Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.392
Filtrar
1.
J Indian Prosthodont Soc ; 24(3): 292-299, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946514

RESUMO

AIM: Studies have not been done to evaluate the peri-implant stress exerted by materials(like PEEK and resin matrix ceramics) in different osseointegration conditions. To investigate the effect of different occlusal materials on peri-implant stress distribution with different osseointegration condition using finite element analysis. SETTINGS AND DESIGN: Eighteen different 3D FEA models of implant fixed with abutment were created involving 6 different occlusal materials (Heat cured temporary acrylic resin (PMMA), Bis-GMA, PEEK, Lithium disilicate, Resin matrix ceramics and translucent Zirconia) and different osseointegrated conditions (50%, 75%, 100%). MATERIALS AND METHODS: Models were subjected to loading vertically and obliquely followed by evaluation of stress distribution. STATISTICAL ANALYSIS USED: The results of the simulation obtained were analysed in terms of Von mises, maximum principal and minimal principal stresses using descriptive stastistics. RESULTS: PMMA (40.14 MPa on vertical loading and 66 MPa on oblique loading) resulted in the highest stresses and lithium disilicate (24 MPa on vertical loading and 52.40 MPa on oblique loading) resulted in least stresses among all the crown materials. Upon oblique loading, von Mises stress increases except for translucent zirconia and lithium disilicate (52.444 MPa on 50%, 47.733 MPa on 75%, and 43.973 MPa on 100% osseointegration). Minimal principal stress values decreased with increase in osseointegration upon oblique loading for PMMA, BisGMA, and PEEK. CONCLUSION: Translucent zirconia and lithium disilicate offer a better stress transmission. Minimal principal stress values of PEEK and BisGMA decreased with increasing osseointegration.


Assuntos
Materiais Dentários , Análise de Elementos Finitos , Osseointegração , Osseointegração/efeitos dos fármacos , Materiais Dentários/química , Implantes Dentários , Zircônio/química , Humanos , Porcelana Dentária/química , Cerâmica/química , Teste de Materiais , Estresse Mecânico , Análise do Estresse Dentário/métodos , Polimetil Metacrilato/química , Polímeros/química
2.
Sci Rep ; 14(1): 15339, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961115

RESUMO

Given the hierarchical nature of bone and bone interfaces, osseointegration, namely the formation of a direct bone-implant contact, is best evaluated using a multiscale approach. However, a trade-off exists between field of view and spatial resolution, making it challenging to image large volumes with high resolution. In this study, we combine established electron microscopy techniques to probe bone-implant interfaces at the microscale and nanoscale with plasma focused ion beam-scanning electron microscopy (PFIB-SEM) tomography to evaluate osseointegration at the mesoscale. This characterization workflow is demonstrated for bone response to an additively manufactured Ti-6Al-4V implant which combines engineered porosity to facilitate bone ingrowth and surface functionalization via genistein, a phytoestrogen, to counteract bone loss in osteoporosis. SEM demonstrated new bone formation at the implant site, including in the internal implant pores. At the nanoscale, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the gradual nature of the bone-implant interface. By leveraging mesoscale analysis with PFIB-SEM tomography that captures large volumes of bone-implant interface with nearly nanoscale resolution, the presence of mineral ellipsoids varying in size and orientation was revealed. In addition, a well-developed lacuno-canalicular network and mineralization fronts directed both towards the implant and away from it were highlighted.


Assuntos
Genisteína , Osseointegração , Titânio , Osseointegração/efeitos dos fármacos , Genisteína/farmacologia , Genisteína/química , Titânio/química , Animais , Materiais Revestidos Biocompatíveis/química , Interface Osso-Implante , Microscopia Eletrônica de Varredura , Próteses e Implantes , Porosidade , Ligas/química
3.
Georgian Med News ; (349): 31-35, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38963197

RESUMO

The process of osteointegration of dental implants is a biological process. Systemic therapy can interfere with this process, affecting the growth and breakdown processes of the bone and ultimately leading to implant failure. This literature review focuses on specific groups of systemic drugs that directly impact osteointegration. The research in electronic literature was conducted using the National Library of Medicine's PubMed/MEDLINE database from March 2000 to February 2024. The following MeSH (Medical Subject Headings) terms were used: "implant osseointegration," "bisphosphonates," "non-steroidal anti-inflammatory drugs," "glucocorticoids," "proton pump inhibitors," and "selective serotonin reuptake inhibitors (SSRIs)." This search yielded 1,258 articles on implant osseointegration. Among these, 30 articles met our criteria for implant osseointegration and bisphosphonates, 2 articles for non-steroidal anti-inflammatory drugs (NSAIDs), 7 articles for glucocorticoids, 14 articles for proton pump inhibitors (PPIs), and 14 articles for selective serotonin reuptake inhibitors (SSRIs). Clinicians considering implant therapy should be mindful of potential medication-related implant failures. The present systematic review has identified an association between proton pump inhibitors (PPIs), nonsteroidal anti-inflammatory drugs (NSAIDs), selective serotonin reuptake inhibitors (SSRIs), glucocorticoids, and bisphosphonates with an increased implant failure rate.


Assuntos
Implantes Dentários , Osseointegração , Inibidores da Bomba de Prótons , Inibidores Seletivos de Recaptação de Serotonina , Humanos , Osseointegração/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Difosfonatos/uso terapêutico , Glucocorticoides
4.
ACS Nano ; 18(24): 16011-16026, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38841994

RESUMO

Infection and aseptic loosening caused by bacteria and poor osseointegration remain serious challenges for orthopedic implants. The advanced surface modification of implants is an effective strategy for addressing these challenges. This study presents a "pneumatic nanocannon" coating for titanium orthopedic implants to achieve on-demand release of antibacterial and sustained release of osteogenic agents. SrTiO3 nanotubes (SrNT) were constructed on the surface of Ti implants as "cannon barrel," the "cannonball" (antibiotic) and "propellant" (NH4HCO3) were codeposited into SrNT with assistance of mussel-inspired copolymerization of dopamine and subsequently sealed by a layer of polydopamine. The encapsulated NH4HCO3 within the nanotubes could be thermally decomposed into gases under near-infrared irradiation, propelling the on-demand delivery of antibiotics. This coating demonstrated significant efficacy in eliminating typical pathogenic bacteria both in planktonic and biofilm forms. Additionally, this coating exhibited a continuous release of strontium ions, which significantly enhanced the osteogenic differentiation of preosteoblasts. In an implant-associated infection rat model, this coating demonstrated substantial antibacterial efficiency (>99%) and significant promotion of osseointegration, along with alleviated postoperative inflammation. This pneumatic nanocannon coating presents a promising approach to achieving on-demand infection inhibition and sustained osseointegration enhancement for titanium orthopedic implants.


Assuntos
Antibacterianos , Nanotubos , Óxidos , Estrôncio , Titânio , Estrôncio/química , Estrôncio/farmacologia , Animais , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ratos , Óxidos/química , Óxidos/farmacologia , Nanotubos/química , Próteses e Implantes , Osseointegração/efeitos dos fármacos , Camundongos , Ratos Sprague-Dawley , Indóis/química , Indóis/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Propriedades de Superfície , Polímeros/química , Polímeros/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana
5.
Drug Des Devel Ther ; 18: 2249-2256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895174

RESUMO

Objective: Recently, a lot of research has been done around the world to popularize the osseointegration of dental implants. In this study, it was investigated the effect of local zoledronic acid application on implants with machined (MAC), resorbable blast materials (RBM), sandblasted and acid-etched (SLA) surface implants integrated in rat tibias. Methodology: A total of 60 female Wistar rats weighing between 270 and 300 g were used in the study. The rats were passing divided into six classes: controls; MAC (n = 10), RBM (n = 10), SLA (n = 10), and local zoledronic acid (LZA) applied groups; LZA-MAC (n = 10), LZA-RBM (n=10) and LZA-SLA (n = 10) and implants were surgically placement into rat tibias in general anesthesia. After a four-week experimental period, the biomechanical bone implant connection level was determined with reverse torque analysis. Results: Osseointegration levels were detected highly in SLA and RBM surface compared with the machined surfaced implants in both control and treatment groups (p < 0.05). Additionally, local application of zoledronic acid in both three groups; implants increased the biomechanic osseointegration level compared with the controls (p < 0.05). Conclusion: In this research, we observe that the local application of the zoledronic acid could increase the osseointegration, and RBM and SLA surface could be better than machined surfaced implants in terms of bone implant connection. In addition, local application of zoledronic acid may be a safer method than systemic application.


Assuntos
Implantes Dentários , Osseointegração , Ratos Wistar , Ácido Zoledrônico , Animais , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/administração & dosagem , Osseointegração/efeitos dos fármacos , Ratos , Feminino , Propriedades de Superfície , Tíbia/efeitos dos fármacos , Tíbia/cirurgia , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/administração & dosagem
6.
ACS Appl Mater Interfaces ; 16(24): 30967-30979, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38857475

RESUMO

The ongoing global health has highlighted the critical issue of secondary infections, particularly antibiotic-resistant bacterial infections, which have been significant contributors to mortality rates. Orthopedic implants, while essential for trauma and orthopedic surgeries, are particularly susceptible to these infections, leading to severe complications and economic burdens. The traditional use of antibiotics in treating these infections poses further challenges including the risk of developing antibiotic-resistant bacteria. This study introduces a novel approach to combat this issue by developing nanostructured surfaces for orthopedic implants using target ion-induced plasma sputtering. Inspired by the natural design of dragonfly wings, these surfaces aim to prevent bacterial adhesion while promoting preosteoblast activity, offering a dual-function solution to the problems of bacterial infection and implant integration without relying on antibiotics. The in vitro results demonstrate the effectiveness of these bioinspired surfaces in eradicating bacteria and supporting cell proliferation and differentiation, presenting a promising alternative for the development of biomedical implants.


Assuntos
Antibacterianos , Osseointegração , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Osseointegração/efeitos dos fármacos , Nanoestruturas/química , Camundongos , Propriedades de Superfície , Staphylococcus aureus/efeitos dos fármacos , Próteses e Implantes , Aderência Bacteriana/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular
7.
Int J Oral Maxillofac Implants ; (3): 435-445, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905118

RESUMO

PURPOSE: To evaluate the efficacy of combined therapy of teriparatide and raloxifene on the osseointegration of titanium dental implants in a rabbit model of osteoporotic bone. MATERIALS AND METHODS: Sixty female rabbits were randomly divided into six groups. The sham ovariectomy group (control) consisted of animals that received no medication. Animals in the ovariectomy group (OVX) underwent ovariectomy and received no medication. The combined group consisted of ovariectomized animals that received combined teriparatide (10 mg/kg) for 12 weeks and raloxifene (10 mg/kg) for 12 weeks. The sequential group (SEQ) consisted of ovariectomized animals that received teriparatide (10 mg/kg) for the first 6 weeks and raloxifene therapy (10 mg/kg) for the following 6 weeks sequentially. The parathormone (PTH) and raloxifene (RAL) groups consisted of ovariectomized animals that received only teriparatide (10 mg/kg) for 12 weeks or raloxifene (10 mg/kg) for 12 weeks, respectively. Dental implants (Bilimplant) were placed in the proximal metaphysis of both tibias in all rabbits. Histomorphometric and microCT studies were performed on the specimens obtained from the right tibia bone. Removal torque (RTQ) and implant stability quotient (ISQ) tests were performed on the specimens obtained from the left tibia bone. The results were compared and evaluated statistically. RESULTS: RTQ analysis revealed a statistically significant difference between the mean values of the combined group (93.01 ± 27.19 Ncm) and the OVX group (49.6 ± 12.5 Ncm) (P = .015). The highest mean T0 (implantation day) value was obtained in the control group (67.1 ± 3.4 Ncm), and the lowest mean value was obtained in the OVX group (61.4 ± 3.8 Ncm). The highest T1 mean (3 months after implantation) was obtained by the combined group (76.6 ± 3.8 Ncm), and the lowest mean was obtained by the OVX group (68.9 ± 6.2 Ncm). Histomorphometric analyses showed that the mean percentage of bone-to-implant contact (BIC%) of the combined group (51.2%) was significantly higher than that of the OVX group (28.6%) (P =.006). In the microCT examinations, it was found that the mean BIC% value of the combined group (41.1%) was significantly higher than that of the OVX group (24.1%) (P < .001). CONCLUSIONS: According to the results of the current study, combined therapy of teriparatide and raloxifene improves the BIC and osseointegration of titanium dental implants in osteoporotic bone compared with sequential or independent therapy with these agents.


Assuntos
Conservadores da Densidade Óssea , Implantes Dentários , Modelos Animais de Doenças , Osseointegração , Osteoporose , Ovariectomia , Cloridrato de Raloxifeno , Teriparatida , Animais , Coelhos , Teriparatida/uso terapêutico , Teriparatida/farmacologia , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Osseointegração/efeitos dos fármacos , Feminino , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Osteoporose/tratamento farmacológico , Implantação Dentária Endóssea/métodos , Microtomografia por Raio-X , Distribuição Aleatória , Titânio , Quimioterapia Combinada
8.
J Appl Oral Sci ; 32: e20230374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922240

RESUMO

OBJECTIVES: to evaluate the morphological and functional characteristics of the peri-implant bone tissue that was formed during the healing process by the placement implants using two different surface treatments: hydrophilic Acqua™ (ACQ) and rough NeoPoros™ (NEO), in spontaneously hypertensive (SHR) and normotensive rats (Wistar) whether or not treated with losartan. METHODOLOGY: In total, 96 male rats (48 Wistar and 48 SHR) were divided into eight subgroups: absolute control rough (COA NEO), absolute control hydrophilic (COA ACQ), losartan control rough (COL NEO), losartan control hydrophilic (COL ACQ), SHR absolute rough (SHR NEO), SHR absolute hydrophilic (SHR ACQ), SHR losartan rough (SHRL NEO), and SHR losartan hydrophilic (SHRL ACQ). The rats medicated with losartan received daily doses of the medication. NeoPoros™ and Acqua™ implants were installed in the tibiae of the rats. After 14 and 42 days of the surgery, the fluorochromes calcein and alizarin were injected in the rats. The animals were euthanized 67 days after treatment. The collected samples were analyzed by immunohistochemistry, biomechanics, microcomputerized tomography, and laser confocal scanning microscopy analysis. RESULTS: The osteocalcin (OC) and vascular endothelium growth factor (VEGF) proteins had moderate expression in the SHRL ACQ subgroup. The same subgroup also had the highest implant removal torque. Regarding microarchitectural characteristics, a greater number of trabeculae was noted in the control animals that were treated with losartan. In the bone mineralization activity, it was observed that the Acqua™ surface triggered higher values of MAR (mineral apposition rate) in the COA, COL, and SHRL groups (p<0.05). CONCLUSION: the two implant surface types showed similar responses regarding the characteristics of the peri-implant bone tissue, even though the ACQ surface seems to improve the early stages of osseointegration.


Assuntos
Implantes Dentários , Losartan , Ratos Endogâmicos SHR , Ratos Wistar , Propriedades de Superfície , Microtomografia por Raio-X , Animais , Losartan/farmacologia , Masculino , Propriedades de Superfície/efeitos dos fármacos , Fatores de Tempo , Reprodutibilidade dos Testes , Imuno-Histoquímica , Interações Hidrofóbicas e Hidrofílicas , Osseointegração/efeitos dos fármacos , Resultado do Tratamento , Implantação Dentária Endóssea/métodos , Microscopia Confocal , Tíbia/efeitos dos fármacos , Tíbia/cirurgia , Análise de Variância , Fenômenos Biomecânicos , Valores de Referência , Osteocalcina/análise
9.
ACS Appl Bio Mater ; 7(6): 3900-3914, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38840339

RESUMO

The poor clinical performance of titanium and its alloy implants is mainly attributed to their lack of antibacterial ability and poor osseointegration. The key and challenge lie in how to enhance their osteoinductivity while imparting antibacterial capability. In this study, a titanium oxide metasurface with light-responsive behavior was constructed on the surface of titanium alloy using an alkaline-acid bidirectional hydrothermal method. The effects of the acid type, acid concentration, hydrothermal time, hydrothermal temperature, and subsequent heat treatments on the optical behavior of the metasurface were systematically investigated with a focus on exploring the influence of the metasurface and photodynamic reaction on the osteogenic activity of osteoblasts. Results show that the type of acid and heat treatment significantly affect the light absorption of the titanium alloy surface, with HCl and post-heat-treatment favoring redshift in the light absorption. Under 808 nm near-infrared (NIR) irradiation for 10 min, in vitro antibacterial experiments demonstrate that the antibacterial rate of the metasurface titanium alloy against Staphylococcus aureus and Escherichia coli were 96.87% and 99.27%, respectively. In vitro cell experiments demonstrate that the nanostructure facilitates cell adhesion, proliferation, differentiation, and expression of osteogenic-related genes. Surprisingly, the nanostructure promoted the expression of relevant osteogenic genes of MC3T3-E1 under 808 nm NIR irradiation. This study provides a method for the surface modification of titanium alloy implants.


Assuntos
Ligas , Antibacterianos , Materiais Biocompatíveis , Escherichia coli , Raios Infravermelhos , Teste de Materiais , Nanoestruturas , Staphylococcus aureus , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Staphylococcus aureus/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Escherichia coli/efeitos dos fármacos , Nanoestruturas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Animais , Camundongos , Osteogênese/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Proliferação de Células/efeitos dos fármacos , Osseointegração/efeitos dos fármacos
10.
Int J Nanomedicine ; 19: 5011-5020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832337

RESUMO

Purpose: Atomic layer deposition (ALD) is a method that can deposit zirconia uniformly on an atomic basis. The effect of deposited zirconia on titanium implants using ALD was evaluated in vivo. Methods: Machined titanium implants (MTIs) were used as the Control. MTIs treated by sandblasting with large grit and acid etching (SA) and MTIs deposited with zirconia using ALD are referred to as Groups S and Z, respectively. Twelve implants were prepared for each group. Six rabbits were used as experimental animals. To evaluate the osteogenesis and osteocyte aspects around the implants, radiological and histological analyses were performed. The bone-to-implant contact (BIC) ratio was measured and statistically analyzed to evaluate the osseointegration capabilities. Results: In the micro-CT analysis, more radiopaque bone tissues were observed around the implants in Groups S and Z. Histological observation found that Groups S and Z had more and denser mature bone tissues around the implants in the cortical bone area. Many new and mature bone tissues were also observed in the medullary cavity area. For the BIC ratio, Groups S and Z were significantly higher than the Control in the cortical bone area (P < 0.017), but there was no significant difference between Groups S and Z. Conclusion: MTIs deposited with zirconia using ALD (Group Z) radiologically and histologically showed more mature bone formation and activated osteocytes compared with MTIs (Control). Group Z also had a significantly higher BIC ratio than the Control. Within the limitations of this study, depositing zirconia on the surface of MTIs using ALD can improve osseointegration in vivo.


Assuntos
Osseointegração , Titânio , Zircônio , Animais , Zircônio/química , Zircônio/farmacologia , Coelhos , Titânio/química , Titânio/farmacologia , Osseointegração/efeitos dos fármacos , Propriedades de Superfície , Microtomografia por Raio-X , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Interface Osso-Implante , Osteogênese/efeitos dos fármacos , Implantes Dentários , Próteses e Implantes
11.
Int J Oral Maxillofac Implants ; (3): 446-454, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905119

RESUMO

PURPOSE: To evaluate the effect of interleukin-6 (IL-6) inhibitor (tocilizumab) on bacterial infection-associated bone resorption around implants during osseointegration in rabbits. MATERIALS AND METHODS: At total of 24 male, 9-monthold New Zealand white rabbits were included, and their two mandibular anterior teeth were extracted. Three months after extraction, 24 one-piece Dentium implants (Ø 2.5 mm, intraosseous length of 12 mm) were inserted in the anterior mandible, and the rabbits were divided into four groups (n = 6 per group). Different treatment methods were used in each group: blank control group (BC); only silk ligation (negative control [NC]); silk ligation and injection with minocycline hydrochloride ointment (positive control [PC]); and silk ligation and injection with tocilizumab at 8 mg/kg via the auricle vein (experimental [EP]). Eight weeks later, the animals were sacrificed, and samples were collected and then analyzed using microcomputed tomography (microCT) scanning, immunohistochemical analysis, and histologic analysis. RESULTS: From the microCT measurement, the ratio of the bone volume to the total volume (BV/TV) in the EP group was 67.00% ± 2.72%, which was higher than that in the other three groups (58.85% ± 2.43% in the BC group, 55.72% ± 2.48% in the PC group, and 36.52% ± 3.02% in the NC group). From immunohistochemical analysis, the expression of IL-6 was found to be higher in the NC group than in the BC, PC, and EP groups, but there was no statistical difference between these three groups. Furthermore, the RANKL (receptor activator of nuclear factor-κB ligand) expression was the lowest in the EP group, followed by the BC group, the PC group, and the NC group, which had the highest expression; there was no difference between the NC and PC groups. Upon histologic analysis, significant new bone was found on the implant surfaces in the EP group, sparse and less new bone could be seen in the BC and PC groups, and the most serious bone resorption occurred in the NC group. CONCLUSIONS: Tocilizumab, an inhibitor of IL-6, has a certain effect in preventing bone loss around implants caused by bacterial infection during the osseointegration period.


Assuntos
Anticorpos Monoclonais Humanizados , Interleucina-6 , Osseointegração , Animais , Coelhos , Masculino , Projetos Piloto , Interleucina-6/análise , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Osseointegração/efeitos dos fármacos , Microtomografia por Raio-X , Implantes Dentários , Reabsorção Óssea/prevenção & controle , Implantação Dentária Endóssea/métodos
12.
Nano Lett ; 24(27): 8257-8267, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920296

RESUMO

Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of ß-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.


Assuntos
Diferenciação Celular , Canais Iônicos , Osteogênese , Propriedades de Superfície , Titânio , beta Catenina , Osteogênese/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , beta Catenina/metabolismo , Canais Iônicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Camundongos , Nanoporos , Nanotubos/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Próteses e Implantes , Adesão Celular/efeitos dos fármacos
13.
ACS Biomater Sci Eng ; 10(7): 4093-4113, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38829538

RESUMO

Titanium (Ti) and its alloys are widely used biomaterials in bone repair. Although these biomaterials possess stable properties and good biocompatibility, the high elastic modulus and low surface activity of Ti implants have often been associated with infection, inflammation, and poor osteogenesis. Therefore, there is an urgent need to modify the surface of Ti implants, where changes in surface morphology or coatings loading can confer specific functions to help them adapt to the osseointegration formation phase and resist bacterial infection. This can further ensure a healthy microenvironment for bone regeneration as well as the promotion of immunomodulation, angiogenesis, and osteogenesis. Therefore, in this review, we evaluated various functional Ti implants after surface modification, both in terms of static modifications and dynamic response strategies, mainly focusing on the synergistic effects of antimicrobial activities and functionalized osteogenic. Finally, the current challenges and future perspectives are summarized to provide innovative and effective solutions for osseointegration and bone defect repair.


Assuntos
Antibacterianos , Osseointegração , Osteogênese , Próteses e Implantes , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Osseointegração/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos
14.
ACS Biomater Sci Eng ; 10(7): 4323-4335, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38860558

RESUMO

In patients with diabetes, endoplasmic reticulum stress (ERS) is a crucial disrupting factor of macrophage homeostasis surrounding implants, which remains an obstacle to oral implantation success. Notably, the ERS might be modulated by the implant surface morphology. Titania nanotubes (TNTs) may enhance diabetic osseointegration. However, a consensus has not been achieved regarding the tube-size-dependent effect and the underlying mechanism of TNTs on diabetic macrophage ERS. We manufactured TNTs with small (30 nm) and large diameters (100 nm). Next, we assessed how the different titanium surfaces affected diabetic macrophages and regulated ERS and Ca2+ homeostasis. TNTs alleviated the inflammatory response, oxidative stress, and ERS in diabetic macrophages. Furthermore, TNT30 was superior to TNT100. Inhibiting ERS abolished the positive effect of TNT30. Mechanistically, topography-induced extracellular Ca2+ influx might mitigate excessive ERS in macrophages by alleviating ER Ca2+ depletion and IP3R activation. Furthermore, TNT30 attenuated the peri-implant inflammatory response and promoted osseointegration in diabetic rats. TNTs with small nanodiameters attenuated ERS and re-established diabetic macrophage hemostasis by inhibiting IP3R-induced ER Ca2+ depletion.


Assuntos
Diabetes Mellitus Experimental , Estresse do Retículo Endoplasmático , Homeostase , Macrófagos , Nanotubos , Titânio , Titânio/farmacologia , Titânio/química , Nanotubos/química , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Homeostase/efeitos dos fármacos , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Ratos Sprague-Dawley , Camundongos , Cálcio/metabolismo , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Osseointegração/efeitos dos fármacos
15.
Biomed Mater ; 19(5)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38917837

RESUMO

Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.


Assuntos
Adesão Celular , Diferenciação Celular , Proliferação de Células , Mucosa Bucal , Osteogênese , Células-Tronco , Titânio , Titânio/química , Humanos , Osteogênese/efeitos dos fármacos , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Propriedades de Superfície , Células Cultivadas , Osteoblastos/citologia , Osteoblastos/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Sobrevivência Celular , Osseointegração/efeitos dos fármacos , Materiais Biocompatíveis/química
16.
Bone ; 186: 117167, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876270

RESUMO

We evaluated the potential of sclerostin antibody (SclAb) therapy to enhance osseointegration of dental and orthopaedic implants in a mouse model (Brtl/+) mimicking moderate to severe Osteogenesis Imperfecta (OI). To address the challenges in achieving stable implant integration in compromised bone conditions, our aim was to determine the effectiveness of sclerostin antibody (SclAb) at improving bone-to-implant contact and implant fixation strength. Utilizing a combination of micro-computed tomography, mechanical push-in testing, immunohistochemistry, and Western blot analysis, we observed that SclAb treatment significantly enhances bone volume fraction (BV/TV) and bone-implant contact (BIC) in Brtl/+ mice, suggesting a normalization of bone structure toward WT levels. Despite variations in implant survival rates between the maxilla and tibia, SclAb treatment consistently improved implant stability and resistance to mechanical forces, highlighting its potential to overcome the inherent challenges of OI in dental and orthopaedic implant integration. These results suggest that SclAb could be a valuable therapeutic approach for enhancing implant success in compromised bone conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Anticorpos , Colágeno Tipo I , Mutação , Osseointegração , Animais , Osseointegração/efeitos dos fármacos , Camundongos , Mutação/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Anticorpos/farmacologia , Microtomografia por Raio-X , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Implantes Dentários , Tíbia/diagnóstico por imagem , Tíbia/patologia , Tíbia/efeitos dos fármacos
17.
ACS Appl Mater Interfaces ; 16(25): 31983-31996, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865688

RESUMO

Effective osteointegration is of great importance for pedicle screws in spinal fusion surgeries. However, the lack of osteoinductive activity of current screws diminishes their feasibility for osteointegration and fixation, making screw loosening a common complication worldwide. In this study, Ti-6Al-4V pedicle screws with full through-hole design were fabricated via selective laser melting (SLM) 3D printing and then deposited with porous oxide coatings by microarc oxidation (MAO). The porous surface morphology of the oxide coating and the release of bioactive ions could effectively support cell adhesion, migration, vascularization, and osteogenesis in vitro. Furthermore, an in vivo goat model demonstrated the efficacy of modified screws in improving bone maturation and osseointegration, thus providing a promising method for feasible orthopedic internal fixation.


Assuntos
Cerâmica , Cabras , Osseointegração , Oxirredução , Parafusos Pediculares , Impressão Tridimensional , Titânio , Animais , Osseointegração/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Cerâmica/química , Cerâmica/farmacologia , Ligas/química , Ligas/farmacologia , Osteogênese/efeitos dos fármacos , Humanos , Porosidade , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos
18.
J Oral Biosci ; 66(2): 281-287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723946

RESUMO

BACKGROUND: The osseointegration of zirconia implants has been evaluated based on their implant fixture bonding with the alveolar bone at the optical microscopic level. Achieving nano-level bonding between zirconia and bone apatite is crucial for superior osseointegration; however, only a few studies have investigated nanoscale bonding. This review outlines zirconia osseointegration, including surface modification, and presents an evaluation of nanoscale zirconia-apatite bonding and its structure. HIGHLIGHT: Assuming osseointegration, the cells produced calcium salts on a ceria-stabilized zirconia substrate. We analyzed the interface between calcium salts and zirconia substrates using transmission electron microscopy and found that 1) the cell-induced calcium salts were bone-like apatite and 2) direct nanoscale bonding was observed between the bone-like apatite and zirconia crystals without any special modifications of the zirconia surface. CONCLUSION: Structural affinity exists between bone apatite and zirconia crystals. Apatite formation can be induced by the zirconia surface. Zirconia bonds directly with apatite, indicating superior osseointegration in vivo.


Assuntos
Durapatita , Osseointegração , Zircônio , Zircônio/química , Osseointegração/efeitos dos fármacos , Durapatita/química , Propriedades de Superfície , Humanos , Implantes Dentários , Apatitas/química
19.
Iran Biomed J ; 28(2&3): 82-9, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770885

RESUMO

Background: Osteogenic, antioxidant and anti-inflammatory effects of Whey protein and M. oleifera gel prompted us to evaluate their role alone or in combination on osseointegration in rabbits. Methods: In this study, 24 titanium implants were inserted in the femurs of six rabbits. One implant was placed without treatment, and another one was coated with a mixture of whey protein and M. oleifera gel for each side. The animals were divided into two groups of 2- and 6-week intervals and evaluated using histopathological and immunohistochemical techniques. Results: Histological evaluation revealed a significant difference between the experimental and the control groups after two weeks in osteoblast and osteocyte counts. The experimental group had mature bone development after six weeks of implantation, while the control group had a woven bone. Immunohistochemical results showed that the experimental group, compared to the control group, exhibited early positive expression of osteoblast cells at two weeks after the experiment. Based on histopathological observations, the experimental group showed a tiny area of collagenous fiber in 6th week after the implantation. Conclusion: A mixture of whey protein and M. oleifera could accelerate osseointegration and healing processes.


Assuntos
Moringa oleifera , Osseointegração , Extratos Vegetais , Folhas de Planta , Proteínas do Soro do Leite , Animais , Proteínas do Soro do Leite/farmacologia , Coelhos , Osseointegração/efeitos dos fármacos , Moringa oleifera/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Masculino , Osteoblastos/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
20.
Colloids Surf B Biointerfaces ; 240: 113966, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781846

RESUMO

Dental Implants are expected to possess both excellent osteointegration and antibacterial activity because poor osseointegration and infection are two major causes of titanium implant failure. In this study, we constructed layer-by-layer self-assembly films consisting of anionic casein phosphopeptides-amorphous calcium phosphate (CPP-ACP) and cationic poly (L-lysine) (PLL) on sandblasted and acid etched (SLA) titanium surfaces and evaluated their osseointegration and antibacterial performance in vitro and in vivo. The surface properties were examined, including microstructure, elemental composition, wettability, and Ca2+ ion release. The impact the surfaces had on the adhesion, proliferation and differentiation abilities of MC3T3-E1 cells were investigated, as well as the material's antibacterial performance after exposure to the oral microorganisms such as Porphyromonas gingivalis (P. g) and Actinobacillus actinomycetemcomitans (A. a). For the in vivo studies, SLA and Ti (PLL/CA-3.0)10 implants were inserted into the extraction socket immediately after extracting the rabbit mandibular anterior teeth with or without exposure to mixed bacteria solution (P. g & A. a). Three rabbits in each group were sacrificed to collect samples at 2, 4, and 6 weeks of post-implantation, respectively. Radiographic and histomorphometry examinations were performed to evaluate the implant osseointegration. The modified titanium surfaces were successfully prepared and appeared as a compact nano-structure with high hydrophilicity. In particular, the Ti (PLL/CA-3.0)10 surface was able to continuously release Ca2+ ions. From the in vitro and in vivo studies, the modified titanium surfaces expressed enhanced osteogenic and antibacterial properties. Hence, the PLL/CPP-ACP multilayer coating on titanium surfaces was constructed via a layer-by-layer self-assembly technology, possibly improving the biofunctionalization of Ti-based dental implants.


Assuntos
Antibacterianos , Osseointegração , Polilisina , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Osseointegração/efeitos dos fármacos , Animais , Polilisina/química , Polilisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Implantes Dentários/microbiologia , Coelhos , Porphyromonas gingivalis/efeitos dos fármacos , Caseínas/química , Caseínas/farmacologia , Proliferação de Células/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fosfatos de Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...