Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
J Virol ; 98(6): e0030524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771042

RESUMO

Many functions of viral attachment proteins are established, but less is known about the biological importance of viral attachment protein encapsidation efficiency. The mammalian orthoreovirus (reovirus) σ1 attachment protein forms filamentous trimers that incorporate into pentamers of the λ2 capsid protein. Reovirus strains vary in the efficiency of σ1 encapsidation onto progeny virions, which influences viral stability during entry into cells and the efficacy of tumor cell lysis. While the role of σ1 encapsidation has been evaluated in studies using cultured cells, the contribution of attachment protein encapsidation efficiency to viral infection in animals is less clear. Polymorphisms in reovirus σ1 at residues 22 and 249 have been implicated in viral dissemination in mice and susceptibility to proteolysis in the murine intestine, respectively. To determine whether these residues contribute to σ1 encapsidation efficiency, we engineered σ1 mutant viruses with single- and double-residue substitutions at sites 22 and 249. We found that substitutions at these sites alter the encapsidation of σ1 and that reoviruses encapsidating higher amounts of σ1 bind cells more avidly and have a modest replication advantage in a cell-type-specific manner relative to low σ1-encapsidating reoviruses. Furthermore, we found that a high σ1-encapsidating reovirus replicates and disseminates more efficiently in mice relative to a low σ1-encapsidating reovirus. These findings provide evidence of a relationship between viral attachment protein encapsidation efficiency and viral replication in cell culture and animal hosts. IMPORTANCE: Viral attachment proteins can serve multiple functions during viral replication, including attachment to host cells, cell entry and disassembly, and modulation of host immune responses. The relationship between viral attachment protein encapsidation efficiency and viral replication in cells and animals is poorly understood. We engineered and characterized a panel of reoviruses that differ in the capacity to encapsidate the σ1 attachment protein. We found that strains encapsidating σ1 with higher efficiency bind cells more avidly and replicate and spread more efficiently in mice relative to those encapsidating σ1 with lower efficiency. These results highlight a function for σ1 attachment protein capsid abundance in viral replication in cells and animals, which may inform future use of reovirus as an oncolytic therapeutic.


Assuntos
Proteínas do Capsídeo , Infecções por Reoviridae , Replicação Viral , Animais , Camundongos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Infecções por Reoviridae/virologia , Infecções por Reoviridae/metabolismo , Ligação Viral , Polimorfismo Genético , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Orthoreovirus de Mamíferos/metabolismo , Montagem de Vírus , Linhagem Celular , Capsídeo/metabolismo , Humanos
2.
Cell Host Microbe ; 32(6): 980-995.e9, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38729153

RESUMO

Mammalian orthoreovirus (reovirus) is a nonenveloped virus that establishes primary infection in the intestine and disseminates to sites of secondary infection, including the CNS. Reovirus entry involves multiple engagement factors, but how the virus disseminates systemically and targets neurons remains unclear. In this study, we identified murine neuropilin 1 (mNRP1) as a receptor for reovirus. mNRP1 binds reovirus with nanomolar affinity using a unique mechanism of virus-receptor interaction, which is coordinated by multiple interactions between distinct reovirus capsid subunits and multiple NRP1 extracellular domains. By exchanging essential capsid protein-encoding gene segments, we determined that the multivalent interaction is mediated by outer-capsid protein σ3 and capsid turret protein λ2. Using capsid mutants incapable of binding NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus and uncover mechanisms by which NRPs promote viral entry and pathogenesis.


Assuntos
Proteínas do Capsídeo , Neuropilina-1 , Orthoreovirus de Mamíferos , Receptores Virais , Infecções por Reoviridae , Internalização do Vírus , Animais , Camundongos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Orthoreovirus de Mamíferos/metabolismo , Infecções por Reoviridae/virologia , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo , Humanos , Capsídeo/metabolismo , Linhagem Celular , Células HEK293 , Ligação Proteica , Camundongos Endogâmicos C57BL
3.
mSphere ; 9(6): e0023624, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38757961

RESUMO

Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE: Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Capsídeo , Orthoreovirus de Mamíferos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Humanos , Orthoreovirus de Mamíferos/genética , Animais , Apoptose , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Mitocôndrias/metabolismo , Imunidade Inata , Camundongos , Evasão da Resposta Imune , Células HEK293 , Receptores Imunológicos/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Linhagem Celular , Interações Hospedeiro-Patógeno
4.
Mol Immunol ; 170: 131-143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663254

RESUMO

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous µ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV µ1 protein expression by shRNA could impair MRV proliferation. Specifically, µ1 protein inhibited MRV or poly(I:C)-induced IFN-ß expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that µ1 protein significantly decreased IFN-ß mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that µ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein µ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.


Assuntos
Proteínas do Capsídeo , Proteína DEAD-box 58 , Fator Regulador 3 de Interferon , Helicase IFIH1 Induzida por Interferon , Orthoreovirus de Mamíferos , Receptores Imunológicos , Transdução de Sinais , Animais , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteína DEAD-box 58/metabolismo , Células HEK293 , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Interferon beta/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Orthoreovirus de Mamíferos/imunologia , Orthoreovirus de Mamíferos/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases , Infecções por Reoviridae/imunologia , Transdução de Sinais/imunologia , Proteínas Virais/metabolismo , Proteínas do Capsídeo/metabolismo
5.
PLoS Pathog ; 20(2): e1012037, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394338

RESUMO

Mammalian orthoreovirus (MRV) is a prototypic member of the Spinareoviridae family and has ten double-stranded RNA segments. One copy of each segment must be faithfully packaged into the mature virion, and prior literature suggests that nucleotides (nts) at the terminal ends of each gene likely facilitate their packaging. However, little is known about the precise packaging sequences required or how the packaging process is coordinated. Using a novel approach, we have determined that 200 nts at each terminus, inclusive of untranslated regions (UTR) and parts of the open reading frame (ORF), are sufficient for packaging S gene segments (S1-S4) individually and together into replicating virus. Further, we mapped the minimal sequences required for packaging the S1 gene segment into a replicating virus to 25 5' nts and 50 3' nts. The S1 UTRs, while not sufficient, were necessary for efficient packaging, as mutations of the 5' or 3' UTRs led to a complete loss of virus recovery. Using a second novel assay, we determined that 50 5' nts and 50 3' nts of S1 are sufficient to package a non-viral gene segment into MRV. The 5' and 3' termini of the S1 gene are predicted to form a panhandle structure and specific mutations within the stem of the predicted panhandle region led to a significant decrease in viral recovery. Additionally, mutation of six nts that are conserved across the three major serotypes of MRV that are predicted to form an unpaired loop in the S1 3' UTR, led to a complete loss of viral recovery. Overall, our data provide strong experimental proof that MRV packaging signals lie at the terminal ends of the S gene segments and offer support that the sequence requirements for efficient packaging of the S1 segment include a predicted panhandle structure and specific sequences within an unpaired loop in the 3' UTR.


Assuntos
Orthoreovirus de Mamíferos , Animais , Orthoreovirus de Mamíferos/genética , Regiões 3' não Traduzidas/genética , Fases de Leitura Aberta/genética , RNA Viral/genética , Mutação , Genoma Viral , Mamíferos
6.
PLoS Pathog ; 20(1): e1011637, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206991

RESUMO

Several egress pathways have been defined for many viruses. Among these pathways, extracellular vesicles (EVs) have been shown to function as vehicles of non-lytic viral egress. EVs are heterogenous populations of membrane-bound structures released from cells as a form of intercellular communication. EV-mediated viral egress may enable immune evasion and collective viral transport. Strains of nonenveloped mammalian orthoreovirus (reovirus) differ in cell lysis phenotypes, with T3D disrupting cell membranes more efficiently than T1L. However, mechanisms of reovirus egress and the influence of transport strategy on infection are only partially understood. To elucidate reovirus egress mechanisms, we infected murine fibroblasts (L cells) and non-polarized human colon epithelial (Caco-2) cells with T1L or T3D reovirus and enriched cell culture supernatants for large EVs, medium EVs, small EVs, and free reovirus. We found that both reovirus strains exit cells in association with large and medium EVs and as free virus particles, and that EV-enriched fractions are infectious. While reovirus visually associates with large and medium EVs, only medium EVs offer protection from antibody-mediated neutralization. EV-mediated protection from neutralization is virus strain- and cell type-specific, as medium EVs enriched from L cell supernatants protect T1L and T3D, while medium EVs enriched from Caco-2 cell supernatants largely fail to protect T3D and only protect T1L efficiently. Using genetically barcoded reovirus, we provide evidence that large and medium EVs can convey multiple particles to recipient cells. Finally, T1L or T3D infection increases the release of all EV sizes from L cells. Together, these findings suggest that in addition to exiting cells as free particles, reovirus promotes egress from distinct cell types in association with large and medium EVs during lytic or non-lytic infection, a mode of exit that can mediate multiparticle infection and, in some cases, protection from antibody neutralization.


Assuntos
Vesículas Extracelulares , Orthoreovirus Mamífero 3 , Orthoreovirus de Mamíferos , Orthoreovirus , Reoviridae , Animais , Camundongos , Humanos , Células CACO-2 , Reoviridae/genética , Orthoreovirus Mamífero 3/genética , Mamíferos
7.
Microbiol Spectr ; 12(3): e0176223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289932

RESUMO

Mammalian orthoreoviruses (MRVs) infect a wide range of hosts, including humans, livestock, and wildlife. In the present study, we isolated a novel Mammalian orthoreovirus from the intestine of a microbat (Myotis aurascens) and investigated its biological and pathological characteristics. Phylogenetic analysis indicated that the new isolate was serotype 2, sharing the segments with those from different hosts. Our results showed that it can infect a wide range of cell lines from different mammalian species, including human, swine, and non-human primate cell lines. Additionally, media containing trypsin, yeast extract, and tryptose phosphate broth promoted virus propagation in primate cell lines and most human cell lines, but not in A549 and porcine cell lines. Mice infected with this strain via the intranasal route, but not via the oral route, exhibited weight loss and respiratory distress. The virus is distributed in a broad range of organs and causes lung damage. In vitro and in vivo experiments also suggested that the new virus could be a neurotropic infectious strain that can infect a neuroblastoma cell line and replicate in the brains of infected mice. Additionally, it caused a delayed immune response, as indicated by the high expression levels of cytokines and chemokines only at 14 days post-infection (dpi). These data provide an important understanding of the genetics and pathogenicity of mammalian orthoreoviruses in bats at risk of spillover infections.IMPORTANCEMammalian orthoreoviruses (MRVs) have a broad range of hosts and can cause serious respiratory and gastroenteritis diseases in humans and livestock. Some strains infect the central nervous system, causing severe encephalitis. In this study, we identified BatMRV2/SNU1/Korea/2021, a reassortment of MRV serotype 2, isolated from bats with broad tissue tropism, including the neurological system. In addition, it has been shown to cause respiratory syndrome in mouse models. The given data will provide more evidence of the risk of mammalian orthoreovirus transmission from wildlife to various animal species and the sources of spillover infections.


Assuntos
Quirópteros , Orthoreovirus de Mamíferos , Camundongos , Animais , Suínos , Orthoreovirus de Mamíferos/genética , Filogenia , Virulência , Animais Selvagens , República da Coreia , Primatas
8.
Virol Sin ; 38(6): 877-888, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931840

RESUMO

Emerging and re-emerging viruses from wild animals have seriously threatened the health of humans and domesticated animals in recent years. Herein, we isolated a new mammalian orthoreovirus (MRV), Pika/MRV/GCCDC7/2019 (PMRV-GCCDC7), in the Qinghai-Tibet Plateau wild pika (Ochotona curzoniae). Though the PMRV-GCCDC7 shows features of a typical reovirus with ten gene segments arranged in 3:3:4 in length, the virus belongs to an independent evolutionary branch compared to other MRVs based on phylogenetic tree analysis. The results of cellular susceptibility, species tropism, and replication kinetics of PMRV-GCCDC7 indicated the virus could infect four human cell lines (A549, Huh7, HCT, and LoVo) and six non-human cell lines, including Vero-E6, LLC-MK2, BHK-21, N2a, MDCK, and RfKT cell, derived from diverse mammals, i.e. monkey, mice, canine and bat, which revealed the potential of PMRV-GCCDC7 to infect a variety of hosts. Infection of BALB/c mice with PMRV-GCCDC7 via intranasal inoculation led to relative weight loss, lung tissue damage and inflammation with the increase of virus titer, but no serious respiratory symptoms and death occurred. The characterization of the new reovirus from a plateau-based wild animal has expanded our knowledge of the host range of MRV and provided insight into its risk of trans-species transmission and zoonotic diseases.


Assuntos
Lagomorpha , Orthoreovirus de Mamíferos , Animais , Cães , Camundongos , Lagomorpha/metabolismo , Orthoreovirus de Mamíferos/genética , Filogenia , Virulência , Animais Selvagens , Genômica
9.
Virology ; 587: 109871, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634292

RESUMO

Mammalian orthoreovirus (MRV) is an oncolytic virus that has been tested in over 30 clinical trials. Increased clinical success has been achieved when MRV is used in combination with other onco-immunotherapies. This has led the field to explore the creation of recombinant MRVs which incorporate immunotherapeutic sequences into the virus genome. This work focuses on creation and characterization of a recombinant MRV, S1/HER2nhd, which encodes a truncated σ1 protein fused in frame with three human epidermal growth factor receptor 2 (HER2) peptides (E75, AE36, and GP2) known to induce HER2 specific CD8+ and CD4+ T cells. We show S1/HER2nhd expresses the σ1 fusion protein containing HER2 peptides in infected cells and on the virion, and infects, replicates in, and reduces survival of HER2+ breast cancer cells. The oncolytic properties of MRV combined with HER2 peptide expression holds potential as a vaccine to prevent recurrences of HER2 expressing cancers.


Assuntos
Neoplasias , Orthoreovirus de Mamíferos , Animais , Humanos , Orthoreovirus de Mamíferos/genética , Proteínas Recombinantes de Fusão/genética , Peptídeos , Mamíferos
10.
J Virol ; 97(5): e0058523, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37167564

RESUMO

Structural metastability of viral capsids is pivotal for viruses to survive in harsh environments and to undergo timely conformational changes required for cell entry. Mammalian orthoreovirus (reovirus) is a model to study capsid metastability. Following initial disassembly of the reovirus particle mediated by proteases, a metastable intermediate called the infectious subvirion particle (ISVP) is generated. Using a σ1 monoreassortant virus, we recently showed that σ1 properties affect its encapsidation on particles and the metastability of ISVPs. How metastability is impacted by σ1 and whether the lower encapsidation level of σ1 is connected to this property is unknown. To define a correlation between encapsidation of σ1 and ISVP stability, we generated mutant viruses with single amino acid polymorphisms in σ1 or those that contain chimeric σ1 molecules composed of σ1 portions from type 1 and type 3 reovirus strains. We found that under most conditions where σ1 encapsidation on the particle was lower, ISVPs displayed lower stability. Characterization of mutant viruses selected for enhanced stability via a forward genetic approach also revealed that in some cases, σ1 properties influence stability without influencing σ1 encapsidation. These data indicate that σ1 can also influence ISVP stability independent of its level of incorporation. Together, our work reveals an underappreciated effect of the σ1 attachment protein on the properties of the reovirus capsid. IMPORTANCE Reovirus particles are comprised of eight proteins. Among them, the reovirus σ1 protein functions engages cellular receptors. σ1 also influences the stability of an entry intermediate called ISVP. Here, we sought to define the basis of the link between σ1 properties and stability of ISVPs. Using variety of mutant strains, we determined that when virus preparations contain particles with a high amount of encapsidated σ1, ISVP stability is higher. Additionally, we identified portions of σ1 that impact its encapsidation and consequently the stability of ISVPs. We also determined that in some cases, σ1 properties alter stability of ISVPs without affecting encapsidation. This work highlights that proteins of these complex particles are arranged in an intricate, interconnected manner such that changing the properties of these proteins has a profound impact on the remainder of the particle.


Assuntos
Orthoreovirus Mamífero 3 , Orthoreovirus de Mamíferos , Internalização do Vírus , Capsídeo/metabolismo , Linhagem Celular , Orthoreovirus de Mamíferos/fisiologia , Orthoreovirus Mamífero 3/fisiologia
11.
Arch Virol ; 168(6): 165, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210458

RESUMO

Throughout East Asia, Europe, and North America, mammalian orthoreovirus (MRV), for which bats have been proposed to be natural reservoirs, has been detected in a variety of domestic and wild mammals, as well as in humans. Here, we isolated a novel MRV strain (designated as Kj22-33) from a fecal sample from Vespertilio sinensis bats in Japan. Strain Kj22-33 has a 10-segmented genome with a total length of 23,580 base pairs. Phylogenetic analysis indicated that Kj22-33 is a serotype 2 strain, the segmented genome of which has undergone reassortment with that of other MRV strains.


Assuntos
Quirópteros , Orthoreovirus de Mamíferos , Orthoreovirus , Infecções por Reoviridae , Animais , Humanos , Japão , Filogenia , Europa (Continente) , Orthoreovirus/genética , Genoma Viral
12.
Emerg Microbes Infect ; 12(1): 2208683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37143369

RESUMO

Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the Orthoreovirus genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown. In this study, we investigated the role of previously identified mammalian orthoreovirus (MRV) receptors, sialic acid and junctional adhesion molecule-1 for PRV infection. However, none of these receptors played a significant role in PRV infection, suggesting PRV uses a distinct entry receptor from MRV. Given its broad tissue tropism, we hypothesized that PRV may use a receptor that is widely expressed in all cell types, heparan sulphate (HS). Enzymatic removal of cell surface HS by heparinase treatment and genetic ablation of HS biosynthesis genes, SLC35B2, exostosin-1, N-deacetylase/N-sulfotransferase I and beta-1,3-glucuronyltransferase 3, significantly reduced infection with multiple genetically distinct PRV species. Replication kinetic of PRV3M in HS knockout cells revealed that HS plays a crucial role in the early phase of PRV infection. Mechanistic studies demonstrated that HS is an essential host-factor for PRV attachment and internalization into cells. To our knowledge, this is the first report on the use of HS as an attachment receptor by PRVs.


Assuntos
Orthoreovirus de Mamíferos , Orthoreovirus , Infecções por Reoviridae , Animais , Humanos , Orthoreovirus/genética , Indonésia , Malásia , Orthoreovirus de Mamíferos/genética , Mamíferos
13.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147336

RESUMO

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Assuntos
Orthoreovirus de Mamíferos , Receptores Imunológicos , Receptores Virais , Infecções por Reoviridae , Animais , Humanos , Camundongos , Anticorpos Antivirais , Orthoreovirus de Mamíferos/fisiologia , Receptores Imunológicos/metabolismo , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo
14.
Curr Protoc ; 3(4): e716, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37039704

RESUMO

Mammalian reoviruses are pathogens that cause gastrointestinal and respiratory infections. In humans, the mammalian reoviruses usually cause mild or subclinical disease, and they are ubiquitous, with most people mounting immunity at a young age. Reoviruses are prototypic representations of the Reoviridae family, which contains many highly pathogenic viruses. This article describes techniques for culturing mouse fibroblast L929 cell lines, the preferred cell line in which most mammalian reovirus studies take place. In addition, mammalian reovirus propagation, quantification, purification, and storage are described. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Propagation of mammalian reoviruses in cell culture from virus stocks Alternate Protocol 1: Large-scale propagation (and purification) of mammalian reoviruses in cell culture from virus stocks Basic Protocol 2: Quantification of mammalian reoviruses by plaque assay with neutral red staining Alternate Protocol 2: Quantification of mammalian reoviruses by plaque assay with crystal violet staining Basic Protocol 3: Storage of mammalian reoviruses Support Protocol 1: Growth and maintenance of mouse L929 cells Support Protocol 2: Plating L929 cells.


Assuntos
Orthoreovirus de Mamíferos , Orthoreovirus , Reoviridae , Humanos , Animais , Camundongos , Linhagem Celular , Técnicas de Cultura de Células/métodos , Mamíferos
15.
DNA Cell Biol ; 42(6): 289-304, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37015068

RESUMO

Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.


Assuntos
Vírus Oncolíticos , Orthoreovirus de Mamíferos , Orthoreovirus , Reoviridae , Animais , Humanos , Orthoreovirus/genética , Reoviridae/genética , Orthoreovirus de Mamíferos/genética , Vírus Oncolíticos/genética , Mamíferos
16.
Infect Genet Evol ; 110: 105421, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871695

RESUMO

Mammalian orthoreoviruses (reoviruses) are currently classified based on properties of the attachment protein, σ1. Four reovirus serotypes have been identified, three of which are represented by well-studied prototype human reovirus strains. Reoviruses contain ten segments of double-stranded RNA that encode 12 proteins and can reassort during coinfection. To understand the breadth of reovirus genetic diversity and its potential influence on reassortment, the sequence of the entire genome should be considered. While much is known about the prototype strains, a thorough analysis of all ten reovirus genome segment sequences has not previously been conducted. We analyzed phylogenetic relationships and nucleotide sequence conservation for each of the ten segments of more than 60 complete or nearly complete reovirus genome sequences, including those of the prototype strains. Using these relationships, we defined genotypes for each segment, with minimum nucleotide identities of 77-88% for most genotypes that contain several representative sequences. We applied segment genotypes to determine reovirus genome constellations, and we propose implementation of an updated reovirus genome classification system that incorporates genotype information for each segment. For most sequenced reoviruses, segments other than S1, which encodes σ1, cluster into a small number of genotypes and a limited array of genome constellations that do not differ greatly over time or based on animal host. However, a small number of reoviruses, including prototype strain Jones, have constellations in which segment genotypes differ from those of most other sequenced reoviruses. For these reoviruses, there is little evidence of reassortment with the major genotype. Future basic research studies that focus on the most genetically divergent reoviruses may provide new insights into reovirus biology. Analysis of available partial sequences and additional complete reovirus genome sequencing may also reveal reassortment biases, host preferences, or infection outcomes that are based on reovirus genotype.


Assuntos
Orthoreovirus de Mamíferos , Animais , Humanos , Filogenia , Sequência de Bases , Sequência de Aminoácidos , Orthoreovirus de Mamíferos/genética , Genoma Viral , Genótipo , Mamíferos
17.
Viruses ; 15(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851777

RESUMO

The movement of viruses in aquatic systems is rarely studied over large geographic scales. Oceanic currents, host migration, latitude-based variation in climate, and resulting changes in host life history are all potential drivers of virus connectivity, adaptation, and genetic structure. To expand our understanding of the genetic diversity of Callinectes sapidus reovirus 1 (CsRV1) across a broad spatial and host life history range of its blue crab host (Callinectes sapidus), we obtained 22 complete and 96 partial genomic sequences for CsRV1 strains from the US Atlantic coast, Gulf of Mexico, Caribbean Sea, and the Atlantic coast of South America. Phylogenetic analyses of CsRV1 genomes revealed that virus genotypes were divided into four major genogroups consistent with their host geographic origins. However, some CsRV1 sequences from the US mid-Atlantic shared high genetic similarity with the Gulf of Mexico genotypes, suggesting potential human-mediated movement of CsRV1 between the US mid-Atlantic and Gulf coasts. This study advances our understanding of how climate, coastal geography, host life history, and human activity drive patterns of genetic structure and diversity of viruses in marine animals and contributes to the capacity to infer broadscale host population connectivity in marine ecosystems from virus population genetic data.


Assuntos
Braquiúros , Orthoreovirus de Mamíferos , Reoviridae , Animais , Humanos , Ecossistema , Filogenia , Estruturas Genéticas , Variação Genética
18.
J Med Virol ; 95(2): e28492, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633204

RESUMO

Mammalian orthoreovirus (MRV) infects many mammalian species including humans, bats, and domestic animals. To determine the prevalence of MRV in bats in the United States, we screened more than 900 bats of different species collected during 2015-2019 by a real-time reverse-transcription polymerase chain reaction assay; 4.4% bats tested MRV-positive and 13 MRVs were isolated. Sequence and phylogenetic analysis revealed that these isolates belonged to four different strains/genotypes of viruses in Serotypes 1 or 2, which contain genes similar to those of MRVs detected in humans, bats, bovine, and deer. Further characterization showed that these four MRV strains replicated efficiently on human, canine, monkey, ferret, and swine cell lines. The 40/Bat/USA/2018 strain belonging to the Serotype 1 demonstrated the ability to infect and transmit in pigs without prior adaptation. Taken together, this is evidence for different genotypes and serotypes of MRVs circulating in US bats, which can be a mixing vessel of MRVs that may spread to other species, including humans, resulting in cross-species infections.


Assuntos
Quirópteros , Cervos , Orthoreovirus de Mamíferos , Orthoreovirus , Animais , Cães , Humanos , Bovinos , Estados Unidos , Suínos , Orthoreovirus de Mamíferos/genética , Filogenia , Furões
19.
J Vet Med Sci ; 85(2): 185-193, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574999

RESUMO

Biosecurity enhancement contributes to the reduction of various microbial pathogens. Mammalian orthoreoviruses (MRVs) which are increasingly recognized as potentially serious problems on swine industry were used as indicators of biosecurity enhancement on two pig farms. Twelve MRVs were detected and isolated from fecal specimens of healthy pigs collected from one of the two farms in Japan. By sequencing based on the partial S1 gene, MRV isolates were classified as MRV1 and MRV2. Additionally, the virucidal activities of disinfectants toward the isolated MRV1 were evaluated using quaternary ammonium compound (QAC) diluted 500 times with water (QAC-500), 0.17% food additive glade calcium hydroxide (FdCa(OH)2) solution, QAC diluted with 0.17% FdCa(OH)2 solution (Mix-500), sodium hypochlorite at 100 or 1,000 parts per million (ppm) of total chlorine (NaClO-100 or NaClO-1000, respectively). To efficiently inactivate MRV1 (≥3 log10 reductions), 0.17% FdCa(OH)2, Mix-500 and NaClO-1000 required 5 min, whereas it took 30 min for QAC-500. The number of MRV detections has decreased over time, after using Mix-500 for disinfection on the positive farm. These results suggest that different serotypes of MRVs are circulating among pigs, and that the occurrence of MRVs in the farms decreased consequent to more effective disinfection.


Assuntos
Desinfetantes , Orthoreovirus de Mamíferos , Animais , Suínos , Desinfetantes/farmacologia , Orthoreovirus de Mamíferos/genética , Japão/epidemiologia , Hipoclorito de Sódio , Hidróxido de Cálcio , Compostos de Amônio Quaternário , Mamíferos
20.
Arch Virol ; 167(12): 2643-2652, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114317

RESUMO

Mammalian orthoreoviruses (MRVs) are non-enveloped double-stranded RNA viruses with a broad host range. MRVs are prevalent worldwide, and in Japan, they have been isolated from various hosts, including humans, dogs, cats, wild boars, and pigs, and they have also been found in sewage. However, Japanese porcine MRVs have not been genetically characterized. While investigating porcine enteric viruses including MRV, five MRVs were isolated from the feces of Japanese pigs using MA104 cell culture. Genetic analysis of the S1 gene revealed that the Japanese porcine MRV isolates could be classified as MRV-2 and MRV-3. Whole genome analysis showed that Japanese porcine MRVs exhibited genetic diversity, although they shared sequence similarity with porcine MRV sequences in the DDBJ/EMBL/GenBank database. Several potential intragenetic reassortment events were detected among MRV strains from pigs, sewage, and humans in Japan, suggesting zoonotic transmission. Furthermore, homologous recombination events were identified in the M1 and S1 genes of Japanese porcine MRV. These findings imply that different strains of Japanese porcine MRV share a porcine MRV genomic backbone and have evolved through intragenetic reassortment and homologous recombination events.


Assuntos
Orthoreovirus de Mamíferos , Humanos , Suínos , Animais , Cães , Orthoreovirus de Mamíferos/genética , Filogenia , Fezes , Especificidade de Hospedeiro , Variação Genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...