 278 infertile male patients treated at West China Second University Hospital of Sichuan University from September 2018 to July 2023 were selected as the study subjects. Results of Y chromosome microdeletion detection and G-banded karyotyping analysis were retrospectively reviewed. RESULTS: Clinical data of the patients were collected, which have included 2 048 patients with azoospermia, 1 536 patients with oligozoospermia, 310 patients with mild to moderate oligozoospermia, and 384 patients with infertility but normal sperm concentration. An abnormal karyotype was found in 213 (8.80%) of 2 421 patients who had undergone karyotyping analysis. The frequency of Y chromosome microdeletions was 9.86% (422/4 278), which had occurred in 10.4%, 13.28%, 0.97% and 0.52% of the cases with azoospermia, severe oligozoospermia, mild to moderate oligozoospermia, and infertility with normal sperm concentration, respectively. CONCLUSION: Y chromosome microdeletion detection and karyotyping analysis are crucial for assessing the cause of male infertility. Early diagnosis can facilitate the selection of reproductive methods.


Assuntos
Azoospermia , Deleção Cromossômica , Cromossomos Humanos Y , Infertilidade Masculina , Cariotipagem , Oligospermia , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual , Humanos , Masculino , Cromossomos Humanos Y/genética , Infertilidade Masculina/genética , China , Adulto , Oligospermia/genética , Azoospermia/genética , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Estudos Retrospectivos , Cariótipo Anormal , Adulto Jovem
10.
Am J Hum Genet ; 111(5): 877-895, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38614076

RESUMO

Infertility, affecting ∼10% of men, is predominantly caused by primary spermatogenic failure (SPGF). We screened likely pathogenic and pathogenic (LP/P) variants in 638 candidate genes for male infertility in 521 individuals presenting idiopathic SPGF and 323 normozoospermic men in the ESTAND cohort. Molecular diagnosis was reached for 64 men with SPGF (12%), with findings in 39 genes (6%). The yield did not differ significantly between the subgroups with azoospermia (20/185, 11%), oligozoospermia (18/181, 10%), and primary cryptorchidism with SPGF (26/155, 17%). Notably, 19 of 64 LP/P variants (30%) identified in 28 subjects represented recurrent findings in this study and/or with other male infertility cohorts. NR5A1 was the most frequently affected gene, with seven LP/P variants in six SPGF-affected men and two normozoospermic men. The link to SPGF was validated for recently proposed candidate genes ACTRT1, ASZ1, GLUD2, GREB1L, LEO1, RBM5, ROS1, and TGIF2LY. Heterozygous truncating variants in BNC1, reported in female infertility, emerged as plausible causes of severe oligozoospermia. Data suggested that several infertile men may present congenital conditions with less pronounced or pleiotropic phenotypes affecting the development and function of the reproductive system. Genes regulating the hypothalamic-pituitary-gonadal axis were affected in >30% of subjects with LP/P variants. Six individuals had more than one LP/P variant, including five with two findings from the gene panel. A 4-fold increased prevalence of cancer was observed in men with genetic infertility compared to the general male population (8% vs. 2%; p = 4.4 × 10-3). Expanding genetic testing in andrology will contribute to the multidisciplinary management of SPGF.


Assuntos
Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/genética , Adulto , Sequenciamento do Exoma , Fator Esteroidogênico 1/genética , Azoospermia/genética , Oligospermia/genética , Mutação , Espermatogênese/genética , Estudos de Coortes
11.
Int J Urol ; 31(7): 718-723, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38470159

RESUMO

OBJECTIVES: Infertility is inability to conceive after 12 months of regular unprotected sex. MiRNA expression changes can serve as potential biomarkers for infertility in males due to impaired spermatogenesis. This research was conducted to measure the expression level of miR-211 in plasma samples as a factor identifying infertility in comparison with the control group. METHODS: In this study, blood plasma were taken from the infertile men (n = 103) nonobstructive azoospermia (NOA) or severe oligozoospermia (SO) and the control group (n = 121). The expression of circulating miR-211 in plasma was assessed by qRT-PCR. A relative quantification strategy was adopted using the 2-ΔΔCT method to calculate the target miR-211 expression level in both study groups. RESULTS: Plasma miR-211 levels were significantly lower in infertile men compared to the control group (0.544 ± 0.028 and 1.203 ± 0.035, respectively, p < 0.001). Pearson's correlation analysis showed that miR-211 expression level has a positive and significant correlation with sperm parameters, including sperm concentration, sperm total motility, progressive motility, and normal morphology (p < 0.001). CONCLUSIONS: Decreased expression of miR-211 in blood plasma seems to be associated with male infertility. This experiment showed that miR-211 can be considered as a biomarker for evaluation, diagnosis, and confirmation of the results of semen analysis in male infertility.


Assuntos
Azoospermia , Biomarcadores , Regulação para Baixo , MicroRNAs , Oligospermia , Motilidade dos Espermatozoides , Adulto , Humanos , Masculino , Azoospermia/sangue , Azoospermia/genética , Azoospermia/diagnóstico , Biomarcadores/sangue , Estudos de Casos e Controles , Infertilidade Masculina/sangue , Infertilidade Masculina/genética , Infertilidade Masculina/diagnóstico , MicroRNAs/sangue , Oligospermia/sangue , Oligospermia/genética , Oligospermia/diagnóstico , Contagem de Espermatozoides , Espermatogênese/genética , Espermatozoides/metabolismo
12.
J Cell Mol Med ; 28(7): e18215, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509755

RESUMO

Oligoasthenoteratospermia (OAT), characterized by abnormally low sperm count, poor sperm motility, and abnormally high number of deformed spermatozoa, is an important cause of male infertility. Its genetic basis in many affected individuals remains unknown. Here, we found that CCDC157 variants are associated with OAT. In two cohorts, a 21-bp (g.30768132_30768152del21) and/or 24-bp (g.30772543_30772566del24) deletion of CCDC157 were identified in five sporadic OAT patients, and 2 cases within one pedigree. In a mouse model, loss of Ccdc157 led to male sterility with OAT-like phenotypes. Electron microscopy revealed misstructured acrosome and abnormal head-tail coupling apparatus in the sperm of Ccdc157-null mice. Comparative transcriptome analysis showed that the Ccdc157 mutation alters the expressions of genes involved in cell migration/motility and Golgi components. Abnormal Golgi apparatus and decreased expressions of genes involved in acrosome formation and lipid metabolism were detected in Ccdc157-deprived mouse germ cells. Interestingly, we attempted to treat infertile patients and Ccdc157 mutant mice with a Chinese medicine, Huangjin Zanyu, which improved the fertility in one patient and most mice that carried the heterozygous mutation in CCDC157. Healthy offspring were produced. Our study reveals CCDC157 is essential for sperm maturation and may serve as a marker for diagnosis of OAT.


Assuntos
Astenozoospermia , Infertilidade Masculina , Proteínas de Membrana , Oligospermia , Animais , Humanos , Masculino , Camundongos , Astenozoospermia/genética , Astenozoospermia/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Mutação/genética , Oligospermia/genética , Oligospermia/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Proteínas de Membrana/metabolismo
13.
Cytogenet Genome Res ; 164(1): 16-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498988

RESUMO

INTRODUCTION: Parthenogenetic chimera is an extremely rare condition in human. Very few patients with parthenogenetic chimerism with XX/XY cells have been identified. CASE PRESENTATION: We report the clinical findings and molecular analysis of chimerism with a 46,XX/46,XY karyotype in a patient presenting idiopathic oligoasthenoteratozoospermia (OAT). To clarify the mechanism of chimera formation, short tandem repeat analysis using 21 loci was carried out. Quantitation of alleles in D6S1043, D12S391, fibrinogen alpha chain, and amelogenin revealed double paternal and one maternal genetic contribution to the patient, which is consistent with a parthenogenetic chimerism. The likely mechanism of chimerism formation was also discussed, followed by a literature review. CONCLUSION: This is the first documented case of parthenogenetic chimerism in an adult male with XX/XY cells presenting OAT. Improved cell sampling and more sensitive and specific detection methods are necessary to identify more patients with XX/XY chimerism for systematic studies on this condition in the future.


Assuntos
Quimerismo , Humanos , Masculino , Adulto , Oligospermia/genética , Partenogênese/genética , Repetições de Microssatélites/genética , Cromossomos Humanos Y/genética , Cromossomos Humanos X/genética , Azoospermia/genética , Cariotipagem
14.
Clin Genet ; 106(1): 27-36, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342987

RESUMO

Oligoasthenoteratozoospermia (OAT) is a common type of male infertility; however, its genetic causes remain largely unknown. Some of the genetic determinants of OAT are gene defects affecting spermatogenesis. BCORL1 (BCL6 corepressor like 1) is a transcriptional corepressor that exhibits the OAT phenotype in a knockout mouse model. A hemizygous missense variant of BCORL1 (c.2615T > G:p.Val872Gly) was reported in an infertile male patient with non-obstructive azoospermia (NOA). Nevertheless, the correlation between BCORL1 variants and OAT in humans remains unknown. In this study, we used whole-exome sequencing to identify a novel hemizygous nonsense variant of BCORL1 (c.1564G > T:p.Glu522*) in a male patient with OAT from a Han Chinese family. Functional analysis showed that the variant produced a truncated protein with altered cellular localization and a dysfunctional interaction with SKP1 (S-phase kinase-associated protein 1). Further population screening identified four BCORL1 missense variants in subjects with both OAT (1 of 325, 0.31%) and NOA (4 of 355, 1.13%), but no pathogenic BCORL1 variants among 362 fertile subjects. In conclusion, our findings indicate that BCORL1 is a potential candidate gene in the pathogenesis of OAT and NOA, expanded its disease spectrum and suggested that BCORL1 may play a role in spermatogenesis by interacting with SKP1.


Assuntos
Sequenciamento do Exoma , Infertilidade Masculina , Proteínas Repressoras , Masculino , Humanos , Proteínas Repressoras/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Oligospermia/genética , Oligospermia/patologia , Adulto , Linhagem , Azoospermia/genética , Azoospermia/patologia , Mutação com Perda de Função/genética , Predisposição Genética para Doença , Proteína-Arginina N-Metiltransferases/genética , Mutação de Sentido Incorreto/genética , Espermatogênese/genética
15.
Hum Reprod ; 39(4): 822-833, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38383051

RESUMO

STUDY QUESTION: Can we simultaneously assess risk for multiple cancers to identify familial multicancer patterns in families of azoospermic and severely oligozoospermic men? SUMMARY ANSWER: Distinct familial cancer patterns were observed in the azoospermia and severe oligozoospermia cohorts, suggesting heterogeneity in familial cancer risk by both type of subfertility and within subfertility type. WHAT IS KNOWN ALREADY: Subfertile men and their relatives show increased risk for certain cancers including testicular, thyroid, and pediatric. STUDY DESIGN, SIZE, DURATION: A retrospective cohort of subfertile men (N = 786) was identified and matched to fertile population controls (N = 5674). Family members out to third-degree relatives were identified for both subfertile men and fertile population controls (N = 337 754). The study period was 1966-2017. Individuals were censored at death or loss to follow-up, loss to follow-up occurred if they left Utah during the study period. PARTICIPANTS/MATERIALS, SETTING, METHODS: Azoospermic (0 × 106/mL) and severely oligozoospermic (<1.5 × 106/mL) men were identified in the Subfertility Health and Assisted Reproduction and the Environment cohort (SHARE). Subfertile men were age- and sex-matched 5:1 to fertile population controls and family members out to third-degree relatives were identified using the Utah Population Database (UPDB). Cancer diagnoses were identified through the Utah Cancer Registry. Families containing ≥10 members with ≥1 year of follow-up 1966-2017 were included (azoospermic: N = 426 families, 21 361 individuals; oligozoospermic: N = 360 families, 18 818 individuals). Unsupervised clustering based on standardized incidence ratios for 34 cancer phenotypes in the families was used to identify familial multicancer patterns; azoospermia and severe oligospermia families were assessed separately. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to control families, significant increases in cancer risks were observed in the azoospermia cohort for five cancer types: bone and joint cancers hazard ratio (HR) = 2.56 (95% CI = 1.48-4.42), soft tissue cancers HR = 1.56 (95% CI = 1.01-2.39), uterine cancers HR = 1.27 (95% CI = 1.03-1.56), Hodgkin lymphomas HR = 1.60 (95% CI = 1.07-2.39), and thyroid cancer HR = 1.54 (95% CI = 1.21-1.97). Among severe oligozoospermia families, increased risk was seen for three cancer types: colon cancer HR = 1.16 (95% CI = 1.01-1.32), bone and joint cancers HR = 2.43 (95% CI = 1.30-4.54), and testis cancer HR = 2.34 (95% CI = 1.60-3.42) along with a significant decrease in esophageal cancer risk HR = 0.39 (95% CI = 0.16-0.97). Thirteen clusters of familial multicancer patterns were identified in families of azoospermic men, 66% of families in the azoospermia cohort showed population-level cancer risks, however, the remaining 12 clusters showed elevated risk for 2-7 cancer types. Several of the clusters with elevated cancer risks also showed increased odds of cancer diagnoses at young ages with six clusters showing increased odds of adolescent and young adult (AYA) diagnosis [odds ratio (OR) = 1.96-2.88] and two clusters showing increased odds of pediatric cancer diagnosis (OR = 3.64-12.63). Within the severe oligozoospermia cohort, 12 distinct familial multicancer clusters were identified. All 12 clusters showed elevated risk for 1-3 cancer types. An increase in odds of cancer diagnoses at young ages was also seen in five of the severe oligozoospermia familial multicancer clusters, three clusters showed increased odds of AYA diagnosis (OR = 2.19-2.78) with an additional two clusters showing increased odds of a pediatric diagnosis (OR = 3.84-9.32). LIMITATIONS, REASONS FOR CAUTION: Although this study has many strengths, including population data for family structure, cancer diagnoses and subfertility, there are limitations. First, semen measures are not available for the sample of fertile men. Second, there is no information on medical comorbidities or lifestyle risk factors such as smoking status, BMI, or environmental exposures. Third, all of the subfertile men included in this study were seen at a fertility clinic for evaluation. These men were therefore a subset of the overall population experiencing fertility problems and likely represent those with the socioeconomic means for evaluation by a physician. WIDER IMPLICATIONS OF THE FINDINGS: This analysis leveraged unique population-level data resources, SHARE and the UPDB, to describe novel multicancer clusters among the families of azoospermic and severely oligozoospermic men. Distinct overall multicancer risk and familial multicancer patterns were observed in the azoospermia and severe oligozoospermia cohorts, suggesting heterogeneity in cancer risk by type of subfertility and within subfertility type. Describing families with similar cancer risk patterns provides a new avenue to increase homogeneity for focused gene discovery and environmental risk factor studies. Such discoveries will lead to more accurate risk predictions and improved counseling for patients and their families. STUDY FUNDING/COMPETING INTEREST(S): This work was funded by GEMS: Genomic approach to connecting Elevated germline Mutation rates with male infertility and Somatic health (Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD): R01 HD106112). The authors have no conflicts of interest relevant to this work. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Azoospermia , Oligospermia , Neoplasias Testiculares , Adolescente , Adulto Jovem , Humanos , Masculino , Criança , Azoospermia/epidemiologia , Azoospermia/genética , Azoospermia/diagnóstico , Oligospermia/epidemiologia , Oligospermia/genética , Estudos Retrospectivos , Linhagem , Fatores de Risco , Neoplasias Testiculares/epidemiologia , Neoplasias Testiculares/genética
16.
J Med Genet ; 61(6): 553-565, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38341271

RESUMO

BACKGROUND: The association between the TDRD6 variants and human infertility remains unclear, as only one homozygous missense variant of TDRD6 was found to be associated with oligoasthenoteratozoospermia (OAT). METHODS: Whole-exome sequencing and Sanger sequencing were employed to identify potential pathogenic variants of TDRD6 in infertile men. Histology, immunofluorescence, immunoblotting and ultrastructural analyses were conducted to clarify the structural and functional abnormalities of sperm in mutated patients. Tdrd6-knockout mice were generated using the CRISPR-Cas9 system. Total RNA-seq and single-cell RNA-seq (scRNA-seq) analyses were used to elucidate the underlying molecular mechanisms, followed by validation through quantitative RT-PCR and immunostaining. Intracytoplasmic sperm injection (ICSI) was also used to assess the efficacy of clinical treatment. RESULTS: Bi-allelic TDRD6 variants were identified in five unrelated Chinese individuals with OAT, including homozygous loss-of-function variants in two consanguineous families. Notably, besides reduced concentrations and impaired motility, a significant occurrence of acrosomal hypoplasia was detected in multiple spermatozoa among five patients. Using the Tdrd6-deficient mice, we further elucidate the pivotal role of TDRD6 in spermiogenesis and acrosome identified. In addition, the mislocalisation of crucial chromatoid body components DDX4 (MVH) and UPF1 was also observed in round spermatids from patients harbouring TDRD6 variants. ScRNA-seq analysis of germ cells from a patient with TDRD6 variants revealed that TDRD6 regulates mRNA metabolism processes involved in spermatid differentiation and cytoplasmic translation. CONCLUSION: Our findings strongly suggest that TDRD6 plays a conserved role in spermiogenesis and confirms the causal relationship between TDRD6 variants and human OAT. Additionally, this study highlights the unfavourable ICSI outcomes in individuals with bi-allelic TDRD6 variants, providing insights for potential clinical treatment strategies.


Assuntos
Alelos , Astenozoospermia , Sequenciamento do Exoma , Camundongos Knockout , Espermatogênese , Adulto , Animais , Humanos , Masculino , Camundongos , Acrossomo/patologia , Astenozoospermia/genética , Astenozoospermia/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Oligospermia/genética , Oligospermia/patologia , Linhagem , Injeções de Esperma Intracitoplásmicas , Espermatogênese/genética , Espermatozoides/patologia , Espermatozoides/metabolismo
17.
Cell Biochem Funct ; 42(2): e3935, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379260

RESUMO

50% of cases of infertility are caused by male factor, which acquired or congenital problems may bring on. Male infertility can be caused by oligospermia and asthenozoospermia, which are common. Since the same mutations that cause azoospermia in some people also cause oligozoospermia in others, oligozoospermia may be thought of as a less severe form of azoospermia. Studies have demonstrated telomere length, catalase activity, super oxide dismutase (SOD), and DNA fragmentation can be influential factors for male infertility. The amount of apoptosis, oxidative stress factors, telomere length, and DNA fragmentation were some aspects of healthy sperm that we chose to look into in this study and compare to oligospermia individuals. Oligospermia patients (n = 24) and fertile men (n = 27) semen samples were collected, and the apoptosis rate of sperms in both groups was analyzed (Flow cytometry). Also, gene expression of apoptotic and antiapoptotic markers and telomere length were examined (real-time polymerase chain reaction). The sperm DNA fragmentation kit was used to determine DNA fragmentation and to evaluate catalase and SOD activity; the specific kits and methods were utilized. Higher expression levels of caspase3 (p = .0042), caspase8 (p = .0145), caspase9 (p = .0275), and BAX (p = .0202) mRNA were observed in patients who had oligospermia. In contrast, lower mRNA expression of BCL-2 (p = .0009) was detected in this group. In addition, telomere length was decreased in the oligospermia group (p < .0001) compared to the health group. Moreover, the frequency of apoptosis is induced in patients (p = .0026). The catalase activity is low (p = .0008), but the SOD activity is high (p = .0015) in the patient group. As a result of our findings, we may list the sperm cell apoptosis rate, telomere length, the degree of sperm DNA fragmentation, and lastly, the measurement of significant and efficient oxidative stress markers like SOD and catalase in semen plasma among the principal diagnostic characteristics for oligospermia. Future studies will be better able to treat oligospermia by showing whether these indicators are rising or falling.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Humanos , Masculino , Oligospermia/genética , Oligospermia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Catalase/genética , Catalase/metabolismo , Azoospermia/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/metabolismo , Antioxidantes/metabolismo , Fragmentação do DNA , Apoptose , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Telômero/metabolismo , RNA Mensageiro/metabolismo
18.
Hum Reprod ; 39(3): 612-622, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305414

RESUMO

STUDY QUESTION: Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER: Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY: The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION: Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE: This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA: GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION: Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Azoospermia , Oligospermia , Masculino , Humanos , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Azoospermia/genética , Oligospermia/genética , Exposição Ambiental
19.
J Assist Reprod Genet ; 41(3): 757-765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270748

RESUMO

PURPOSE: To investigate the prevalence of Y chromosome polymorphisms in Chinese men and analyze their associations with male infertility and female adverse pregnancy outcomes. METHODS: The clinical data of 32,055 Chinese men who underwent karyotype analysis from October 2014 to September 2019 were collected. Fisher's exact test, chi-square test, or Kruskal-Wallis test was used to analyze the effects of Y chromosome polymorphism on semen parameters, azoospermia factor (AZF) microdeletions, and female adverse pregnancy outcomes. RESULTS: The incidence of Y chromosome polymorphic variants was 1.19% (381/32,055) in Chinese men. The incidence of non-obstructive azoospermia (NOA) was significantly higher in men with the Yqh- variant than that in men with normal karyotype and other Y chromosome polymorphic variants (p < 0.050). The incidence of AZF microdeletions was significantly different among the normal karyotype and different Y chromosome polymorphic variant groups (p < 0.001). The detection rate of AZF microdeletions was 28.92% (24/83) in the Yqh- group and 2.50% (3/120) in the Y ≤ 21 group. The AZFb + c region was the most common AZF microdeletion (78.57%, 22/28), followed by AZFc microdeletion (7.14%,2/28) in NOA patients with Yqh- variants. There was no significant difference in the distribution of female adverse pregnancy outcomes among the normal karyotype and different Y chromosome polymorphic variant groups (p = 0.528). CONCLUSIONS: Patients with 46,XYqh- variant have a higher incidence of NOA and AZF microdeletions than patients with normal karyotype and other Y chromosome polymorphic variants. Y chromosome polymorphic variants do not affect female adverse pregnancy outcomes.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Humanos , Masculino , Feminino , Azoospermia/epidemiologia , Azoospermia/genética , Estudos Retrospectivos , Deleção Cromossômica , Infertilidade Masculina/genética , Cromossomos Humanos Y/genética , China/epidemiologia , Oligospermia/genética
20.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255792

RESUMO

Infertility affects millions of couples worldwide and has a profound impact not only on their families, but also on communities. Telomere attrition has been associated with infertility, DNA damage and fragmentation. Oxidative stress has been shown to affect sperm DNA integrity and telomere length. Sirtuins such as SIRT1 and SIRT3 are involved in aging and oxidative stress response. The aim of the present study is to determine the role of SIRT1 and SIRT3 in regulating oxidative stress, telomere shortening, and their association with oligospermia. Therefore, we assessed the protein levels of SIRT1 and SIRT3, total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase activity (CAT) in the seminal plasma of 272 patients with oligospermia and 251 fertile men. We also measured sperm telomere length (STL) and leukocyte telomere length (LTL) using a standard real-time quantitative PCR assay. Sperm chromatin and protamine deficiency were also measured as per standard methods. Our results for oligospermic patients demonstrate significant reductions in semen parameters, shorter STL and LTL, lower levels of SOD, TAC, CAT, SIRT1 and SIRT3 levels, and also significant protamine deficiency and higher levels of MDA and DNA fragmentation. We conclude that a shorter TL in sperms and leukocytes is associated with increased oxidative stress that also accounts for high levels of DNA fragmentation in sperms. Our results support the hypothesis that various sperm parameters in the state of oligospermia are associated with or caused by reduced levels of SIRT1 and SIRT3 proteins.


Assuntos
Oligospermia , Sirtuína 3 , Humanos , Masculino , Sêmen , Oligospermia/genética , Antioxidantes , Sirtuína 3/genética , Sirtuína 1/genética , Espermatozoides , Protaminas , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...