Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.997
Filtrar
1.
J Am Chem Soc ; 146(25): 17446-17455, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861463

RESUMO

Polysaccharides from a medicinal fungus Ganoderma sinense represent important and adjunctive therapeutic agents for treating various diseases, including leucopenia and hematopoietic injury. However, the synthetic accessibility to long, branched, and complicated carbohydrates chains from Ganoderma sinense polysaccharides remains a challenging task in chemical synthesis. Here, we report the modular chemical synthesis of nona-decasaccharide motif from Ganoderma sinense polysaccharide GSPB70-S with diverse biological activities for the first time through one-pot stereoselective glycosylation strategy on the basis of glycosyl ortho-(1-phenyvinyl)benzoates, which not only sped up carbohydrates synthesis but also reduced chemical waste and avoided aglycones transfer issues inherent to one-pot glycosylation on the basis of thioglycosides. The synthetic route also highlights the following key steps: (1) preactivation-based one-pot glycosylation for highly stereoselective constructions of several 1,2-cis-glycosidic linkages, including three α-d-GlcN-(1 → 4) linkages and one α-d-Gal-(1 → 4) bond via the reagent N-methyl-N-phenylformamide modulation; (2) orthogonal one-pot assembly of 1,2-trans-glycosidic linkages in various linear and branched glycans fragments by strategic combinations of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl ortho-(1-phenyvinyl)benzoates; and (3) the final [1 × 4 + 15] Yu glycosylation for efficient assembly of nona-decasaccharide target. Additionally, shorter sequences of 4-mer, 5-mer, and 6-mer are also prepared for structure-activity relationship biological studies. The present work shows that this one-pot stereoselective glycosylation strategy can offer a reliable and effective means to streamline chemical synthesis of long, branched, and complex carbohydrates with many 1,2-cis-glycosidic bonds.


Assuntos
Ganoderma , Glicosilação , Ganoderma/química , Estereoisomerismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Polissacarídeos/química , Polissacarídeos/síntese química
2.
Carbohydr Polym ; 339: 122220, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823902

RESUMO

Natural heparin, a glycosaminoglycan consisting of repeating hexuronic acid and glucosamine linked by 1 â†’ 4 glycosidic bonds, is the most widely used anticoagulant. To subvert the dependence on animal sourced heparin, alternative methods to produce heparin saccharides, i.e., either heterogenous sugar chains similar to natural heparin, or structurally defined oligosaccharides, are becoming hot subjects. Although the success by chemical synthesis of the pentasaccharide, fondaparinux, encourages to proceed through a chemical approach generating homogenous product, synthesizing larger oligos is still cumbersome and beyond reach so far. Alternatively, the chemoenzymatic pathway exhibited exquisite stereoselectivity of glycosylation and regioselectivity of modification, with the advantage to skip the tedious protection steps unavoidable in chemical synthesis. However, to a scale of drug production needed today is still not in sight. In comparison, a procedure of de novo biosynthesis in an organism could be an ultimate goal. The main purpose of this review is to summarize the current available/developing strategies and techniques, which is expected to provide a comprehensive picture for production of heparin saccharides to replenish or eventually to replace the animal derived products. In chemical and chemoenzymatic approaches, the methodologies are discussed according to the synthesis procedures: building block preparation, chain elongation, and backbone modification.


Assuntos
Anticoagulantes , Heparina , Animais , Anticoagulantes/síntese química , Anticoagulantes/química , Glicosilação , Heparina/química , Heparina/síntese química , Oligossacarídeos/síntese química , Oligossacarídeos/química
3.
Int J Biol Macromol ; 273(Pt 2): 133241, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897508

RESUMO

Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1 (Combi-CLEAs-CM) were successfully developed to synthesis maltooligosaccharides (MOS). Yet, the poor cross-linking performance between chitosan (cross-linker) and enzymes resulting low activity recovery and catalytic efficiency. In this study, we proposed the functionalization of cross-linkers with the integration of computational analysis to study the influences of different functional group on cross-linkers in combi-CLEAs development. From in-silico analysis, O-carboxymethyl chitosan (OCMCS) with the highest binding affinity toward both enzymes was chosen and showed alignment with the experimental result, in which OCMCS was synthesized as cross-linker to develop improved activity recovery of Combi-CLEAs-CM-ocmcs (74 %). The thermal stability and deactivation energy (205.86 kJ/mol) of Combi-CLEAs-CM-ocmcs were found to be higher than Combi-CLEAs-CM (192.59 kJ/mol). The introduction of longer side chain of carboxymethyl group led to a more flexible structure of Combi-CLEAs-CM-ocmcs. This alteration significantly reduced the Km value of Combi-CLEAs-CM-ocmcs by about 3.64-fold and resulted in a greater Kcat/Km (3.63-fold higher) as compared to Combi-CLEAs-CM. Moreover, Combi-CLEAs-CM-ocmcs improved the reusability with retained >50 % of activity while Combi-CLEAs-CM only 36.18 % after five cycles. Finally, maximum MOS production (777.46 mg/g) was obtained by Combi-CLEAs-CM-ocmcs after optimization using response surface methodology.


Assuntos
Quitosana , Glucosiltransferases , Oligossacarídeos , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Quitosana/química , Quitosana/análogos & derivados , Reagentes de Ligações Cruzadas/química , Bacillus/enzimologia , Agregados Proteicos , Simulação de Acoplamento Molecular , Estabilidade Enzimática , Glicosídeo Hidrolases
4.
Org Lett ; 26(20): 4346-4350, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38722236

RESUMO

Here we report the first total synthesis of the conjugation-ready tetrasaccharide repeating unit of Shewanella japonica type strain KMM 3299T. The presence of rare deoxyamino sugars and installation of three consecutive 1,2-cis glycosidic linkages makes the synthesis formidable. The challenging late-stage oxidation was overcome by using a galacturonate donor. The total synthesis was completed via a longest linear sequence of 22 steps in an overall yield of 3.5% starting from d-mannose.


Assuntos
Oligossacarídeos , Shewanella , Shewanella/química , Oligossacarídeos/química , Oligossacarídeos/síntese química , Estrutura Molecular , Sequência de Carboidratos , Manose/química , Oxirredução
5.
ACS Infect Dis ; 10(6): 2161-2171, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38770797

RESUMO

Serotypes 6C and 6D of Streptococcus pneumoniae are two major variants that cause invasive pneumococcal disease (IPD) in serogroup 6 alongside serotypes 6A and 6B. Since the introduction of the pneumococcal conjugate vaccines PCV7 and PCV13, the number of cases of IPD caused by pneumococcus in children and the elderly population has greatly decreased. However, with the widespread use of vaccines, a replacement effect has recently been observed among different serotypes and lowered the effectiveness of the vaccines. To investigate protection against the original serotypes and to explore protection against variants and replacement serotypes, we created a library of oligosaccharide fragments derived from the repeating units of the capsular polysaccharides of serotypes 6A, 6B, 6C, and 6D through chemical synthesis. The library includes nine pseudosaccharides with or without exposed terminal phosphate groups and four pseudotetrasaccharides bridged by phosphate groups. Six carbohydrate antigens related to 6C and 6D were prepared as glycoprotein vaccines for immunogenicity studies. Two 6A and two 6B glycoconjugate vaccines from previous studies were included in immunogenicity studies. We found that the conjugates containing four phosphate-bridged pseudotetrasaccharides were able to induce good immune antibodies and cross-immunogenicity by showing superior activity and broad cross-protective activity in OPKA bactericidal experiments.


Assuntos
Anticorpos Antibacterianos , Oligossacarídeos , Infecções Pneumocócicas , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/química , Oligossacarídeos/química , Oligossacarídeos/síntese química , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/química , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/imunologia , Anticorpos Antibacterianos/imunologia , Animais , Camundongos , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/química , Humanos , Feminino
6.
Int J Biol Macromol ; 271(Pt 1): 132484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821795

RESUMO

Alginate oligosaccharides (AOS) are crucial carbohydrate-based biomaterial used in the synthesis of potential drugs and biological agents, but their antibacterial activities are not significant. In this study, AOS acylated derivatives were synthesized by grafting maleic anhydride (MA) onto AOS at varying ratios. Additionally, their inhibitory effects against Staphylococcus aureus were thoroughly investigated. Characterization of the AOS acylated derivatives (AOS-MA-x, where x = 1, 5, 10, and 20) was conducted using Fourier-transformed infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, and X-ray diffraction, which confirmed the successful synthesis of these derivatives. The bacteriostatic activity of the AOS-MA derivatives was assessed using growth curves and plate coating method, demonstrating significant antibacterial effects against S. aureus, as compared with AOS. Among these derivatives, AOS-MA-20 exhibited the most potent bacteriostatic activity and was selected for further investigation of its inhibitory mechanism. Scanning electron microscopy analysis revealed that treatment with AOS-MA-20 led to the lysis and rupture of S. aureus cells, expelling their intracellular contents. Moreover, AOS-MA-20 disrupted the integrity of cell wall and cell membrane, impacted ATPase activity, and inhibited the formation of biofilm to some extent, ultimately resulting in bacterial death. These findings lay a foundational framework for the development of environmentally friendly antimicrobial agents.


Assuntos
Alginatos , Antibacterianos , Testes de Sensibilidade Microbiana , Oligossacarídeos , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Alginatos/química , Alginatos/farmacologia , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Oligossacarídeos/síntese química , Acilação , Biofilmes/efeitos dos fármacos , Técnicas de Química Sintética
7.
Eur J Med Chem ; 272: 116455, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728868

RESUMO

The selectin family consisting of E-, P- and L-selectin plays dominant roles in atherosclerosis, ischemia-reperfusion injury, inflammatory diseases, and metastatic spreading of some cancers. An early goal in selectin-targeted drug discovery campaigns was to identify ligands binding to all three selectins, so-called pan-selectin antagonists. The physiological epitope, tetrasaccharide sialyl Lewisx (sLex, 1) binds to all selectins, albeit with very different affinities. Whereas P- and L-selectin require additional interactions contributed by sulfate groups for high binding affinity, E-selectin can functionally bind sLex-modified glycolipids and glycoproteins. Rivipansel (3) marked the first pan-selectin antagonist, which simultaneously interacted with both the sLex and the sulfate binding site. The aim of this contribution was to improve the pan-selectin affinity of rivipansel (3) by leveraging a new class of sLex mimetics in combination with an optimized linker length to the sulfate bearing group. As a result, the pan-selectin antagonist 11b exhibits an approximatively 5-fold improved affinity for E-, as well as P-selectin.


Assuntos
Selectinas , Humanos , Selectinas/metabolismo , Relação Estrutura-Atividade , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Oligossacarídeos/síntese química , Estrutura Molecular , Antígeno Sialil Lewis X , Relação Dose-Resposta a Droga , Selectina E/metabolismo , Selectina E/antagonistas & inibidores , Glicolipídeos
8.
Carbohydr Res ; 540: 109140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759342

RESUMO

Herein, we describe in first the application of squid pens for the preparation of pharmaceutical-grade oligochitosan hydrochloride with the physicochemical characteristics corresponding with the requirements of the European Pharmacopoeia. It is shown that the use of specific properties of squid pens as a source of parent chitosan allows preparing the product with a high yield at relatively moderate process conditions used for squid pens treatments and chitosan depolymerization.


Assuntos
Quitina , Quitosana , Decapodiformes , Oligossacarídeos , Quitosana/química , Decapodiformes/química , Oligossacarídeos/química , Oligossacarídeos/síntese química , Animais , Quitina/química , Quitina/análogos & derivados
9.
Carbohydr Res ; 540: 109138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703662

RESUMO

High-mannose-type glycan structure of N-glycoproteins plays important roles in the proper folding of proteins in sorting glycoprotein secretion and degradation of misfolded proteins in the endoplasmic reticulum (ER). The Glc1Man9GlcNAc2 (G1M9)-type N-glycan is one of the most important signaling molecules in the ER. However, current chemical synthesis strategies are laborious, warranting more practical approaches for G1M9-glycopeptide development. Wang et al. reported the procedure to give G1M9-Asn-Fmoc through chemical modifications and purifications from 40 chicken eggs, but only 3.3 mg of G1M9-glycopeptide was obtained. Therefore, better methods are needed to obtain more than 10 mg of G1M9-glycopeptide. In this study, we report the preparation of G1M9-glycopeptide (13.2 mg) linking Asn-Gly-Thr triad as consensus sequence from 40 chicken eggs. In this procedure, λ-carrageenan treatment followed by papain treatment was used to separate the Fc region of IgY antibody that harbors high-mannose glycans. Moreover, cotton hydrophilic interaction liquid chromatography was adapted for easy purification. The resulting G1M9-Asn(Fmoc)-Gly-Thr was identified by nuclear magnetic resonance and mass spectroscopy. G1M9-Asn(Fmoc)-Gly, G1M9-Asn(Fmoc), and G1M9-OH were also detected by mass spectroscopy. Here, our developed G1M9-tripeptide might be useful for the elucidation of glycoprotein functions as well as the specific roles of the consensus sequence.


Assuntos
Galinhas , Gema de Ovo , Oligossacarídeos , Animais , Gema de Ovo/química , Oligossacarídeos/química , Oligossacarídeos/síntese química , Asparagina/química , Manose/química , Treonina/química , Sequência Consenso , Glicina/química , Glicopeptídeos/química
10.
Angew Chem Int Ed Engl ; 63(27): e202405297, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651620

RESUMO

Bacterial cell-surface polysaccharides are involved in various biological processes and have attracted widespread attention as potential targets for developing carbohydrate-based drugs. However, the accessibility to structurally well-defined polysaccharide or related active oligosaccharide domains remains challenging. Herein, we describe an efficiently stereocontrolled approach for the first total synthesis of a unique pentasaccharide repeating unit containing four difficult-to-construct 1,2-cis-glycosidic linkages from the cell wall polysaccharide of Cutibacterium acnes C7. The features of our approach include: 1) acceptor-reactivity-controlled glycosylation to stereoselectively construct two challenging rare 1,2-cis-ManA2,3(NAc)2 (ß-2,3-diacetamido-2,3-dideoxymannuronic acid) linkages, 2) combination use of 6-O-tert-butyldiphenylsilyl (6-O-TBDPS)-mediated steric shielding effect and ether solvent effect to stereoselectively install a 1,2-cis-glucosidic linkage, 3) bulky 4,6-di-O-tert-butylsilylene (DTBS)-directed glycosylation to stereospecifically construct a 1,2-cis-galactosidic linkage, 4) stereoconvergent [2+2+1] and one-pot chemoselective glycosylation to rapidly assemble the target pentasaccharide. Immunological activity tests suggest that the pentasaccharide can induce the production of proinflammatory cytokine TNF-α in a dose-dependent manner.


Assuntos
Parede Celular , Oligossacarídeos , Parede Celular/química , Parede Celular/imunologia , Estereoisomerismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Camundongos , Propionibacteriaceae/química , Animais , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/síntese química , Glicosilação , Humanos
11.
Curr Opin Chem Biol ; 80: 102455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636446

RESUMO

Heparan sulfate (HS) is a linear, sulfated and highly negatively-charged polysaccharide that plays important roles in many biological events. As a member of the glycosaminoglycan (GAG) family, HS is commonly found on mammalian cell surfaces and within the extracellular matrix. The structural complexities of natural HS polysaccharides have hampered the comprehension of their biological functions and structure-activity relationships (SARs). Although the sulfation patterns and backbone structures of HS can be major determinants of their biological activities, obtaining significant amounts of pure HS from natural sources for comprehensive SAR studies is challenging. Chemical and enzyme-based synthesis can aid in the production of structurally well-defined HS oligosaccharides. In this review, we discuss recent innovations enabling the syntheses of large libraries of HS and how these libraries can provide insights into the structural preferences of various HS binding proteins.


Assuntos
Heparitina Sulfato , Oligossacarídeos , Heparitina Sulfato/química , Heparitina Sulfato/síntese química , Relação Estrutura-Atividade , Oligossacarídeos/química , Oligossacarídeos/síntese química , Humanos , Animais , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Chemistry ; 30(32): e202401108, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38567703

RESUMO

Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.


Assuntos
Selectina E , Vírus da Influenza A , Polissacarídeos , Antígeno Sialil Lewis X , Polissacarídeos/química , Polissacarídeos/metabolismo , Vírus da Influenza A/metabolismo , Antígeno Sialil Lewis X/metabolismo , Antígeno Sialil Lewis X/química , Selectina E/metabolismo , Selectina E/química , Humanos , Oligossacarídeos/química , Oligossacarídeos/síntese química , Oligossacarídeos/metabolismo , Receptores Virais/metabolismo , Receptores Virais/química , Epitopos/química , Epitopos/metabolismo , Animais
13.
Mar Drugs ; 22(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667801

RESUMO

Fucosylated chondroitin sulfate is a unique glycosaminoglycan isolated from sea cucumbers, with excellent anticoagulant activity. The fucosyl branch in FCS is generally located at the 3-OH of D-glucuronic acid but, recently, a novel structure with α-L-fucose linked to the 6-OH of N-acetyl-galactosamine has been found. Here, using functionalized monosaccharide building blocks, we prepared novel FCS tetrasaccharides with fucosyl branches both at the 6-OH of GalNAc and 3-OH of GlcA. In the synthesis, the protective group strategy of selective O-sulfation, as well as stereoselective glycosylation, was established, which enabled the efficient synthesis of the specific tetrasaccharide compounds. This research enriches knowledge on the structural types of FCS oligosaccharides and facilitates the exploration of the structure-activity relationship in the future.


Assuntos
Sulfatos de Condroitina , Oligossacarídeos , Pepinos-do-Mar , Sulfatos de Condroitina/química , Sulfatos de Condroitina/síntese química , Sulfatos de Condroitina/farmacologia , Animais , Oligossacarídeos/síntese química , Oligossacarídeos/química , Pepinos-do-Mar/química , Glicosilação , Fucose/química , Anticoagulantes/farmacologia , Anticoagulantes/química , Anticoagulantes/síntese química , Relação Estrutura-Atividade , Acetilgalactosamina/química , Acetilgalactosamina/análogos & derivados
14.
Angew Chem Int Ed Engl ; 63(24): e202402922, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581637

RESUMO

Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, activates innate immunity. Its active principle is the terminal glycolipid lipid A. Acetobacter pasteurianus is a Gram-negative bacterium used in the fermentation of traditional Japanese black rice vinegar (kurozu). In this study, we focused on A. pasteurianus lipid A, which is a potential immunostimulatory component of kurozu. The active principle structure of A. pasteurianus lipid A has not yet been identified. Herein, we first systematically synthesized three types of A. pasteurianus lipid As containing a common and unique tetrasaccharide backbone. We developed an efficient method for constructing the 2-trehalosamine skeleton utilizing borinic acid-catalyzed glycosylation to afford 1,1'-α,α-glycoside in high yield and stereoselectivity. A common tetrasaccharide intermediate with an orthogonal protecting group pattern was constructed via [2+2] glycosylation. After introducing various fatty acids, all protecting groups were removed to achieve the first chemical synthesis of three distinct types of A. pasteurianus lipid As. After evaluating their immunological function using both human and murine cell lines, we identified the active principles of A. pasteurianus LPS. We also found the unique anomeric structure of A. pasteurianus lipid A contributes to its high chemical stability.


Assuntos
Acetobacter , Lipídeo A , Lipídeo A/química , Lipídeo A/imunologia , Lipídeo A/síntese química , Humanos , Camundongos , Acetobacter/química , Animais , Oligossacarídeos/química , Oligossacarídeos/síntese química , Glicosilação
15.
Chemistry ; 30(30): e202400946, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38516955

RESUMO

Starfish provide important saponins with diverse bioactivities as the secondary metabolites, among which 2-O-glycosylated glycosides are commonly found. Preparation of those 1,2-trans 2-O-glycosylated glycosides usually relies on 2-O-acyl participation requiring the selective installation and cleavage of 2-O-acyl groups. A convergent synthesis using 2-O-glycosylated oligosaccharide donors would be more straightforward but also pose greater challenges. Herein, we report a convergent synthesis of a distinctive tetrasaccharide isolated from starfish Asterias rollestoni Bell. Dual 2-(diphenylphosphinoyl)acetyl (DPPA) groups at O3 and O4 on galactose moiety led to high ß-selectivities (ß/α=12/1 or ß only) in the challenging [2+2] glycosylation, giving the desired tetrasaccharides in >90 % yields from the 2-O-glycosylated disaccharide donors. These synthetic studies have also unambiguously revised the structure of these natural tetrasaccharides. This work would facilitate further studies on new inhibitors of α-glucosidase as hypoglycemic drugs.


Assuntos
Oligossacarídeos , Animais , Glicosilação , Oligossacarídeos/química , Oligossacarídeos/síntese química , Asterias/química , Glicosídeos/química , Saponinas/química , Saponinas/síntese química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química
16.
Nat Commun ; 13(1): 421, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058448

RESUMO

Glycosyl phosphosaccharides represent a large and important family of complex glycans. Due to the distinct nature of these complex molecules, efficient approaches to access glycosyl phosphosaccharides are still in great demand. Here, we disclose a highly efficient and stereoselective approach to the synthesis of biologically important and complex α-glycosyl phosphosaccharides, employing direct gold(I)-catalyzed glycosylation of the weakly nucleophilic phosphoric acid acceptors. In this work, the broad substrate scope is demonstrated with more than 45 examples, including glucose, xylose, glucuronate, galactose, mannose, rhamnose, fucose, 2-N3-2-deoxymannose, 2-N3-2-deoxyglucose, 2-N3-2-deoxygalactose and unnatural carbohydrates. Here, we show the glycosyl phosphotriester prepared herein was successfully applied to the one-pot synthesis of a phosphosaccharide from Leishmania donovani, and an effective preparation of a trisaccharide diphosphate of phosphosaccharide fragments from Hansenula capsulate via iterative elongation strategy is realized.


Assuntos
Ouro/química , Oligossacarídeos/química , Catálise , Ésteres/química , Glicosilação , Oligossacarídeos/síntese química , Ácidos Fosfóricos/química , Fosforilação , Estereoisomerismo
17.
Biomacromolecules ; 23(1): 316-325, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34914356

RESUMO

Sialyl type-II sulfo-oligosaccharides are gaining much attention as bioactive ligands for Siglecs. In this study, we have achieved the first synthesis of sialyl type-II sulfo-oligosaccharides chemoenzymatically by utilizing the transglycosylation activity of keratanase II. The oxazoline derivative of α(2→3)-sialylated 6,6'-di-sulfo-LacNAc (3) was newly designed as the glycosyl donor for enzymatic transglycosylation. Keratanase II efficiently catalyzed the transglycosylation of 3 with two kinds of glycosyl acceptors, 6-sulfo-Lewis X and 6,6'-di-sulfo-LacNAc derivatives, providing sialyl sulfo-hexasaccharide (1) and sialyl sulfo-pentasaccharide (2) with 86 and 95% yields, respectively. The products 1 and 2 showed higher affinity to Siglec-8 with KD 70 and 25 µmol·L-1, respectively, compared to the known ligand of the α(2→3)-sialylated 6,6'-di-sulfo-Lewis X with KD 185 µmol·L-1. Thus, this study will advance not only the study of Siglec-8 biology but also the exploration of functions of sialyl sulfo-oligosaccharides having various microstructures.


Assuntos
Acetilglucosaminidase/metabolismo , Oligossacarídeos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Sequência de Carboidratos , Catálise , Ligantes , Oligossacarídeos/síntese química , Oligossacarídeos/química , Antígeno Sialil Lewis X
18.
Carbohydr Polym ; 277: 118854, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893263

RESUMO

Sixteen oligosaccharide monomers with the degree of polymerization 3 to 18 (DP 3 to DP 18) and three active fractions (DP 3-9, DP 8-11, and DP 11-17) were separated from Atractylodes lancea (Thunb.) DC. by optimized fast protein liquid chromatography coupled with refractive index detector (FPLC-RID) and preparation hydrophilic interaction chromatography (Pre-HILIC). Gas chromatography-mass spectrometer (GC-MS), liquid chromatography tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR) spectroscopy, and methylation analysis showed that the oligosaccharide in A. lancea was 1-kestose [ß-D-fructofuranosyl-(2 â†’ 1)-ß-D-fructofuranosyl-(2 â†’ 1)-α-D-glucopyranoside] (inulin-type fructooligosaccharides, FOS). Particularly, DP 3-9 showed the best capacity in stimulating phagocytic, NO, and cytokines production on RAW264.7 cells than any other purified oligosaccharide monomers and active fractions. It could also activate T-cells in Peyer's patch cells and enhance the production of colony stimulation factors. Besides, FPLC-RID showed a good capacity for large-scale preparation of DP 3-9 with the recovery of more than 93%. The bioactivity of sixteen FOS monomers (DP 3 to DP 18) and three FOS fractions (DP 3-9, DP 8-11, and DP 11-17) investigated in this study are beneficial for the utilization of FOS as a functional ingredient in novel product development.


Assuntos
Atractylodes/química , Oligossacarídeos/farmacologia , Animais , Lipopolissacarídeos/farmacologia , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/biossíntese , Oligossacarídeos/síntese química , Oligossacarídeos/química , Células RAW 264.7
19.
Carbohydr Polym ; 273: 118582, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560984

RESUMO

The large molecular weight and poor water solubility of ß-1,3-glucan impede its potential applications. In this study, the ß-1,3-glucan producing fungi and Trichoderma harzianum capable of secreting endo-ß-1,3-glucanase were co-cultivated to produce branched ß-1,3-glucan oligosaccharides (bOßGs) by fermentation with Sclerotium rolfsii and Schizophyllum commune. The highest bOßG yields from S. rolfsii in flasks were 4.53 and 9.94 g/L in a 7 L fermenter. Structural analysis proved that bOßG from S. rolfsii had a narrow degree of polymerization of 5-12, whereas bOßG from S. commune had a degree of polymerization of 5-15. Antioxidant tests showed that both bOßGs had remarkable DPPH radical scavenging activity and hydroxyl radical scavenging activity, and the activity of bOßG from S. commune was better than that of bOßG from S. rolfsii. In addition, bOßGs could promote the secretion of NO by mouse macrophages and increase the production of TNF-α, IL-1ß, and IL-6 in RAW264.7.


Assuntos
Oligossacarídeos/síntese química , beta-Glucanas/síntese química , Animais , Basidiomycota/metabolismo , Configuração de Carboidratos , Técnicas de Cocultura , Fermentação , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Hypocreales/metabolismo , Fatores Imunológicos/síntese química , Fatores Imunológicos/farmacologia , Interleucina-6/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Oligossacarídeos/farmacologia , Polimerização , Células RAW 264.7 , Schizophyllum/metabolismo , Fator de Crescimento Transformador beta/metabolismo , beta-Glucanas/farmacologia
20.
Carbohydr Polym ; 273: 118609, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561008

RESUMO

Chitooligosaccharides (CHOS) with multiple biological activities are usually produced through enzymatic hydrolysis of chitosan or chitin. However, purification and recycling of the enzyme have largely limited the advancement of CHOS bioproduction. Here, we engineered a novel enzyme by fusing the native chitosanase Csn75 with a carbohydrate-binding module (CBM) that can specifically bind to curdlan. The recombinase Csn75-CBM was successfully expressed by Pichia pastoris and allowed one-step purification and immobilization in the chitosanase immobilized curdlan packed-bed reactor (CICPR), where a maximum adsorption capacity of 39.59 mg enzyme/g curdlan was achieved. CHOS with degrees of polymerization of 2-5 (a hydrolysis yield of 97.75%), 3-6 (75.45%), and 3-7 (73.2%) were continuously produced by adjusting the ratio of enzyme and chitosan or the flow rate of chitosan. Moreover, the CICPR exhibited good stability and reusability after several cycles. The recombinase Csn75-CBM has greatly improved the efficiency of the bioproduction of CHOS.


Assuntos
Quitosana/síntese química , Enzimas Imobilizadas/química , Glucana 1,3-beta-Glucosidase/química , Glicosídeo Hidrolases/química , Oligossacarídeos/síntese química , Aspergillus fumigatus/enzimologia , Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Enzimas Imobilizadas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glucana 1,3-beta-Glucosidase/genética , Glicosídeo Hidrolases/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Domínios Proteicos/genética , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , beta-Glucanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...