Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.066
Filtrar
1.
PeerJ ; 12: e17706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006021

RESUMO

Objectives: To evaluate the efficacy of peri-trigger female reproductive hormones (FRHs) in the prediction of oocyte maturation in normal ovarian reserve patients during the in vitro fertilization-embryo transfer (IVF-ET) procedure. Materials and Methods: A hospital database was used to extract data on IVF-ET cases from January 2020 to September 2021. The levels of female reproductive hormones, including estradiol (E2), luteinizing hormone (LH), progesterone (P), and follicle-stimulating hormone (FSH), were initially evaluated at baseline, the day of the trigger, the day after the trigger, and the day of oocyte retrieval. The relative change in E2, LH, P, FSH between time point 1 (the day of trigger and baseline) and time point 2 (the day after the trigger and day on the trigger) was defined as E2_RoV1/2, LH_RoV1/2, P_RoV1/2, and FSH_RoV1/2, respectively. Univariable and multivariable regression were performed to screen the peri-trigger FRHs for the prediction of oocyte maturation. Results: A total of 118 patients were enrolled in our study. Univariable analysis revealed significant associations between E2_RoV1 and the rate of MII oocytes in the GnRH-agonist protocol group (p < 0.05), but not in the GnRH-antagonist protocol group. Conversely, P_RoV2 emerged as a potential predictor for the rate of MII oocytes in both protocol groups (p < 0.05). Multivariable analysis confirmed the significance of P_RoV2 in predicting oocyte maturation rate in both groups (p < 0.05), while the association of E2_RoV1 was not significant in either group. However, within the subgroup of high P_RoV2 in the GnRH-agonist protocol group, association was not observed to be significant. The C-index was 0.83 (95% CI [0.73-0.92]) for the GnRH-agonist protocol group and 0.77 (95% CI [0.63-0.90]) for the GnRH-antagonist protocol group. The ROC curve analysis further supported the satisfactory performance of the models, with area under the curve (AUC) values of 0.79 for the GnRH-agonist protocol group and 0.81 for the GnRH-antagonist protocol group. Conclusions: P_RoV2 showed significant predictive value for oocyte maturation in both GnRH-agonist and GnRH-antagonist protocol groups, which enhances the understanding of evaluating oocyte maturation and inform individualized treatment protocols in controlled ovarian hyperstimulation during IVF-ET for normal ovarian reserve patients.


Assuntos
Transferência Embrionária , Estradiol , Fertilização in vitro , Hormônio Foliculoestimulante , Hormônio Luteinizante , Reserva Ovariana , Indução da Ovulação , Progesterona , Humanos , Feminino , Adulto , Estudos Retrospectivos , Fertilização in vitro/métodos , Reserva Ovariana/efeitos dos fármacos , Reserva Ovariana/fisiologia , Estradiol/sangue , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Transferência Embrionária/métodos , Progesterona/sangue , Indução da Ovulação/métodos , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Gravidez , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Recuperação de Oócitos/métodos
2.
Ecotoxicol Environ Saf ; 281: 116651, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959790

RESUMO

Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka. The production of gonadotropins (LH and FSH) in the pituitary gland was inhibited, and sex steroid biosynthesis in the ovary was significantly influenced at the transcriptional level. The imbalance of androgens and estrogens resulted in a decrease in the E2/T ratio and hepatic VTG synthesis, and the suppression of estrogen receptor signaling was also induced. Furthermore, betamethasone exposure delayed spawning and reduced fertility in the F0 generation, and had detrimental effects on the fertilization rate and hatchability of the F1 generation. Our results showed that environmental betamethasone had the potential to adversely affect female fertility and steroid hormone dynamics in fish.


Assuntos
Betametasona , Oryzias , Ovário , Reprodução , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Feminino , Betametasona/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Ovário/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Exposição Ambiental , Hormônios Esteroides Gonadais
3.
Anim Reprod Sci ; 267: 107542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954933

RESUMO

As the global aquaculture industry grows, attention is increasingly turning towards assisted reproductive technologies. In this study, we examined the impact of D-Ala6, Pro9-Net-mGnRH (LHRHa: 0.4 mL/kg) and two doses (1 and 10 µg/kg fish) of thyroxin (T4) administered through a single injection on oocyte maturation, spawning performance, sex steroid hormone levels, as well as the expression of genes related to steroidogenesis and follicle development (ZP2, Cyp19a1a and SF-1) in Rohu (Labeo rohita). The study found that untreated female Rohu did not spawn, while those treated with LHRHa and thyroxin ovulated and spawned across a hormonal gradient. The highest spawning success was observed with a thyroxin dosage of 10 µg/kg (no significant change with a dose of 1 µg/kg), and female latency period decreased with increasing dosage. Additionally, females treated with thyroxin exhibited significantly higher fecundity than other experimental groups. Treatment with LHRHa and two doses of thyroxin significantly increased the gonadal somatic index compared to the control and sham groups. Hormonal treatment also led to increased fertilization success, hatching rate, and larval survival. At 12 h post-injection, females treated with thyroxin exhibited a significant decline in estradiol levels and expression of Zp2, Cyp19a1a, and SF-1 compared to other experimental groups. Levels of DHP significantly increased across the hormonal gradient. Histological analyses supported a steroidogenic shift, where oocyte maturation was accelerated by hormone administration, particularly with both doses of thyroxin. In conclusion, the findings suggest that thyroxin is a recommended treatment for assisted reproduction of Rohu due to its ability to induce spawning, increase fecundity and improve larval survival.


Assuntos
Hormônio Liberador de Gonadotropina , Oócitos , Tiroxina , Animais , Feminino , Tiroxina/farmacologia , Tiroxina/sangue , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/administração & dosagem , Folículo Ovariano/efeitos dos fármacos , Cyprinidae/fisiologia , Cyprinidae/genética , Reprodução/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Oogênese/genética , Regulação da Expressão Gênica/efeitos dos fármacos
4.
J Ovarian Res ; 17(1): 137, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961417

RESUMO

BACKGROUND: The utilization of a double trigger, involving the co-administration of gonadotropin-releasing hormone agonist (GnRH-a) and human chorionic gonadotropin (hCG) for final oocyte maturation, is emerging as a novel approach in gonadotropin-releasing hormone antagonist (GnRH-ant) protocols during controlled ovarian hyperstimulation (COH). This protocol involves administering GnRH-a and hCG 40 and 34 h prior to ovum pick-up (OPU), respectively. This treatment modality has been implemented in patients with low/poor oocytes yield. This study aimed to determine whether the double trigger could improve the number of top-quality embryos (TQEs) in patients with fewer than three TQEs. METHODS: The stimulation characteristics of 35 in vitro fertilization (IVF) cycles were analyzed. These cycles were triggered by the combination of hCG and GnRHa (double trigger cycles) and compared to the same patients' previous IVF attempt, which utilized the hCG trigger (hCG trigger control cycles). The analysis involved cases who were admitted to our reproductive center between January 2018 and December 2022. In the hCG trigger control cycles, all 35 patients had fewer than three TQEs. RESULTS: Patients who received the double trigger cycles yielded a significantly higher number of 2PN cleavage embryos (3.54 ± 3.37 vs. 2.11 ± 2.15, P = 0.025), TQEs ( 2.23 ± 2.05 vs. 0.89 ± 0.99, P < 0.001), and a simultaneously higher proportion of the number of cleavage stage embryos (53.87% ± 31.38% vs. 39.80% ± 29.60%, P = 0.043), 2PN cleavage stage embryos (43.89% ± 33.01% vs. 27.22% ± 27.13%, P = 0.014), and TQEs (27.05% ± 26.26% vs. 14.19% ± 19.76%, P = 0.019) to the number of oocytes retrieved compared with the hCG trigger control cycles, respectively. The double trigger cycles achieved higher rates of cumulative clinical pregnancy (20.00% vs. 2.86%, P = 0.031), cumulative persistent pregnancy (14.29% vs. 0%, P < 0.001), and cumulative live birth (14.29% vs. 0%, P < 0.001) per stimulation cycle compared with the hCG trigger control cycles. CONCLUSION: Co-administration of GnRH-agonist and hCG for final oocyte maturation, 40 and 34 h prior to OPU, respectively (double trigger) may be suggested as a valuable new regimen for treating patients with low TQE yield in previous hCG trigger IVF/intracytoplasmic sperm injection (ICSI) cycles.


Assuntos
Gonadotropina Coriônica , Fertilização in vitro , Hormônio Liberador de Gonadotropina , Oócitos , Indução da Ovulação , Humanos , Feminino , Gonadotropina Coriônica/administração & dosagem , Gonadotropina Coriônica/uso terapêutico , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Adulto , Fertilização in vitro/métodos , Indução da Ovulação/métodos , Gravidez , Oócitos/efeitos dos fármacos , Injeções de Esperma Intracitoplásmicas/métodos , Taxa de Gravidez , Oogênese/efeitos dos fármacos
5.
Adv Anat Embryol Cell Biol ; 238: 69-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39030355

RESUMO

In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.


Assuntos
Oócitos , Oogênese , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Animais , Humanos , Oogênese/efeitos dos fármacos , Feminino , Poluentes Ambientais/toxicidade , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Dano ao DNA
6.
Front Endocrinol (Lausanne) ; 15: 1365260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887270

RESUMO

Anti-Müllerian hormone (AMH) is a key paracrine/autocrine factor regulating folliculogenesis in the postnatal ovary. As antral follicles mature to the preovulatory stage, AMH production tends to be limited to cumulus cells. Therefore, the present study investigated the role of cumulus cell-derived AMH in supporting maturation and competence of the enclosed oocyte. Cumulus-oocyte complexes (COCs) were isolated from antral follicles of rhesus macaque ovaries for in vitro maturation with or without AMH depletion. Oocyte meiotic status and embryo cleavage after in vitro fertilization were assessed. In vitro maturation with AMH depletion was also performed using COCs from antral follicles of human ovarian tissue. Oocyte maturation and morphology were evaluated. The direct AMH action on mural granulosa cells of the preovulatory follicle was further assessed using human granulosa cells cultured with or without AMH supplementation. More macaque COCs produced metaphase II oocytes with AMH depletion than those of the control culture. However, preimplantation embryonic development after in vitro fertilization was comparable between oocytes derived from COCs cultured with AMH depletion and controls. Oocytes resumed meiosis in human COCs cultured with AMH depletion and exhibited a typical spindle structure. The confluency and cell number decreased in granulosa cells cultured with AMH supplementation relative to the control culture. AMH treatment did not induce cell death in cultured human granulosa cells. Data suggest that reduced AMH action in COCs could be beneficial for oocyte maturation. Cumulus cell-derived AMH is not essential for supporting oocyte competence or mural granulosa cell viability.


Assuntos
Hormônio Antimülleriano , Células do Cúmulo , Técnicas de Maturação in Vitro de Oócitos , Macaca mulatta , Oócitos , Hormônio Antimülleriano/metabolismo , Oócitos/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Feminino , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Animais , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oogênese/fisiologia , Oogênese/efeitos dos fármacos , Células Cultivadas , Fertilização in vitro/métodos , Meiose/fisiologia , Meiose/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/citologia , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Desenvolvimento Embrionário/fisiologia
7.
Endocrinology ; 165(7)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38735763

RESUMO

Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.


Assuntos
Hormônio Foliculoestimulante , Folículo Ovariano , Transcriptoma , Animais , Feminino , Hormônio Foliculoestimulante/farmacologia , Camundongos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Transcriptoma/efeitos dos fármacos , Relação Dose-Resposta a Droga , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Oogênese/genética , Transdução de Sinais/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , AMP Cíclico/metabolismo
8.
Reprod Biol Endocrinol ; 22(1): 52, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711160

RESUMO

BACKGROUND: Elevated FSH often occurs in women of advanced maternal age (AMA, age ≥ 35) and in infertility patients undergoing controlled ovarian stimulation (COS). There is controversy on whether high endogenous FSH contributes to infertility and whether high exogenous FSH adversely impacts patient pregnancy rates. METHODS: The senescence-accelerated mouse-prone-8 (SAMP8) model of female reproductive aging was employed to assess the separate impacts of age and high FSH activity on the percentages (%) of viable and mature ovulated oocytes recovered after gonadotropin treatment. Young and midlife mice were treated with the FSH analog equine chorionic gonadotropin (eCG) to model both endogenous FSH elevation and exogenous FSH elevation. Previously we showed the activin inhibitor ActRIIB:Fc increases oocyte quality by preventing chromosome and spindle misalignments. Therefore, ActRIIB:Fc treatment was performed in an effort to increase % oocyte viability and % oocyte maturation. RESULTS: The high FSH activity of eCG is ootoxic to ovulatory oocytes, with greater decreases in % viable oocytes in midlife than young mice. High FSH activity of eCG potently inhibits oocyte maturation, decreasing the % of mature oocytes to similar degrees in young and midlife mice. ActRIIB:Fc treatment does not prevent eCG ootoxicity, but it restores most oocyte maturation impeded by eCG. CONCLUSIONS: FSH ootoxicity to ovulatory oocytes and FSH maturation inhibition pose a paradox given the well-known pro-growth and pro-maturation activities of FSH in the earlier stages of oocyte growth. We propose the FOOT Hypothesis ("FSH OoToxicity Hypothesis), that FSH ootoxicity to ovulatory oocytes comprises a new driver of infertility and low pregnancy success rates in DOR women attempting spontaneous pregnancy and in COS/IUI patients, especially AMA women. We speculate that endogenous FSH elevation also contributes to reduced fecundity in these DOR and COS/IUI patients. Restoration of oocyte maturation by ActRIB:Fc suggests that activin suppresses oocyte maturation in vivo. This contrasts with prior studies showing activin A promotes oocyte maturation in vitro. Improved oocyte maturation with agents that decrease endogenous activin activity with high specificity may have therapeutic benefit for COS/IVF patients, COS/IUI patients, and DOR patients attempting spontaneous pregnancies.


Assuntos
Receptores de Activinas Tipo II , Oócitos , Animais , Feminino , Oócitos/efeitos dos fármacos , Camundongos , Receptores de Activinas Tipo II/metabolismo , Ovulação/efeitos dos fármacos , Gonadotropina Coriônica/farmacologia , Hormônio Foliculoestimulante/sangue , Oogênese/efeitos dos fármacos , Indução da Ovulação/métodos , Fragmentos Fc das Imunoglobulinas/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Gravidez , Ativinas
9.
Reprod Biol ; 24(2): 100883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643607

RESUMO

Fibroblast growth factor 10 (FGF10) plays critical roles in oocyte maturation and embryonic development; however, the specific pathway by which FGF10 promotes in vitro maturation of buffalo oocytes remains elusive. The present study was aimed at investigating the mechanism underlying effects of the FGF10-mediated extracellular regulated protein kinases (ERK) pathway on oocyte maturation and embryonic development in vitro. MEK1/2 (mitogen-activated protein kinase kinase) inhibitor U0126, alone or in combination with FGF10, was added to the maturation culture medium during maturation of the cumulus oocyte complex. Morphological observations, orcein staining, apoptosis detection, and quantitative real-time PCR were performed to evaluate oocyte maturation, embryonic development, and gene expression. U0126 affected oocyte maturation and embryonic development in vitro by substantially reducing the nuclear maturation of oocytes and expansion of the cumulus while increasing the apoptosis of cumulus cells. However, it did not have a considerable effect on glucose metabolism. These findings suggest that blocking the MEK/ERK pathway is detrimental to the maturation and embryonic development potential of buffalo oocytes. Overall, FGF10 may regulate the nuclear maturation of oocytes and cumulus cell expansion and apoptosis but not glucose metabolism through the MEK/ERK pathway. Our findings indicate that FGF10 regulates resumption of meiosis and expansion and survival of cumulus cells via MEK/ERK signaling during in vitro maturation of buffalo cumulus oocyte complexes. Elucidation of the mechanism of action of FGF10 and insights into oocyte maturation should advance buffalo breeding. Further studies should examine whether enhancement of MEK/ERK signaling improves embryonic development in buffalo.


Assuntos
Búfalos , Butadienos , Fator 10 de Crescimento de Fibroblastos , Técnicas de Maturação in Vitro de Oócitos , Nitrilas , Oócitos , Animais , Búfalos/embriologia , Fator 10 de Crescimento de Fibroblastos/farmacologia , Butadienos/farmacologia , Oócitos/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Nitrilas/farmacologia , Feminino , Oogênese/efeitos dos fármacos , Células do Cúmulo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo
10.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653987

RESUMO

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Dinaminas , Mononucleotídeo de Nicotinamida , Oócitos , Espécies Reativas de Oxigênio , Animais , Camundongos , Feminino , Oócitos/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Superóxido Dismutase-1 , Dano ao DNA/efeitos dos fármacos , Estreptozocina , Oogênese/efeitos dos fármacos
11.
Nanotoxicology ; 18(2): 160-180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449436

RESUMO

The inheritable impact of exposure to graphene oxide nanoparticles (GO NPs) on vertebrate germline during critical windows of gamete development remain undetermined to date. Here, we analyzed the transgenerational effects of exposure to nano-graphene oxide particles (nGO) synthesized in house with lateral dimensions 300-600 nm and surface charge of -36.8 mV on different developmental stages of germ cells (GCs): (1) during GCs undergoing early development and differentiation, and (2) during GCs undergoing gametogenesis and maturation in adulthood. Biocompatibility analyses in Japanese medaka embryos showed lethality above 1 µg/ml and also an aberrant increase in germ cell count of both males and females at doses below the lethal dose. However, no lethality or anomalies were evident in adults up to 45 µg/ml. Long term exposure of embryos and adults for 21 days resulted in reduced fecundity. This effect was transmitted to subsequent generations, F1 and F2. Importantly, the inheritable effects of nGO in adults were pronounced at a high dose of 10 µg/ml, while 1 µg/ml showed no impact on the germline indicating lower doses used in this study to be safe. Further, expressions of selected genes that adversely affected oocyte maturation were enhanced in F1 and F2 individuals. Interestingly, the inheritance patterns differed corresponding to the stage at which the fish received the exposure.


Assuntos
Grafite , Nanopartículas , Oócitos , Oryzias , Animais , Grafite/toxicidade , Grafite/química , Oócitos/efeitos dos fármacos , Feminino , Masculino , Nanopartículas/toxicidade , Nanopartículas/química , Oogênese/efeitos dos fármacos
12.
Environ Sci Pollut Res Int ; 30(36): 86060-86071, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37394563

RESUMO

In the last decade, the freshwater amphipod Gammarus fossarum proved to be a promising sentinel species in active biomonitoring programs to assess the effects of environmental contamination on non-target organisms. Given that the highly conserved retinoid (RETs) metabolism supports many biological functions and is perturbed by xenobiotics and used as biomarker for vertebrates, we explored the RETs functions in the crustacean model Gammarus fossarum. More specifically, we studied the implication of all -trans retinoic acid (atRA) in the reproduction (embryo, oocyte, and juvenile production) and development (success and delay of molting) by exposing G. fossarum females to atRA and citral (CIT), a known inhibitor of RA synthesis. In parallel, we exposed gammarids to methoprene (MET) and glyphosate (GLY), two pesticides suspected to interfere with atRA metabolism and signaling and frequently found in water systems. After 14 days of exposure, atRA, CIT, and MET reduced the number of oocytes, whereas only MET caused a reduced number of embryos. After 44 days, MET and GLY showed a tendency to decrease juvenile production. The duration of the molting cycle increased following the exposures to atRA and MET, while the treatment with CIT caused a typical endocrine disruptive inverted U-shaped curve. The exposure to GLY led to increased duration of the molting cycle at the lowest concentrations and lowered molting success at the highest concentration tested. This study highlights for the first time the implication of RA in the oogenesis and molting of G. fossarum and suggests that it may be a potential mediator of MET-induced effects on these processes. This study adds to the comprehension of the reproductive and developmental control in G. fossarum and opens new research avenues to study the effects of xenobiotics on the RET system in this sentinel species. Ultimately, our study will drive the development of RET-based biomarkers for non-target aquatic invertebrates exposed to xenobiotics.


Assuntos
Anfípodes , Glifosato , Metoprene , Muda , Oogênese , Xenobióticos , Animais , Feminino , Anfípodes/fisiologia , Glifosato/toxicidade , Metoprene/toxicidade , Muda/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Espécies Sentinelas , Tretinoína/metabolismo , Poluentes Químicos da Água/toxicidade , Xenobióticos/toxicidade , Praguicidas/toxicidade
13.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552860

RESUMO

Several endocrine signals mediate mosquito egg development, including 20-hydroxyecdysone (20E). This study reports on prostaglandin E2 (PGE2) as an additional, but core, mediator of oogenesis in a human disease-vectoring mosquito, Aedes albopictus. Injection of aspirin (an inhibitor of cyclooxygenase (COX)) after blood-feeding (BF) inhibited oogenesis by preventing nurse cell dumping into a growing oocyte. The inhibitory effect was rescued by PGE2 addition. PGE2 was found to be rich in nurse cells and follicular epithelium after BF. RNA interference (RNAi) treatments of PG biosynthetic genes, including PLA2 and two COX-like peroxidases, prevented egg development. Interestingly, 20E treatment significantly increased the expressions of PG biosynthetic genes, while the RNAi of Shade (which is a 20E biosynthetic gene) expression prevented inducible expressions after BF. Furthermore, RNAi treatments of PGE2 receptor genes suppressed egg production, even under PGE2. These results suggest that a signaling pathway of BF-20E-PGE2 is required for early vitellogenesis in the mosquito.


Assuntos
Aedes , Aspirina , Oócitos , Animais , Aedes/genética , Aspirina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 119(21): e2015576119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576466

RESUMO

Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.


Assuntos
Caenorhabditis elegans , Senescência Celular , Oócitos , Oogênese , Atrativos Sexuais , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Feminino , Masculino , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Atrativos Sexuais/farmacologia , Atrativos Sexuais/fisiologia
15.
Oxid Med Cell Longev ; 2022: 7113793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237383

RESUMO

α-Ketoglutarate (α-KG) is a metabolite in the tricarboxylic acid cycle. It has a strong antioxidant function and can effectively prevent oxidative damage. Previous studies have shown that α-KG exists in porcine follicles, and its content gradually increases as the follicles grow and mature. However, the potential mechanism of supplementation of α-KG on porcine oocytes during in vitro maturation (IVM) has not yet been reported. The purpose of this study was to explore the effect of α-KG on the early embryonic development of pigs and the mechanisms underlying these effects. We found that α-KG can enhance the development of early pig embryos. Adding 20 µM α-KG to the in vitro culture medium significantly increased the rate of blastocyst formation and the total cell number. Compared with to that of the control group, apoptosis in blastocysts of the supplement group was significantly reduced. α-KG reduced the production of reactive oxygen species and glutathione levels in cells. α-KG not only improved the activity of mitochondria but also inhibited the occurrence of apoptosis. After supplementation with α-KG, pig embryo pluripotency-related genes (OCT4, NANOG, and SOX2) and antiapoptotic genes (Bcl2) were upregulated. In terms of mechanism, α-KG activates the Nrf2/ARE signaling pathway to regulate the expression of antioxidant-related targets, thus combating oxidative stress during the in vitro culture of oocytes. Activated Nrf2 promotes the transcription of Bcl2 genes and inhibits cell apoptosis. These results indicate that α-KG supplements have a beneficial effect on IVM by regulating oxidative stress during the IVM of porcine oocytes and can be used as a potential antioxidant for IVM of porcine oocytes.


Assuntos
Antioxidantes/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Meiose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Blastocisto/metabolismo , Meios de Cultura/química , Suplementos Nutricionais , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Glutationa/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Mitocôndrias/metabolismo , Oócitos/efeitos dos fármacos , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Suínos
16.
Reprod Biol Endocrinol ; 20(1): 18, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073905

RESUMO

BACKGROUND: In vitro maturation (IVM) of oocytes is a laboratory method that allows the maturation of immature (GV) oocytes retrieved from patients enrolled in the in vitro fertilization (IVF) programme. However, this method is still sparsely researched and used in clinical practice, leading to suboptimal clinical results. Anti-Müllerian hormone (AMH) is an important hormone with known effects on human ovaries, especially on follicles (follicular cells) during folliculogenesis. In contrast, the effect of AMH on the human oocyte itself is unknown. Therefore, we wanted to determine whether human oocytes express AMH receptor 2 (AMHR2) for this hormone. Recombinant AMH was added to the IVM medium to determine whether it affected oocyte maturation. METHODS: In total, 247 human oocytes (171 immature and 76 mature) were collected from patients enrolled in the intracytoplasmic sperm injection (ICSI) programme who were aged 20 to 43 years and underwent a short antagonist protocol of ovarian stimulation. The expression of AMHR2 protein and AMHR2 gene was analysed in immature and mature oocytes. Additionally, maturation of GV oocytes was performed in vitro in different maturation media with or without added AMH to evaluate the effect of AMH on the oocyte maturation rate. RESULTS: Immunocytochemistry and confocal microscopy revealed that AMHR2 protein is expressed in both immature and mature human oocytes. AMHR2 was expressed in a spotted pattern throughout the whole oocyte. The IVM procedure revealed that AMH in maturation medium improved GV oocyte maturation in vitro, as all oocytes were successfully matured in maturation medium containing recombinant AMH only. Furthermore, antagonism between AMH and follicle-stimulating hormone (FSH) during the maturation process was observed, with fewer oocytes maturing when both AMH and FSH were added to the maturation medium. Finally, AMHR2 gene expression was found in immature and in vitro matured oocytes but absent in mature oocytes. CONCLUSIONS: The positive AMHR2 protein and AMHR2 gene expression in human oocytes shows that AMH could directly act on human oocytes. This was further functionally confirmed by the IVM procedure. These findings suggest the potential clinical application of recombinant AMH to improve IVM of human oocytes in the future.


Assuntos
Hormônio Antimülleriano/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Adulto , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Oócitos/citologia , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Indução da Ovulação/métodos , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Recombinantes/farmacologia , Adulto Jovem
17.
Toxicol Appl Pharmacol ; 436: 115882, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016910

RESUMO

Oocyte maturation is essential for fertilization and early embryo development, and proper organelle functions guarantee this process to maintain high-quality oocytes. The type B trichothecene nivalenol (NIV) is a mycotoxin produced by Fusarium oxysporum and is commonly found in contaminated food. NIV intake affect growth, the immune system, and the female reproductive system. Here, we investigated NIV toxicity on mouse oocyte quality. Transcriptome analysis results showed that NIV exposure altered the expression of multiple genes involved in spindle formation and organelle function in mouse oocytes, indicating its toxicity on mouse oocyte maturation. Further analysis indicated that NIV exposure disrupted spindle structure and chromosome alignment, possibly through tubulin acetylation. NIV exposure induced aberrant mitochondria distribution and reduced mitochondria number, mitochondria membrane potential (MMP), and ATP levels. In addition, NIV caused the abnormal distribution of the Golgi apparatus and altered the expression of the vesicle trafficking protein Rab11. ER distribution was also disturbed under NIV exposure, indicating the effects of NIV on protein modification and transport in oocytes. Thus, our results demonstrated that NIV exposure affected spindle structure and organelles function in mouse oocytes.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Organelas/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Tricotecenos/efeitos adversos , Acetilação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Feminino , Meiose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Micotoxinas/efeitos adversos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Organelas/metabolismo , Fuso Acromático/metabolismo , Transcriptoma/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
18.
J Ovarian Res ; 15(1): 11, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057828

RESUMO

BACKGROUND: Melatonin, as a free radical scavenger exhibiting genomic actions, regulates the antioxidant genes expression and apoptosis mechanisms. In polycystic ovary syndrome (PCOS) patients, an imbalance between free radicals and antioxidants in follicular fluid leads to oxidative stress, aberrant folliculogenesis, and intrinsic defects in PCOS oocytes. In this experimental mouse model study, oocytes of PCOS and the control groups were cultured in different melatonin concentrations (10- 5, 10- 6, and 10- 7 M) to investigate the expression of oocyte maturation-related genes (Gdf9/Bmp15), antioxidant-related genes (Gpx1/Sod1), apoptotic biomarkers (Bcl2/Bax) and total intracellular ROS levels. RESULTS: Gdf9 and Bmp15, Gpx1 and Sod1 were up-regulated in PCOS and control oocytes cultured in all melatonin concentrations compared to those cultured in IVM basal medium (P < 0.05). A significant decrease in the total ROS level was observed in all groups cultured in the supplemented cultures. Melatonin increased Bcl2 and decreased Bax gene expression in PCOS and control oocytes compared to non-treated oocytes. CONCLUSIONS: Melatonin increased antioxidant gene expression and regulated the apoptosis pathway, effectively reducing the adverse effects of culture conditions on PCOS oocytes. Furthermore, it influenced the expression of oocyte maturation-related genes in PCOS, providing valuable support during the IVM process.


Assuntos
Antioxidantes/metabolismo , Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína Morfogenética Óssea 15/genética , Desidroepiandrosterona/toxicidade , Modelos Animais de Doenças , Feminino , Glutationa Peroxidase/genética , Fator 9 de Diferenciação de Crescimento/genética , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Oócitos/metabolismo , Oogênese/genética , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética , Proteína X Associada a bcl-2/genética , Glutationa Peroxidase GPX1
19.
Molecules ; 26(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885797

RESUMO

The beneficial effect of antioxidant supplementation in maturation culture media of sow oocytes was evaluated by the expression quantification of apoptotic genes and the genes that ensure stability of germ cells during fertilization. The oocytes were cultivated for 44 h in conventional medium (C) or in medium supplemented with 105 µM rosmarinic acid (R) and 0.5 mM ascorbic acid (A) and classified into three quality classes by morphological observation from which the total RNA was isolated. The gene expression of Ptx3 and the apoptotic regulator p53, Bax and BCL-2 were evaluated by quantitative PCR technique. The decreased expression of the Bax gene in the A and R groups, compared to the control, indicates a protective role of antioxidants in the cells. Cell homeostasis was maintained, as reflected in the ratio of Bax/Bcl-2 in class I COCs (cumulus-oocyte complex) regardless of the experimental group, indicating minimum cellular stress. The expression of p53 genes was higher in all class III COC, but in A1 and R1 the expression was lower than in C1, and a similar Ptx-3 gene decreased significantly in groups A1, A2, A3 and R1 compared with control groups. Antioxidant supplementation showed beneficial effects on all morphological classes of pig COCs.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Oócitos/efeitos dos fármacos , Animais , Meios de Cultura/farmacologia , Feminino , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Oócitos/citologia , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Suínos , Ácido Rosmarínico
20.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830304

RESUMO

The use of assisted reproductive technologies (ART) still requires strategies through which to maximize individual fertility chances. In vitro folliculogenesis (ivF) may represent a valid option to convey the large source of immature oocytes in ART. Several efforts have been made to set up ivF cultural protocols in medium-sized mammals, starting with the identification of the most suitable gonadotropic stimulus. In this study, Equine Chorionic Gonadotropin (eCG) is proposed as an alternative to Follicle Stimulating Hormone (FSH) based on its long superovulation use, trans-species validation, long half-life, and low costs. The use of 3D ivF on single-ovine preantral (PA) follicles allowed us to compare the hormonal effects and to validate their influence under two different cultural conditions. The use of eCG helped to stimulate the in vitro growth of ovine PA follicles by maximizing its influence under FBS-free medium. Higher performance of follicular growth, antrum formation, steroidogenic activity and gap junction marker expression were recorded. In addition, eCG, promoted a positive effect on the germinal compartment, leading to a higher incidence of meiotic competent oocytes. These findings should help to widen the use of eCG to ivF as a valid and largely available hormonal support enabling a synchronized in vitro follicle and oocyte development.


Assuntos
Gonadotropina Coriônica/farmacologia , Hormônio Foliculoestimulante/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/citologia , Oogênese/efeitos dos fármacos , Folículo Ovariano/citologia , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Meios de Cultura/química , Estradiol/metabolismo , Feminino , Cavalos , Metáfase/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Soroalbumina Bovina/metabolismo , Ovinos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...