Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.306
Filtrar
1.
J Environ Sci (China) ; 147: 571-581, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003072

RESUMO

Mining and tailings deposition can cause serious heavy metal(loids) pollution to the surrounding soil environment. Soil microorganisms adapt their metabolism to such conditions, driving alterations in soil function. This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids) exposure. The results showed that the diversity and abundance of nitrogen-cycling microorganisms showed negative feedback to heavy metal(loids) concentrations. Denitrifying microorganisms were shown to be the dominant microorganisms with over 60% of relative abundance and a complex community structure including 27 phyla. Further, the key bacterial species in the denitrification process were calculated using a random forest model, where the top three key species (Pseudomonas stutzei, Sphingobium japonicum and Leifsonia rubra) were found to play a prominent role in nitrite reduction. Functional gene analysis and qPCR revealed that nirK, which is involved in nitrite reduction, significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%. The experimental results confirmed that the activity of nitrite reductase (Nir) encoded by nirK in the soil was increased at high concentrations of heavy metal(loids). Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids), the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species. The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids).


Assuntos
Ouro , Metais Pesados , Mineração , Nitritos , Microbiologia do Solo , Poluentes do Solo , Metais Pesados/toxicidade , Ciclo do Nitrogênio , Desnitrificação , Nitrogênio , Solo/química
2.
Anal Chim Acta ; 1316: 342818, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969402

RESUMO

Interdigitated electrodes (IDEs) enable electrochemical signal enhancement through repeated reduction and oxidation of the analyte molecule. Porosity on these electrodes is often used to lower the impedance background. However, their high capacitive current and signal interferences with oxygen reduction limit electrochemical detection ability. We present utilization of alkanethiol modification on nanoporous gold (NPG) electrodes to lower their background capacitance and chemically passivate them from interferences due to oxygen reduction, while maintaining their fast electron transfer rates, as validated by lower separation between anodic and cathodic peaks (ΔE) and lower charge transfer resistance (Rct) values in comparison to planar gold electrodes. Redox amplification based on this modification enables sensitive detection of various small molecules, including pyocyanin, p-aminophenol, and selective detection of dopamine in the presence of ascorbic acid. Alkanethiol NPG arrays are applied as a multiplexed sensor testbed within a well plate to screen binding of various peptide receptors to the SARS COV2 S-protein by using a sandwich assay for conversion of PAPP (4-aminophenyl phosphate) to PAP (p-aminophenol), by the action of AP (alkaline phosphatase), which is validated against optical ELISA screens of the peptides. Such arrays are especially of interest in small volume analytical settings with complex samples, wherein optical methods are unsuitable.


Assuntos
Aminofenóis , Técnicas Eletroquímicas , Ouro , Microeletrodos , Nanoporos , Oxirredução , Ouro/química , Técnicas Eletroquímicas/instrumentação , Aminofenóis/química , Compostos de Sulfidrila/química , Dopamina/análise , Dopamina/química , Técnicas Biossensoriais , Limite de Detecção , SARS-CoV-2/isolamento & purificação , Humanos
3.
Anal Chim Acta ; 1316: 342827, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969404

RESUMO

BACKGROUND: In recent years, miRNAs have emerged as potentially valuable tumor markers, and their sensitive and accurate detection is crucial for early screening and diagnosis of tumors. However, the analysis of miRNAs faces significant challenges due to their short sequence, susceptibility to degradation, high similarity, low expression level in cells, and stringent requirements for in vitro research environments. Therefore, the development of sensitive and efficient new methods for the detection of tumor markers is crucial for the early intervention of related tumors. RESULTS: An ultrasensitive electrochemical/colorimetric dual-mode self-powered biosensor platform is established to detect microRNA-21 (miR-21) via a multi-signal amplification strategy. Gold nanoparticles (AuNPs) and VS4 nanosheets self-assembled 3D nanorods (VS4-Ns-Nrs) are prepared for constructing a superior performance enzyme biofuel cell (EBFC). The double-signal amplification strategy of Y-shaped DNA nanostructure and catalytic hairpin assembly (CHA) is adopted to further improve enhance the strength and specificity of the output signal. In addition, a capacitor is matched with EBFC to generate an instantaneous current that is amplified several times, and the output detection signal is improved once more. At the same time, electrochemical and colorimetric methods are used for dual-mode strategy to achieve the accuracy of detection. The linear range of detection is from 0.001 pg/mL to 1000 pg/mL, with a relatively low limit of detection (LOD) of 0.16 fg/mL (S/N = 3). SIGNIFICANCE: The established method enables accurate and sensitive detection of markers in patients with lung cancer, providing technical support and data reference for precise identification. It is anticipated to offer a sensitive and practical new technology and approach for early diagnosis, clinical treatment, and drug screening of cancer and other related major diseases.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Colorimetria , Técnicas Eletroquímicas , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , MicroRNAs , Humanos , Técnicas Biossensoriais/métodos , Neoplasias Pulmonares/diagnóstico , Técnicas Eletroquímicas/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Ouro/química , MicroRNAs/análise , Nanopartículas Metálicas/química , Limite de Detecção
4.
Anal Chim Acta ; 1316: 342838, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969428

RESUMO

The diagnosis of dengue virus (DENV) has been challenging particularly in areas far from clinical laboratories. Early diagnosis of pathogens is a prerequisite for the timely treatment and pathogen control. An ideal diagnostic for viral infections should possess high sensitivity, specificity, and flexibility. In this study, we implemented dual amplification involving Cas13a and Cas12a, enabling sensitive and visually aided diagnostics for the dengue virus. Cas13a recognized the target RNA by crRNA and formed the assembly of the Cas13a/crRNA/RNA ternary complex, engaged in collateral cleavage of nearby crRNA of Cas12a. The Cas12a/crRNA/dsDNA activator ternary complex could not be assembled due to the absence of crRNA of Cas12a. Moreover, the probe, with 5' and 3' termini labeled with FAM and biotin, could not be separated. The probes labeled with FAM and biotin, combined the Anti-FAM and the Anti-Biotin Ab-coated gold nanoparticle, and conformed sandwich structure on the T-line. The red line on the paper strip caused by clumping of AuNPs on the T-line indicated the detection of dengue virus. This technique, utilizing an activated Cas13a system cleaving the crRNA of Cas12a, triggered a cascade that amplifies the virus signal, achieving a low detection limit of 190 fM with fluorescence. Moreover, even at 1 pM, the red color on the T-line was easily visible by naked eyes. The developed strategy, incorporating cascade enzymatic amplification, exhibited good sensitivity and may serve as a field-deployable diagnostic tool for dengue virus.


Assuntos
Vírus da Dengue , Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , Proteínas Associadas a CRISPR/metabolismo , Nanopartículas Metálicas/química , Limite de Detecção , Ouro/química , Proteínas de Bactérias , Endodesoxirribonucleases
5.
Anal Chim Acta ; 1316: 342873, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969432

RESUMO

BACKGROUND: DNA walker-based strategies have gained significant attention in nucleic acid analysis. However, they face challenges related to balancing design complexity, sequence dependence, and amplification efficiency. Furthermore, most existing DNA walkers rely on walking and lock probes, requiring optimization of various parameters like DNA probe sequence, walking-to-lock probe ratio, lock probe length, etc. to achieve optimal performance. This optimization process is time-consuming and adds complexity to experiments. To enhance the performance and reliability of DNA walker nanomachines, there is a need for a simpler, highly sensitive, and selective alternative strategy. RESULTS: A sensitive and rapid miRNA analysis strategy named hairpin-shaped DNA aligner and nicking endonuclease-fueled DNA walker (HDA-NE DNA walker) was developed. The HDA-NE DNA walker was constructed by modifying hairpin-shaped DNA aligner (HDA) probe and substrate report (SR) probe on the surface of AuNPs. Under normal conditions, HDA and SR remained stable. However, in the presence of miR-373, HDA underwent a conformational transition to an activated structure to continuously cleave the SR probe on the AuNPs with the assistance of Nt.AlwI nicking endonuclease, resulting in sensitive miRNA detection with a detection limit as low as 0.23 pM. Additionally, the proposed HDA-NE DNA walker exhibited high selectivity in distinguishing miRNAs with single base differences and can effectively analyze miR-373 levels in both normal and breast cancer patient serums. SIGNIFICANCE: The proposed HDA-NE DNA walker system was activated by a conformational change of HDA probe only in the presence of the target miRNA, eliminating the need for a lock probe and without sequence dependence for SR probe. This strategy demonstrated a rapid reaction rate of only 30 min, minimal background noise, and a high signal-to-noise ratio (S/B) compared to capture/lock-based DNA walker. The method is expected to become a powerful tool and play an important role in disease diagnosis and precision therapy.


Assuntos
DNA , MicroRNAs , MicroRNAs/sangue , MicroRNAs/análise , Humanos , DNA/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Sondas de DNA/química , Sondas de DNA/genética , Endonucleases/metabolismo , Endonucleases/química , Sequências Repetidas Invertidas
6.
Anal Chim Acta ; 1316: 342800, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969435

RESUMO

Heavy metal pollution in the environment has become a significant global concern due to its detrimental effects on human health and the environment. In this study, we report an electrochemical aptasensor for the simultaneous detection of Hg2+ and Pb2+. Gold nanoflower/polyethyleneimine-reduced graphene oxide (AuNFs/PEI-rGO) was introduced on the surface of a gold electrode to improve sensing performance. The aptasensor is based on the formation of a T-Hg2+-T mismatch structure and specific cleavage of the Pb2+-dependent DNAzyme, resulting in a dual signal generated by the Exo III specific digestion of methylene blue (MB) labeled at the 3' end of probe DNA-1 and the reduction of the substrate ascorbic acid (AA) catalyzed by the signal label. The decrease of MB signal and the increase of AA oxidation peak was used to indicate the content of Hg2+ and Pb2+, respectively, with detection limits of 0.11 pM (Hg2+) and 0.093 pM (Pb2+). The aptasensor was also used for detecting Hg2+ and Pb2+ in water samples with good recoveries. Overall, this electrochemical aptasensor shows promising potential for sensitive and selective detection of heavy metals in environmental samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Exodesoxirribonucleases , Chumbo , Mercúrio , Estruturas Metalorgânicas , Poluentes Químicos da Água , Mercúrio/análise , Chumbo/análise , Chumbo/química , Estruturas Metalorgânicas/química , Aptâmeros de Nucleotídeos/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , Grafite/química , Ouro/química , Limite de Detecção , Eletrodos , DNA Catalítico/química
7.
Sci Rep ; 14(1): 15196, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956215

RESUMO

Despite recent advancements in peripheral nerve regeneration, the creation of nerve conduits with chemical and physical cues to enhance glial cell function and support axonal growth remains challenging. This study aimed to assess the impact of electrical stimulation (ES) using a conductive nerve conduit on sciatic nerve regeneration in a rat model with transection injury. The study involved the fabrication of conductive nerve conduits using silk fibroin and Au nanoparticles (AuNPs). Collagen hydrogel loaded with green fluorescent protein (GFP)-positive adipose-derived mesenchymal stem cells (ADSCs) served as the filling for the conduit. Both conductive and non-conductive conduits were applied with and without ES in rat models. Locomotor recovery was assessed using walking track analysis. Histological evaluations were performed using H&E, luxol fast blue staining and immunohistochemistry. Moreover, TEM analysis was conducted to distinguish various ultrastructural aspects of sciatic tissue. In the ES + conductive conduit group, higher S100 (p < 0.0001) and neurofilament (p < 0.001) expression was seen after 6 weeks. Ultrastructural evaluations showed that conductive scaffolds with ES minimized Wallerian degeneration. Furthermore, the conductive conduit with ES group demonstrated significantly increased myelin sheet thickness and decreased G. ratio compared to the autograft. Immunofluorescent images confirmed the presence of GFP-positive ADSCs by the 6th week. Locomotor recovery assessments revealed improved function in the conductive conduit with ES group compared to the control group and groups without ES. These results show that a Silk/AuNPs conduit filled with ADSC-seeded collagen hydrogel can function as a nerve conduit, aiding in the restoration of substantial gaps in the sciatic nerve with ES. Histological and locomotor evaluations indicated that ES had a greater impact on functional recovery compared to using a conductive conduit alone, although the use of conductive conduits did enhance the effects of ES.


Assuntos
Regeneração Nervosa , Nervo Isquiático , Alicerces Teciduais , Animais , Nervo Isquiático/fisiologia , Ratos , Alicerces Teciduais/química , Ouro/química , Ratos Sprague-Dawley , Seda/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Estimulação Elétrica/métodos , Fibroínas/química , Nanopartículas Metálicas/química , Masculino , Recuperação de Função Fisiológica , Regeneração Tecidual Guiada/métodos , Hidrogéis/química
8.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954045

RESUMO

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Escherichia coli O157 , Ouro , Limite de Detecção , Nanopartículas Metálicas , Leite , Análise Espectral Raman , Escherichia coli O157/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Ouro/química , Leite/microbiologia , Leite/química , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Animais , Catálise , Sequências Repetidas Invertidas , Contaminação de Alimentos/análise , Microbiologia da Água , Reprodutibilidade dos Testes
9.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955823

RESUMO

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos , Ouro , Análise Espectral Raman , Ácidos Borônicos/química , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Análise Espectral Raman/métodos , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Transferrina/análise , Transferrina/química , Impressão Molecular , Polímeros Molecularmente Impressos/química , Glicoproteínas/sangue , Glicoproteínas/química , Materiais Biomiméticos/química , Dopamina/sangue , Dopamina/análise , Compostos de Sulfidrila
10.
Mikrochim Acta ; 191(7): 431, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951263

RESUMO

A signal amplification electrochemical biosensor chip was developed to integrate loop-mediated isothermal amplification (LAMP) based on in situ nucleic acid amplification and methyl blue (MB) serving as the hybridization redox indicator for sensitive and selective foodborne pathogen detection without a washing step. The electrochemical biosensor chip was designed by a screen-printed carbon electrode modified with gold nanoparticles (Au NPs) and covered with polydimethylsiloxane membrane to form a microcell. The primers of the target were immobilized on the Au NPs by covalent attachment for in situ amplification. The electroactive MB was used as the electrochemical signal reporter and embedded into the double-stranded DNA (dsDNA) amplicons generated by LAMP. Differential pulse voltammetry was introduced to survey the dsDNA hybridization with MB, which differentiates the specifically electrode-unbound and -bound labels without a washing step. Pyrene as the back-filling agent can further improve response signaling by reducing non-specific adsorption. This method is operationally simple, specific, and effective. The biosensor showed a detection linear range of 102-107 CFU mL-1 with the limit of detection of 17.7 CFU mL-1 within 40 min. This method showed promise for on-site testing of foodborne pathogens and could be integrated into an all-in-one device.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Microbiologia de Alimentos , Ouro , Nanopartículas Metálicas , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Limite de Detecção , Eletrodos , DNA Bacteriano/análise , DNA Bacteriano/genética , Hibridização de Ácido Nucleico
11.
Mikrochim Acta ; 191(7): 438, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951285

RESUMO

A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.


Assuntos
Benzidinas , Colorimetria , Ouro , Peróxido de Hidrogênio , Limite de Detecção , Platina , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Colorimetria/métodos , Ouro/química , Platina/química , Porosidade , Benzidinas/química , Peróxido de Hidrogênio/química , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Vancomicina/química , Técnicas Biossensoriais/métodos , Catálise , Humanos
12.
Mikrochim Acta ; 191(7): 434, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951317

RESUMO

An enhanced lateral flow assay (LFA) is presented for rapid and highly sensitive detection of acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens with gold nanoflowers (Au NFs) as signaling markers and gold enhancement to amplify the signal intensities. First, the effect of the morphology of gold nanomaterials on the sensitivity of LFA detection was investigated. The results showed that Au NFs prepared by the seed growth method showed a 5-fold higher detection sensitivity than gold nanoparticles (Au NPs) of the same particle size, which may benefit from the higher extinction coefficient and larger specific surface area of Au NFs. Under the optimized experimental conditions, the Au NFs-based LFA exhibited a detection limit (LOD) of 25 pg mL-1 for N protein using 135 nm Au NFs as the signaling probes. The signal was further amplified by using a gold enhancement strategy, and the LOD for the detection of N protein achieved was 5 pg mL-1. The established LFA also exhibited good repeatability and stability and showed applicability in the diagnosis of SARS-CoV-2 infection.


Assuntos
Antígenos Virais , Proteínas do Nucleocapsídeo de Coronavírus , Ouro , Limite de Detecção , Nanopartículas Metálicas , SARS-CoV-2 , Ouro/química , SARS-CoV-2/imunologia , Nanopartículas Metálicas/química , Humanos , Antígenos Virais/análise , Antígenos Virais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Fosfoproteínas/imunologia , Fosfoproteínas/análise , Fosfoproteínas/química , COVID-19/diagnóstico , COVID-19/virologia , Imunoensaio/métodos , Teste Sorológico para COVID-19/métodos
13.
Environ Geochem Health ; 46(9): 303, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001906

RESUMO

Mercury (Hg) pollution around artisanal and small-scale gold mining (ASGM) areas has been of much concern. Many studies have reported elevated Hg concentrations in environmental media, but studies on dust relating to inhalation exposure of Hg around ASGM area are limited. In this study, we investigated Hg in indoor and outdoor dust to reveal environmental and human health risk around ASGM in Amansie West district, Ghana. Indoor and outdoor dust samples were collected from Manso Abore and Manso Nkwanta in Ashanti Region. Concentration of Hg in the samples were analyzed using a direct Hg analyzer. The mean and median value of Hg concentration in the indoor dust (n = 31) were 2.2 ± 3.6 mg/kg and 0.72 mg/kg respectively while that of the outdoor dust (n = 60) were 0.19 ± 0.48 mg/kg and 0.042 mg/kg, respectively. The mean and median Hg concentration in indoor dust were about 11 and 17 times higher respectively than that in the outdoor dust. The Hg concentration in the indoor dust was statistically significantly higher than that of the non-miner in Manso Abore (p < 0.05) but was not significant in Manso Nkwanta, probably due to higher mining activity. The geo-accumulation index of the outdoor dust ranged from unpolluted to extremely polluted while that of the indoor dust ranged from moderately polluted to extremely polluted. Health risk assessments suggested that there was no potential non-carcinogenic health effect for Hg exposure relating to the dust to residents living in rooms of miners and non-miners.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Ouro , Mercúrio , Mineração , Poeira/análise , Gana , Mercúrio/análise , Medição de Risco , Humanos , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Exposição Ambiental , Poluentes Atmosféricos/análise
14.
PLoS One ; 19(7): e0304670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968211

RESUMO

In gold nanoparticle-enhanced radiotherapy, intravenously administered nanoparticles tend to accumulate in the tumor tissue by means of the so-called permeability and retention effect and upon irradiation with x-rays, the nanoparticles release a secondary electron field that increases the absorbed dose that would otherwise be obtained from the interaction of the x-rays with tissue alone. The concentration of the nanoparticles in the tumor, number of nanoparticles per unit of mass, which determines the total absorbed dose imparted, can be measured via magnetic resonance or computed tomography images, usually with a resolution of several millimeters. Using a tumor vasculature model with a resolution of 500 nm, we show that for a given concentration of nanoparticles, the dose enhancement that occurs upon irradiation with x-rays greatly depends on whether the nanoparticles are confined to the tumor vasculature or have already extravasated into the surrounding tumor tissue. We show that, compared to the reference irradiation with no nanoparticles present in the tumor model, irradiation with the nanoparticles confined to the tumor vasculature, either in the bloodstream or attached to the inner blood vessel walls, results in a two to three-fold increase in the absorbed dose to the whole tumor model, with respect to an irradiation when the nanoparticles have already extravasated into the tumor tissue. Therefore, it is not enough to measure the concentration of the nanoparticles in a tumor, but the location of the nanoparticles within each volume element of a tumor, be it inside the vasculature or the tumor tissue, needs to be determined as well if an accurate estimation of the resultant absorbed dose distribution, a key element in the success of a radiotherapy treatment, is to be made.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Animais , Camundongos , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem , Neoplasias/irrigação sanguínea , Humanos , Dosagem Radioterapêutica , Neovascularização Patológica/radioterapia , Neovascularização Patológica/diagnóstico por imagem
15.
Sci Rep ; 14(1): 15539, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969670

RESUMO

One of the significant challenges in organic cultivation of edible mushrooms is the control of invasive Trichoderma species that can hinder the mushroom production and lead to economic losses. Here, we present a novel loop-mediated isothermal amplification (LAMP) assay coupled with gold nanoparticles (AuNPs) for rapid colorimetric detection of Trichoderma spp. The specificity of LAMP primers designed on the tef1 gene was validated in silico and through gel-electrophoresis on Trichoderma harzianum and non-target soil-borne fungal and bacterial strains. LAMP amplification of genomic DNA templates was performed at 65 °C for only 30 min. The results were rapidly visualized in a microplate format within less than 5 min. The assay is based on salt-induced aggregation of AuNPs that is being prevented by the amplicons produced in case of positive LAMP reaction. As the solution color changes from red to violet upon nanoparticle aggregation can be observed with the naked eye, the developed LAMP-AuNPs assay can be easily operated to provide a simple initial screening for the rapid detection of Trichoderma in button mushroom cultivation substrate.


Assuntos
Agaricus , Colorimetria , Ouro , Nanopartículas Metálicas , Técnicas de Amplificação de Ácido Nucleico , Trichoderma , Ouro/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Nanopartículas Metálicas/química , Colorimetria/métodos , Trichoderma/genética , Trichoderma/isolamento & purificação , Agaricus/genética , DNA Fúngico/genética , Técnicas de Diagnóstico Molecular/métodos
16.
Mikrochim Acta ; 191(8): 450, 2024 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970684

RESUMO

Gold nanoclusters (AuNCs) possess weak intrinsic fluorescence, limiting their sensitivity in biosensing applications. This study addresses these limitations by developing a spatially confined dual-emission nanoprobe composed of silicon nanoparticles (SiNPs) and AuNCs. This amplified and stabilized fluorescence mechanism overcomes the limitations associated with using AuNCs alone, achieving superior sensitivity in the sensing platform. The nanoprobe was successfully employed for ratiometric detection of bleomycin (BLM) in serum samples, operating at an excitation wavelength of 365 nm, with emission wavelengths at 480 nm and 580 nm. The analytical performance of the system is distinguished by a linear detection range of 0-3.5 µM, an impressive limit of detection (LOD) of 35.27 nM, and exceptional recoveries ranging from 96.80 to 105.9%. This innovative approach significantly enhances the applicability and reliability of AuNC-based biosensing in complex biological media, highlighting its superior analytical capabilities.


Assuntos
Técnicas Biossensoriais , Ouro , Limite de Detecção , Nanopartículas Metálicas , Silício , Ouro/química , Silício/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Nanopartículas/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Humanos
17.
Environ Geochem Health ; 46(8): 291, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976115

RESUMO

Potential toxic elements emanating from extracted ores during gold processing present occupational and unintentional health hazards in communities, the general populace, and the environment. This study investigated the concentrations and potential health effects of metal content in the topsoils of Obuasi municipality, which has been mined for gold over the past century. Surface topsoil samples, sieved to 250 µm, were initially scanned for metals using x-ray fluorescence techniques, followed by confirmation via ICP-MS. In vitro bioaccessibility assays were conducted using standard methods. The geoaccumulation indices (Igeo) indicate high enrichment of As (Igeo = 6.28) and Cd (Igeo = 3.80) in the soils, especially in the eastern part of the municipality where illegal artisanal mining is prevalent. Additionally, the southern corridor, situated near a gold mine, exhibited significant levels of As and Mn. Results obtained for the total metal concentrations and contamination indices confirmed the elevation of the studied potential toxic elements in the Obuasi community. A hazard index value of 4.42 and 3.30 among children and adults, respectively, indicates that indigens, especially children, are susceptible to non-cancer health effects.


Assuntos
Ouro , Mineração , Poluentes do Solo , Humanos , Gana , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Criança , Adulto , Metais Pesados/análise , Disponibilidade Biológica , Arsênio/análise , Exposição Ambiental , Medição de Risco
18.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000548

RESUMO

Gold nanoparticles with sizes in the range of 5-15 nm are a standard method of providing fiducial markers to assist with alignment during reconstruction in cryogenic electron tomography. However, due to their high electron density and resulting contrast when compared to standard cellular or biological samples, they introduce artifacts such as streaking in the reconstructed tomograms. Here, we demonstrate a tool that automatically detects these nanoparticles and suppresses them by replacing them with a local background as a post-processing step, providing a cleaner tomogram without removing any sample relevant information or introducing new artifacts or edge effects from uniform density replacements.


Assuntos
Tomografia com Microscopia Eletrônica , Marcadores Fiduciais , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Algoritmos
19.
Luminescence ; 39(7): e4829, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004775

RESUMO

A ratio luminescence probe was developed for detecting Staphylococcus aureus (S. aureus) based on luminescence energy transfer (LET) using double-wavelength emission (550 nm and 812 nm) upconversion nanoparticles (UCNPs) as donor, gold nanoparticles (AuNPs) as acceptor and the aptamer for S. aureus as the specific recognition and link unit. The LET process could cause luminescence quenching because of the spectral overlap between the acceptor and the donor at 550 nm. In the presence of S. aureus, S. aureus selectively combined with the aptamer, and the AuNPs left the surface of UCNPs, which weakened the quenching effect and restored the luminescence of UCNPs. Based on this, the ratio detection was realized by monitoring the change of the luminescence signal of the probe at 550 nm and taking the luminescence signal at 812 nm as the reference signal. Crucially, the probe has a fast reaction speed, with a reaction time of 25 min, and the detection of S. aureus is realized in the concentration range of 5.0 × 103-3.0 × 105 CFU/ml, with the detection limit of 106 CFU/ml. Therefore, the ratio probe has great potential for detecting of S. aureus in food because of its high sensitivity, fast speed and good selectivity.


Assuntos
Aptâmeros de Nucleotídeos , Transferência de Energia , Ouro , Luminescência , Medições Luminescentes , Nanopartículas Metálicas , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção
20.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000351

RESUMO

This study assessed the biocompatibility of two types of nanogold composites: fibronectin-gold (FN-Au) and collagen-gold (Col-Au). It consisted of three main parts: surface characterization, in vitro biocompatibility assessments, and animal models. To determine the structural and functional differences between the materials used in this study, atomic force microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectrophotometry were used to investigate their surface topography and functional groups. The F-actin staining, proliferation, migration, reactive oxygen species generation, platelet activation, and monocyte activation of mesenchymal stem cells (MSCs) cultured on the FN-Au and Col-Au nanocomposites were investigated to determine their biological and cellular behaviors. Additionally, animal biocompatibility experiments measured capsule formation and collagen deposition in female Sprague-Dawley rats. The results showed that MSCs responded better on the FN-Au and Col-AU nanocomposites than on the control (tissue culture polystyrene) or pure substances, attributed to their incorporation of an optimal Au concentration (12.2 ppm), which induced significant surface morphological changes, nano topography cues, and better biocompatibility. Moreover, neuronal, endothelial, bone, and adipose tissues demonstrated better differentiation ability on the FN-Au and Col-Au nanocomposites. Nanocomposites have a crucial role in tissue engineering and even vascular grafts. Finally, MSCs were demonstrated to effectively enhance the stability of the endothelial structure, indicating that they can be applied as promising alternatives to clinics in the future.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Ouro , Células-Tronco Mesenquimais , Nanocompostos , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ouro/química , Animais , Nanocompostos/química , Diferenciação Celular/efeitos dos fármacos , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Feminino , Proliferação de Células/efeitos dos fármacos , Colágeno/química , Biopolímeros/química , Fibronectinas/metabolismo , Células Cultivadas , Nanopartículas Metálicas/química , Teste de Materiais , Engenharia Tecidual/métodos , Espécies Reativas de Oxigênio/metabolismo , Movimento Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...