Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 852
Filtrar
1.
PLoS One ; 19(6): e0290914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889162

RESUMO

Significant alterations to subchondral trabecular bone microarchitecture are observed in late-stage osteoarthritis (OA). However, detailed investigation of these changes to bone in the ankle are under-reported. This study aimed to fully characterise the trabecular morphology in OA ankle bone specimens compared to non-diseased (ND) controls using both standard and individual-trabecular segmentation-based (ITS) analyses. Ten ND tibial bone specimens were extracted from three cadaveric ankles, as well as five OA bone specimens from patients undergoing total ankle arthroplasty surgery. Each specimen was scanned using microcomputed tomography from which a 4 mm cuboidal volume was extracted for analysis. Morphological parameters for the subchondral trabecular bone were measured using BoneJ (NIH ImageJ) and 3D ITS for whole volumes and at each depth level in 1 mm increments. The results show an overall increase in bone volume fraction (p<0.01) and trabecular thickness (p<0.001) with OA, with a decrease in anisotropy (p<0.05). ITS analysis showed OA bone was composed of more rod-like trabeculae and plate-like trabeculae compared to ND bone. Numerous properties were depth dependent, but the results demonstrated that towards the subchondral bone plate, both rod- and plate-like trabeculae were thicker, rods were longer and plates had increased surface area. Overall, this study has verified key microstructural alterations to ankle subchondral bone that are found in other OA lower-limb joints. Depth-based analysis has highlighted differences of interest for further evaluation into the remodelling mechanisms that occur with OA, which is critical to understanding the role of subchondral bone microarchitecture in the progression of the disease.


Assuntos
Articulação do Tornozelo , Osteoartrite , Tíbia , Microtomografia por Raio-X , Humanos , Osteoartrite/patologia , Osteoartrite/diagnóstico por imagem , Feminino , Idoso , Masculino , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/patologia , Pessoa de Meia-Idade , Tíbia/patologia , Tíbia/diagnóstico por imagem , Osso Esponjoso/patologia , Osso Esponjoso/diagnóstico por imagem , Idoso de 80 Anos ou mais
4.
Bone ; 185: 117115, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740120

RESUMO

Osteoporotic fractures, prevalent in the elderly, pose a significant health and economic burden. Current methods for predicting fracture risk, primarily relying on bone mineral density, provide only modest accuracy. If better spatial resolution of trabecular bone in a clinical scan were available, a more complete assessment of fracture risk would be obtained using microarchitectural measures of bone (i.e. trabecular thickness, trabecular spacing, bone volume fraction, etc.). However, increased resolution comes at the cost of increased radiation or can only be applied at small volumes of distal skeletal locations. This study explores super-resolution (SR) technology to enhance clinical CT scans of proximal femurs and better reveal the trabecular microarchitecture of bone. Using a deep-learning-based (i.e. subset of artificial intelligence) SR approach, low-resolution clinical CT images were upscaled to higher resolution and compared to corresponding MicroCT-derived images. SR-derived 2-dimensional microarchitectural measurements, such as degree of anisotropy, bone volume fraction, trabecular spacing, and trabecular thickness were within 16 % error compared to MicroCT data, whereas connectivity density exhibited larger error (as high as 1094 %). SR-derived 3-dimensional microarchitectural metrics exhibited errors <18 %. This work showcases the potential of SR technology to enhance clinical bone imaging and holds promise for improving fracture risk assessments and osteoporosis detection. Further research, including larger datasets and refined techniques, can advance SR's clinical utility, enabling comprehensive microstructural assessment across whole bones, thereby improving fracture risk predictions and patient-specific treatment strategies.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Feminino , Idoso , Densidade Óssea/fisiologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Masculino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Aprendizado Profundo , Microtomografia por Raio-X/métodos , Processamento de Imagem Assistida por Computador/métodos , Idoso de 80 Anos ou mais , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia
5.
Sci Rep ; 14(1): 9977, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693297

RESUMO

This paper investigates trabecular bone ontogenetic changes in two different Polish populations, one prehistoric and the other historical. The studied populations are from the Brzesc Kujawski region in Kujawy (north-central Poland), one from the Neolithic Period (4500-4000 BC) and one from the Middle Ages (twelfth-sixteenth centuries AD), in total 62 vertebral specimens (32 males, 30 females). Eight morphometric parameters acquired from microCT scan images were analysed. Two-way ANOVA after Box-Cox transformation and multifactorial regression model were calculated. A significant decrease in percentage bone volume fraction (BV/TV; [%]) with age at death was observed in the studied sample; Tb.N (trabecular number) was also significantly decreased with age; trabecular separation (Tb.Sp) increased with advancing age; connectivity density (Conn.D) was negatively correlated with biological age and higher in the Neolithic population. These data are found to be compatible with data from the current biomedical literature, while no loss of horizontal trabeculae was recorded as would be expected based on modern osteoporosis.


Assuntos
Osso Esponjoso , Humanos , Polônia , Masculino , Feminino , Adulto , Osso Esponjoso/anatomia & histologia , Osso Esponjoso/diagnóstico por imagem , História Medieval , Pessoa de Meia-Idade , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem , História Antiga , Microtomografia por Raio-X , Fatores Etários , Idoso , Densidade Óssea , Fatores Sexuais , Adulto Jovem
6.
Front Endocrinol (Lausanne) ; 15: 1287591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774224

RESUMO

Purpose: To determine whether there are alterations in marrow fat content in individuals first-time diagnosed with type 1 diabetes mellitus (T1DM) and to explore the associations between marrow fat fraction and MRI-based findings in trabecular bone microarchitecture. Method: A case-control study was conducted, involving adults with first-time diagnosed T1DM (n=35) and age- and sex-matched healthy adults (n=46). Dual-energy X-ray absorptiometry and 3 Tesla-MRI of the proximal tibia were performed to assess trabecular microarchitecture and vertebral marrow fat fraction. Multiple linear regression analysis was used to test the associations of marrow fat fraction with trabecular microarchitecture and bone density while adjusting for potential confounding factors. Results: In individuals first-time diagnosed with T1DM, the marrow fat fraction was significantly higher (p < 0.001) compared to healthy controls. T1DM patients also exhibited higher trabecular separation [median (IQR): 2.19 (1.70, 2.68) vs 1.81 (1.62, 2.10), p < 0.001], lower trabecular volume [0.45 (0.30, 0.56) vs 0.53 (0.38, 0.60), p = 0.013], and lower trabecular number [0.37 (0.26, 0.44) vs 0.41 (0.32, 0.47), p = 0.020] compared to controls. However, bone density was similar between the two groups (p = 0.815). In individuals with T1DM, there was an inverse association between marrow fat fraction and trabecular volume (r = -0.69, p < 0.001) as well as trabecular number (r = -0.55, p < 0.001), and a positive association with trabecular separation (r = 0.75, p < 0.001). Marrow fat fraction was independently associated with total trabecular volume (standardized ß = -0.21), trabecular number (ß = -0.12), and trabecular separation (ß = 0.57) of the proximal tibia after adjusting for various factors including age, gender, body mass index, physical activity, smoking status, alcohol consumption, blood glucose, plasma glycated hemoglobin, lipid profile, and bone turnover biomarkers. Conclusions: Individuals first-time diagnosed with T1DM experience expansion of marrow adiposity, and elevated marrow fat content is associated with MRI-based trabecular microstructure.


Assuntos
Densidade Óssea , Medula Óssea , Osso Esponjoso , Diabetes Mellitus Tipo 1 , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/patologia , Imageamento por Ressonância Magnética/métodos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Adulto , Estudos de Casos e Controles , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Absorciometria de Fóton , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Pessoa de Meia-Idade , Adulto Jovem
7.
BMC Med Imaging ; 24(1): 101, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693510

RESUMO

Bone strength depends on both mineral content and bone structure. Measurements of bone microstructure on specimens can be performed by micro-CT. In vivo measurements are reliably performed by high-resolution peripheral computed tomography (HR-pQCT) using dedicated software. In previous studies from our research group, trabecular bone properties on CT data of defatted specimens from many different CT devices have been analyzed using an Automated Region Growing (ARG) algorithm-based code, showing strong correlations to micro-CT.The aim of the study was to validate the possibility of segmenting and measuring trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens. Data from micro-CT was used as reference. The hypothesis was that the ARG-based in-house built software could be used for such measurements.HR-pQCT image data at two resolutions (61 and 82 µm isotropic voxels) from 23 fresh-frozen human forearms were analyzed. Correlations to micro-CT were strong, varying from 0.72 to 0.99 for all parameters except trabecular termini and nodes. The bone volume fraction had correlations varying from 0.95 to 0.98 but was overestimated compared to micro-CT, especially at the lower resolution. Trabecular separation and spacing were the most stable parameters with correlations at 0.80-0.97 and mean values in the same range as micro-CT.Results from this in vitro study show that an ARG-based software could be used for segmenting and measuring 3D trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens using micro-CT data as reference. Over-and underestimation of several of the bone structure parameters must however be taken into account.


Assuntos
Algoritmos , Osso Esponjoso , Microtomografia por Raio-X , Humanos , Osso Esponjoso/diagnóstico por imagem , Idoso , Masculino , Feminino , Pessoa de Meia-Idade , Punho/diagnóstico por imagem , Software , Idoso de 80 Anos ou mais
8.
J Bone Miner Metab ; 42(3): 352-360, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664255

RESUMO

INTRODUCTION: Trabecular bone score (TBS) estimates bone microstructure, which is directly measured by high-resolution peripheral quantitative computed tomography (HRpQCT). We evaluated the correlation between these methods and TBS influence on fracture risk assessed by FRAX. MATERIALS AND METHODS: We evaluated 129 individuals (82 women, 43 postmenopausal) 20 to 82.3 years without prevalent clinical or non-clinical morphometric vertebral fractures, using DXA (spine and hip), HR-pQCT at distal radius (R) and tibia (T) and TBS which classifies bone microarchitecture as normal (TBS ≥ 1.350), partially degraded (1.200 < TBS < 1.350), or degraded (TBS ≤ 1.200). RESULTS: Spine and hip BMD and HR-pQCT parameters at cortical bone: area (T), density (R,T) thickness (T) and trabecular bone: density (R,T), number (T) and thickness (R) were significantly better in the 78 individuals with normal TBS (group 1) versus the 51 classified as partially degraded (n = 42) or degraded microarchitecture (n = 9) altogether (group 2). TBS values correlated with age (r = - 0.55), positively with spine and hip BMD and all cortical and trabecular bone density and microstructure parameters evaluated, p < 0.05 all tests. Binary logistic regression defined age (p = 0.008) and cortical thickness (p = 0.018) as main influences on TBS, while ANCOVA demonstrated that HR-pQCT data corrected for age were not different between TBS groups 1 and 2. TBS adjustment increased FRAX risk for major osteoporotic fractures and hip fractures. CONCLUSION: We describe significant association between TBS and both trabecular and cortical bone parameters measured by HR-pQCT, consistent with TBS influence on fracture risk estimation by FRAX, including hip fractures, where cortical bone predominates.


Assuntos
Densidade Óssea , Osso Esponjoso , Osso Cortical , Tomografia Computadorizada por Raios X , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Osso Cortical/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Masculino , Idoso de 80 Anos ou mais , Adulto , Absorciometria de Fóton , Adulto Jovem
9.
Bone ; 184: 117096, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631596

RESUMO

High-resolution magnetic resonance imaging (HR-MRI) has been increasingly used to assess the trabecular bone structure. High susceptibility at the marrow/bone interface may significantly reduce the marrow's apparent transverse relaxation time (T2*), overestimating trabecular bone thickness. Ultrashort echo time MRI (UTE-MRI) can minimize the signal loss caused by susceptibility-induced T2* shortening. However, UTE-MRI is sensitive to chemical shift artifacts, which manifest as spatial blurring and ringing artifacts partially due to non-Cartesian sampling. In this study, we proposed UTE-MRI at the resonance frequency of fat to minimize marrow-related chemical shift artifacts and the overestimation of trabecular thickness. Cubes of trabecular bone from six donors (75 ± 4 years old) were scanned using a 3 T clinical scanner at the resonance frequencies of fat and water, respectively, using 3D UTE sequences with five TEs (0.032, 1.1, 2.2, 3.3, and 4.4 ms) and a clinical 3D gradient echo (GRE) sequence at 0.2 × 0.2 × 0.4 mm3 voxel size. Trabecular bone thickness was measured in 30 regions of interest (ROIs) per sample. MRI results were compared with thicknesses obtained from micro-computed tomography (µCT) at 50 µm3 voxel size. Linear regression models were used to calculate the coefficient of determination between MRI- and µCT-based trabecular thickness. All MRI-based trabecular thicknesses showed significant correlations with µCT measurements. The correlations were higher (examined with paired Student's t-test, P < 0.01) for 3D UTE images performed at the fat frequency (R2 = 0.59-0.74, P < 0.01) than those at the water frequency (R2 = 0.18-0.52, P < 0.01) and clinical GRE images (R2 = 0.39-0.47, P < 0.01). Significantly reduced correlations were observed with longer TEs. This study highlighted the feasibility of UTE-MRI at the fat frequency for a more accurate assessment of trabecular bone thickness.


Assuntos
Osso Esponjoso , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Osso Esponjoso/diagnóstico por imagem , Idoso , Masculino , Feminino , Tecido Adiposo/diagnóstico por imagem
10.
Bone ; 184: 117109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643895

RESUMO

CONTEXT: Hypercortisolism frequently induces trabecular bone loss, more pronounced at the lumbar spine, resulting in osteoporosis, and thus an increase in fracture risk. Several studies have shown bone mass recovery in patients with Cushing's disease (CD) after treatment. OBJECTIVE: To examine treatment effects on TBS (trabecular bone score) in addition to aBMD (areal bone mineral density) in a cohort of patients with CD. DESIGN AND SETTING: Single-center retrospective longitudinal study in patients diagnosed with CD and successfully treated following surgery and/or medical treatment. PATIENTS: We included 31 patients with median age and BMI (body mass index) of 37.7 [28.4;43.3] years old and 27.7 [25.8;30.4] kg/m2, respectively. Median 24 h urinary cortisol before treatment was 213.4 [168.5;478.5] µg/24 h. All subjects were completely biochemically controlled or cured after treatment. MAIN OUTCOME MEASURES: aBMD and TBS were evaluated at AP Spine (L1-L4) with DXA prodigy (GE-Lunar), QDR 4500 (Hologic), and TBS iNsight® (Med-Imaps) before and after treatment. RESULTS: Absolute TBS and aBMD gains following cure of CD were significant (p < 0.0001, and p < 0.001, respectively). aBMD and TBS increased by +3.9 and 8.2 % respectively after cure of CD. aBMD and TBS were not correlated before (p = 0.43) and after treatment (p = 0.53). Linear regression analyses showed that TBS gain was independent of baseline BMI and that low TBS at baseline was predictive of TBS gain after treatment. CONCLUSION: The more significant improvement of microarchitecture assessed by TBS than aBMD and the absence of correlation between TBS and aBMD suggest that TBS may be an adequate marker of bone restoration after cure of CD. To support this conclusion, future studies with larger sample sizes and longer follow-up periods should be carried out.


Assuntos
Densidade Óssea , Osso Esponjoso , Humanos , Feminino , Masculino , Adulto , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Densidade Óssea/fisiologia , Síndrome de Cushing/fisiopatologia , Estudos Retrospectivos , Hipersecreção Hipofisária de ACTH/cirurgia , Hipersecreção Hipofisária de ACTH/fisiopatologia , Hipersecreção Hipofisária de ACTH/diagnóstico por imagem , Estudos Longitudinais , Pessoa de Meia-Idade
11.
Int J Oral Maxillofac Implants ; 39(2): 271-277, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657219

RESUMO

PURPOSE: To investigate the relationship between the structural parameters of trabecular bone obtained from CBCT imaging and the primary stability of dental implants. MATERIALS AND METHODS: Sixty patients underwent implant placement followed by primary stability evaluation via measurement of the insertion torque (IT) and the implant stability quotient (ISQ). Gray values (GV) and the fractal dimension (FD) were also measured using pretreatment CBCT images. RESULTS: FD values showed a positive and significant relationship with ISQ and IT values (P = .017 and P = .004, respectively). Additionally, there was a positive and significant correlation between GV and IT (P = .004) as well as between GV and ISQ (P = .010). FD and GV showed a considerable difference between the maxillary and mandibular jaws and were higher in the mandible. Only FD was significantly different between men and women and was higher in men. In the two age groups (older and younger than 45 years), only GV was considerably higher in people older than 45 (P < .05). CONCLUSIONS: Both fractal dimension and gray values obtained from CBCT are efficient methods for predicting the primary stability of the implant due to their relationship with ISQ and IT values.


Assuntos
Osso Esponjoso , Tomografia Computadorizada de Feixe Cônico , Implantes Dentários , Fractais , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Osso Esponjoso/diagnóstico por imagem , Implantação Dentária Endóssea/métodos , Torque , Idoso , Retenção em Prótese Dentária , Mandíbula/diagnóstico por imagem
12.
Clin Biomech (Bristol, Avon) ; 115: 106240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615548

RESUMO

BACKGROUND: Knowing the mechanical properties of trabecular bone is critical for many branches of orthopaedic research. Trabecular bone is anisotropic and the principal trabecular direction is usually aligned with the load it transmits. It is therefore critical that the mechanical properties are measured as close as possible to this direction, which is often perpendicular to a curved articulating surface. METHODS: This study presents a method to extract trabecular bone cores perpendicular to a curved articulating surface of the distal femur. Cutting guides were generated from computed tomography scans of 12 human distal femora and a series of cutting tools were used to release cylindrical bone cores from the femora. The bone cores were then measured to identify the angle between the bone core axis and the principal trabecular axis. FINDINGS: The method yielded an 83% success rate in core extraction over 10 core locations per distal femur specimen. In the condyles, 97% of extracted cores were aligned with the principal trabecular direction. INTERPRETATION: This method is a reliable way of extracting trabecular bone specimens perpendicular to a curved articular surface and could be useful across the field of orthopaedic research.


Assuntos
Osso Esponjoso , Fêmur , Humanos , Fêmur/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Feminino , Masculino , Reprodutibilidade dos Testes
13.
Am J Biol Anthropol ; 184(3): e24939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631677

RESUMO

OBJECTIVES: Calcaneal external shape differs among nonhuman primates relative to locomotion. Such relationships between whole-bone calcaneal trabecular structure and locomotion, however, have yet to be studied. Here we analyze calcaneal trabecular architecture in Gorilla gorilla gorilla, Gorilla beringei beringei, and G. b. graueri to investigate general trends and fine-grained differences among gorilla taxa relative to locomotion. MATERIALS AND METHODS: Calcanei were micro-CT scanned. A three-dimensional geometric morphometric sliding semilandmark analysis was carried out and the final landmark configurations used to position 156 volumes of interest. Trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and bone volume fraction (BV/TV) were calculated using the BoneJ plugin for ImageJ and MATLAB. Non-parametric MANOVAs were run to test for significant differences among taxa in parameter raw values and z-scores. Parameter distributions were visualized using color maps and summarized using principal components analysis. RESULTS: There are no significant differences in raw BV/TV or Tb.Th among gorillas, however G. b. beringei significantly differs in z-scores for both parameters (p = <0.0271). All three taxa exhibit relatively lower BV/TV and Tb.Th in the posterior half of the calcaneus. This gradation is exacerbated in G. b. beringei. G. b. graueri significantly differs from other taxa in Tb.Sp z-scores (p < 0.001) indicating a different spacing distribution. DISCUSSION: Relatively higher Tb.Th and BV/TV in the anterior calcaneus among gorillas likely reflects higher forces associated with body mass (transmitted through the subtalar joint) relative to forces transferred through the posterior calcaneus. The different Tb.Sp pattern in G. b. graueri may reflect proposed differences in foot positioning during locomotion.


Assuntos
Calcâneo , Osso Esponjoso , Gorilla gorilla , Animais , Calcâneo/anatomia & histologia , Calcâneo/fisiologia , Calcâneo/diagnóstico por imagem , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Osso Esponjoso/anatomia & histologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiologia , Masculino , Microtomografia por Raio-X , Feminino , Antropologia Física , Locomoção/fisiologia
14.
J Acoust Soc Am ; 155(4): 2670-2686, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639562

RESUMO

Recently, ultrasound transit time spectroscopy (UTTS) was proposed as a promising method for bone quantitative ultrasound measurement. Studies have showed that UTTS could estimate the bone volume fraction and other trabecular bone structure in ultrasonic through-transmission measurements. The goal of this study was to explore the feasibility of UTTS to be adapted in ultrasonic backscatter measurement and further evaluate the performance of backscattered ultrasound transit time spectrum (BS-UTTS) in the measurement of cancellous bone density and structure. First, taking ultrasonic attenuation into account, the concept of BS-UTTS was verified on ultrasonic backscatter signals simulated from a set of scatterers with different positions and intensities. Then, in vitro backscatter measurements were performed on 26 bovine cancellous bone specimens. After a logarithmic compression of the BS-UTTS, a linear fitting of the log-compressed BS-UTTS versus ultrasonic propagated distance was performed and the slope and intercept of the fitted line for BS-UTTS were determined. The associations between BS-UTTS parameters and cancellous bone features were analyzed using simple linear regression. The results showed that the BS-UTTS could make an accurate deconvolution of the backscatter signal and predict the position and intensity of the simulated scatterers eliminating phase interference, even the simulated backscatter signal was with a relatively low signal-to-noise ratio. With varied positions and intensities of the scatterers, the slope of the fitted line for the log-compressed BS-UTTS versus ultrasonic propagated distance (i.e., slope of BS-UTTS for short) yield a high agreement (r2 = 99.84%-99.96%) with ultrasonic attenuation in simulated backscatter signal. Compared with the high-density cancellous bone, the low-density specimen showed more abundant backscatter impulse response in the BS-UTTS. The slope of BS-UTTS yield a significant correlation with bone mineral density (r = 0.87; p < 0.001), BV/TV (r = 0.87; p < 0.001), and cancellous bone microstructures (r up to 0.87; p < 0.05). The intercept of BS-UTTS was also significantly correlated with bone densities (r = -0.87; p < 0.001) and trabecular structures (|r|=0.43-0.80; p < 0.05). However, the slope of the BS-UTTS underestimated attenuation when measurements were performed experimentally. In addition, a significant non-linear relationship was observed between the measured attenuation and the attenuation estimated by the slope of the BS-UTTS. This study demonstrated that the UTTS method could be adapted to ultrasonic backscatter measurement of cancellous bone. The derived slope and intercept of BS-UTTS could be used in the measurement of bone density and microstructure. The backscattered ultrasound transit time spectroscopy might have potential in the diagnosis of osteoporosis in the clinic.


Assuntos
Osso e Ossos , Osso Esponjoso , Animais , Bovinos , Osso Esponjoso/diagnóstico por imagem , Espalhamento de Radiação , Ultrassonografia/métodos , Osso e Ossos/diagnóstico por imagem , Densidade Óssea/fisiologia , Análise Espectral/métodos
15.
Orthop Surg ; 16(5): 1215-1229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520122

RESUMO

OBJECTIVE: The biomechanical characteristics of proximal femoral trabeculae are closely related to the occurrence and treatment of proximal femoral fractures. Therefore, it is of great significance to study its biomechanical effects of cancellous bone in the proximal femur. This study examines the biomechanical effects of the cancellous bone in the proximal femur using a controlled variable method, which provide a foundation for further research into the mechanical properties of the proximal femur. METHODS: Seventeen proximal femoral specimens were selected to scan by quantitative computed tomography (QCT), and the gray values of nine regions were measure to evaluated bone mineral density (BMD) using Mimics software. Then, an intact femur was fixed simulating unilateral standing position. Vertical compression experiments were then performed again after removing cancellous bone in the femoral head, femoral neck, and intertrochanteric region, and data were recorded. According to the controlled variable method, the femoral head, femoral neck, and intertrochanteric trabeculae were sequentially removed based on the axial loading of the intact femur, and the displacement and strain changes of the femur samples under axial loading were recorded. Gom software was used to measure and record displacement and strain maps of the femoral surface. RESULTS: There was a statistically significant difference in anteroposterior displacement of cancellous bone destruction in the proximal femur (p < 0.001). Proximal femoral bone mass explained 77.5% of the strength variation, in addition proximal femoral strength was mainly affected by bone mass at the level of the upper outer, lower inner, lower greater trochanter, and lesser trochanter of the femoral head. The normal stress conduction of the proximal femur was destroyed after removing cancellous bone, the stress was concentrated in the femoral head and lateral femoral neck, and the femoral head showed a tendency to subside after destroying cancellous bone. CONCLUSION: The trabecular removal significantly altered the strain distribution and biomechanical strength of the proximal femur, demonstrating an important role in supporting and transforming bending moment under the vertical load. In addition, the strength of the proximal femur mainly depends on the bone density of the femoral head and intertrochanteric region.


Assuntos
Densidade Óssea , Osso Esponjoso , Tomografia Computadorizada por Raios X , Humanos , Fenômenos Biomecânicos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiologia , Feminino , Masculino , Fêmur/fisiologia , Fêmur/diagnóstico por imagem , Idoso , Pessoa de Meia-Idade , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/fisiologia , Cadáver
16.
J Biomed Opt ; 29(Suppl 1): S11526, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38505736

RESUMO

Significance: Photoacoustic (PA) technology shows great potential for bone assessment. However, the PA signals in cancellous bone are complex due to its complex composition and porous structure, making such signals challenging to apply directly in bone analysis. Aim: We introduce a photoacoustic differential attenuation spectrum (PA-DAS) method to separate the contribution of the acoustic propagation path to the PA signal from that of the source, and theoretically and experimentally investigate the propagation attenuation characteristics of cancellous bone. Approach: We modified Biot's theory by accounting for the high frequency and viscosity. In parallel with the rabbit osteoporosis model, we build an experimental PA-DAS system featuring an eccentric excitation differential detection mechanism. Moreover, we extract a PA-DAS quantization parameter-slope-to quantify the attenuation of high- and low-frequency components. Results: The results show that the porosity of cancellous bone can be evaluated by fast longitude wave attenuation at different frequencies and the PA-DAS slope of the osteoporotic group is significantly lower compared with the normal group (**p<0.01). Conclusions: Findings demonstrate that PA-DAS effectively differentiates osteoporotic bone from healthy bone, facilitating quantitative assessment of bone mineral density, and osteoporosis diagnosis.


Assuntos
Osso Esponjoso , Osteoporose , Animais , Coelhos , Osso Esponjoso/diagnóstico por imagem , Ultrassonografia/métodos , Osso e Ossos/diagnóstico por imagem , Densidade Óssea , Osteoporose/diagnóstico por imagem
17.
Osteoporos Int ; 35(6): 1049-1059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459138

RESUMO

PURPOSE: This study aimed to apply a newly developed semi-automatic phantom-less QCT (PL-QCT) to measure proximal humerus trabecular bone density based on chest CT and verify its accuracy and precision. METHODS: Subcutaneous fat of the shoulder joint and trapezius muscle were used as calibration references for PL-QCT BMD measurement. A self-developed algorithm based on a convolution map was utilized in PL-QCT for semi-automatic BMD measurements. CT values of ROIs used in PL-QCT measurements were directly used for phantom-based quantitative computed tomography (PB-QCT) BMD assessment. The study included 376 proximal humerus for comparison between PB-QCT and PL-QCT. Two sports medicine doctors measured the proximal humerus with PB-QCT and PL-QCT without knowing each other's results. Among them, 100 proximal humerus were included in the inter-operative and intra-operative BMD measurements for evaluating the repeatability and reproducibility of PL-QCT and PB-QCT. RESULTS: A total of 188 patients with 376 shoulders were involved in this study. The consistency analysis indicated that the average bias between proximal humerus BMDs measured by PB-QCT and PL-QCT was 1.0 mg/cc (agreement range - 9.4 to 11.4; P > 0.05, no significant difference). Regression analysis between PB-QCT and PL-QCT indicated a good correlation (R-square is 0.9723). Short-term repeatability and reproducibility of proximal humerus BMDs measured by PB-QCT (CV: 5.10% and 3.41%) were slightly better than those of PL-QCT (CV: 6.17% and 5.64%). CONCLUSIONS: We evaluated the bone quality of the proximal humeral using chest CT through the semi-automatic PL-QCT system for the first time. Comparison between it and PB-QCT indicated that it could be a reliable shoulder BMD assessment tool with acceptable accuracy and precision. This study developed and verify a semi-automatic PL-QCT for assessment of proximal humeral bone density based on CT to assist in the assessment of proximal humeral osteoporosis and development of individualized treatment plans for shoulders.


Assuntos
Densidade Óssea , Osso Esponjoso , Úmero , Tomografia Computadorizada por Raios X , Humanos , Densidade Óssea/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Idoso , Reprodutibilidade dos Testes , Úmero/diagnóstico por imagem , Úmero/fisiologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiopatologia , Osso Esponjoso/fisiologia , Algoritmos , Imagens de Fantasmas , Adulto , Osteoporose/fisiopatologia , Osteoporose/diagnóstico por imagem , Idoso de 80 Anos ou mais
18.
Osteoporos Int ; 35(6): 1069-1075, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520505

RESUMO

The aim of this study was to determine whether the Bone Strain Index (BSI), a recent DXA-based bone index, is related to bone mechanical behavior, microarchitecture and finally, to determine whether BSI improves the prediction of bone strength and the predictive role of BMD in clinical practice. PURPOSE: Bone Strain Index (BSI) is a new DXA-based bone index that represents the finite element analysis of the bone deformation under load. The current study aimed to assess whether the BSI is associated with 3D microarchitecture and the mechanical behavior of human lumbar vertebrae. METHODS: Lumbar vertebrae (L3) were harvested fresh from 31 human donors. The anteroposterior BMC (g) and aBMD (g/cm2) of the vertebral body were measured using DXA, and then the BSI was automatically derived. The trabecular bone volume (Tb.BV/TV), trabecular thickness (Tb.Th), degree of anisotropy (DA), and structure model index (SMI) were measured using µCT with a 35-µm isotropic voxel size. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies under displacement control to assess failure load and stiffness. RESULTS: The BSI was significantly correlated with failure load and stiffness (r = -0.60 and -0.59; p < 0.0001), aBMD and BMC (r = -0.93 and -0.86; p < 0.0001); Tb.BV/TV and SMI (r = -0.58 and 0.51; p = 0.001 and 0.004 respectively). After adjustment for aBMD, the association between BSI and stiffness, BSI and SMI remained significant (r = -0.51; p = 0.004 and r = -0.39; p = 0.03 respectively, partial correlations) and the relation between BSI and failure load was close to significance (r = -0.35; p = 0.06). CONCLUSION: The BSI was significantly correlated with the microarchitecture and mechanical behavior of L3 vertebrae, and these associations remained statistically significant regardless of aBMD.


Assuntos
Absorciometria de Fóton , Densidade Óssea , Análise de Elementos Finitos , Vértebras Lombares , Estresse Mecânico , Microtomografia por Raio-X , Humanos , Vértebras Lombares/fisiologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiopatologia , Feminino , Densidade Óssea/fisiologia , Idoso , Masculino , Pessoa de Meia-Idade , Absorciometria de Fóton/métodos , Fenômenos Biomecânicos/fisiologia , Microtomografia por Raio-X/métodos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiologia , Suporte de Carga/fisiologia , Idoso de 80 Anos ou mais , Força Compressiva/fisiologia , Adulto , Anisotropia
19.
Osteoporos Int ; 35(6): 1061-1068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519739

RESUMO

We evaluated the relationship of bone mineral density (BMD) by computed tomography (CT), to predict fractures in a multi-ethnic population. We demonstrated that vertebral and hip fractures were more likely in those patients with low BMD. This is one of the first studies to demonstrate that CT BMD derived from thoracic vertebrae can predict future hip and vertebral fractures. PURPOSE/INTRODUCTION: Osteoporosis affects an enormous number of patients, of all races and both sexes, and its prevalence increases as the population ages. Few studies have evaluated the association between the vertebral trabecular bone mineral density(vBMD) and osteoporosis-related hip fracture in a multiethnic population, and no studies have demonstrated the predictive value of vBMD for fractures. METHOD: We sought to determine the predictive value of QCT-based trabecular vBMD of thoracic vertebrae derived from coronary artery calcium scan for hip fractures in the Multi-Ethnic Study of Atherosclerosis(MESA), a nationwide multicenter cohort included 6814 people from six medical centers across the USA and assess if low bone density by QCT can predict future fractures. Measures were done using trabecular bone measures, adjusted for individual patients, from three consecutive thoracic vertebrae (BDI Inc, Manhattan Beach CA, USA) from non-contrast cardiac CT scans. RESULTS: Six thousand eight hundred fourteen MESA baseline participants were included with a mean age of 62.2 ± 10.2 years, and 52.8% were women. The mean thoracic BMD is 162.6 ± 46.8 mg/cm3 (95% CI 161.5, 163.7), and 27.6% of participants (n = 1883) had osteoporosis (T-score 2.5 or lower). Over a median follow-up of 17.4 years, Caucasians have a higher rate of vertebral fractures (6.9%), followed by Blacks (4.4%), Hispanics (3.7%), and Chinese (3.0%). Hip fracture patients had a lower baseline vBMD as measured by QCT than the non-hip fracture group by 13.6 mg/cm3 [P < 0.001]. The same pattern was seen in the vertebral fracture population, where the mean BMD was substantially lower 18.3 mg/cm3 [P < 0.001] than in the non-vertebral fracture population. Notably, the above substantial relationship was unaffected by age, gender, race, BMI, hypertension, current smoking, medication use, or activity. Patients with low trabecular BMD of thoracic vertebrae showed a 1.57-fold greater risk of first hip fracture (HR 1.57, 95% CI 1.38-1.95) and a nearly threefold increased risk of first vertebral fracture (HR 2.93, 95% CI 1.87-4.59) compared to normal BMD patients. CONCLUSION: There is significant correlation between thoracic trabecular BMD and the incidence of future hip and vertebral fracture. This study demonstrates that thoracic vertebrae BMD, as measured on cardiac CT (QCT), can predict both hip and vertebral fractures without additional radiation, scanning, or patient burden. Osteopenia and osteoporosis are markedly underdiagnosed. Finding occult disease affords the opportunity to treat the millions of people undergoing CT scans every year for other indications.


Assuntos
Densidade Óssea , Osso Esponjoso , Fraturas do Quadril , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vértebras Torácicas , Tomografia Computadorizada por Raios X , Humanos , Densidade Óssea/fisiologia , Feminino , Masculino , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/fisiopatologia , Vértebras Torácicas/lesões , Fraturas por Osteoporose/fisiopatologia , Fraturas por Osteoporose/etnologia , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/etiologia , Idoso , Fraturas da Coluna Vertebral/fisiopatologia , Fraturas da Coluna Vertebral/etnologia , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/etiologia , Fraturas do Quadril/fisiopatologia , Fraturas do Quadril/etnologia , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/etiologia , Fraturas do Quadril/epidemiologia , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiopatologia , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Valor Preditivo dos Testes , Osteoporose/etnologia , Osteoporose/fisiopatologia , Osteoporose/diagnóstico por imagem , Medição de Risco/métodos , Incidência
20.
PLoS One ; 19(2): e0296390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315701

RESUMO

Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices' patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17ß-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Aromatase , Transplante de Medula Óssea , Ginecomastia , Infertilidade Masculina , Erros Inatos do Metabolismo , Camundongos , Animais , Masculino , Aromatase/genética , Aromatase/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Porosidade , Camundongos Endogâmicos C57BL , Estrogênios , Estradiol , Células da Medula Óssea/metabolismo , Coluna Vertebral/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...