Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.717
Filtrar
1.
Int Immunopharmacol ; 136: 112395, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38833845

RESUMO

Asthma is a long-term disease that causes airways swelling and inflammation and in turn airway narrowing. AdipoRonis an orally active synthetic small molecule that acts as a selective agonist at theadiponectin receptor 1 and 2. The aim of the current study is to delineate the protective effect and the potential underlying mechanism ofadipoRon inairway inflammationinduced byovalbumin (OVA) in comparison withdexamethasone. Adult maleSwiss Albino micewere sensitized to OVA on days 0 and 7, then challenged with OVA on days 14, 15 and 16. AdipoRon was administered orally for 6 days starting from the 11th day till the 16th and 1 h prior to OVA in the challenge days. Obtained results from asthmatic control group showed a significant decrease in serum adiponectin concentration, an increase in inflammatory cell counts inthe bronchoalveolar lavage fluid(BALF), CD68 protein expression, inflammatory cytokine concentration and oxidative stress as well. Administration of adipoRon enhanced antioxidant mechanisms limiting oxidative stress by significantly increasing reduced glutathione (GSH) pulmonary content, decreasing serum lactate dehydrogenase (LDH) together with malondialdehyde (MDA) significant reduction in lung tissue. In addition, it modulated the levels of serum immunoglobulin E (IgE), pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, nuclear factor kappa B (NF-κB) and the anti-inflammatory one IL-10 improving lung inflammation as revealed by histopathological evaluation. Furthermore, lung tissue expression of nuclear factor erythroid 2-related factor (Nrf2) and 5'AMP-activated protein kinase (AMPK) were significantly increased adipoRon. Notably, results of adipoRon received group were comparable to those of dexamethasone group. In conclusion, our study demonstrates that adipoRon can positively modulate adiponectin expression with activation of AMPK pathway and subsequent improvement in inflammatory and oxidative signaling.


Assuntos
Proteínas Quinases Ativadas por AMP , Asma , Modelos Animais de Doenças , Ovalbumina , Receptores de Adiponectina , Transdução de Sinais , Animais , Asma/tratamento farmacológico , Asma/imunologia , Asma/induzido quimicamente , Asma/metabolismo , Camundongos , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/metabolismo , Ovalbumina/imunologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Adiponectina , Antiasmáticos/uso terapêutico , Antiasmáticos/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Imunoglobulina E/sangue , Humanos , Dexametasona/uso terapêutico , Dexametasona/farmacologia , Piperidinas
2.
Immun Inflamm Dis ; 12(6): e1307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860753

RESUMO

BACKGROUND: The hygiene hypothesis suggests that early life exposure to helminth infections can reduce hypersensitivity in the immune system. OBJECTIVE: The present study aims to evaluate the effects of Toxocara cati (T. cati) somatic products on allergic airway inflammation. METHODS: Between 2018 and 2020, T. cati adult worms were collected from stray cats in Mashhad, Iran (31 out of 186 cats), and their somatic extract was collected. Thirty BALB/c mice were equally divided into three groups, including the OVA group (sensitized and challenged with ovalbumin), the somatic administered group (received somatic extract along with ovalbumin sensitization), and the PBS group (sensitized and challenged with phosphate buffer saline). Bronchoalveolar lavage (BAL) fluid was collected to assess the number of cells, and lung homogenates were prepared for cytokine analysis. Histopathological analysis of the lungs was performed, and inflammatory cells and mucus were detected. Cytokine levels (IL-4, IL-5, IL-10) were measured using enzyme-linked immunosorbent assay (ELISA), and ovalbumin-specific immunoglobulin E (IgE) levels were determined using a capture ELISA. RESULTS: The somatic group significantly decreased regarding the lung pathological changes, including peribronchiolitis, perivasculitis, and eosinophil influx, compared to the group treated with ovalbumin alone. These changes were accompanied by a decrease in proinflammatory cytokines IL-4 and IL-5 and an increase in the anti-inflammatory cytokine IL-10, indicating a shift toward a more balanced immune response. The number of inflammatory cells in the BAL fluid was also significantly reduced in the somatic group, indicating a decrease in inflammation. CONCLUSION: These preclinical findings suggest that in experimental models, T. cati somatic extract exhibits promising potential as a therapeutic agent for mitigating allergic airway inflammation. Its observed effects on immune response modulation and reduction of inflammatory cell infiltration warrant further investigation in clinical studies to assess its efficacy and safety in human patients.


Assuntos
Citocinas , Camundongos Endogâmicos BALB C , Toxocara , Animais , Camundongos , Toxocara/imunologia , Toxocara/efeitos dos fármacos , Citocinas/metabolismo , Citocinas/imunologia , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Ovalbumina/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/parasitologia , Pulmão/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/imunologia , Asma/imunologia , Asma/tratamento farmacológico , Modelos Animais de Doenças , Gatos , Feminino , Toxocaríase/tratamento farmacológico , Toxocaríase/imunologia , Toxocaríase/parasitologia
3.
Proc Natl Acad Sci U S A ; 121(25): e2322264121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865265

RESUMO

Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (µEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The µEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the µEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.


Assuntos
Eletroporação , Imunoterapia , Vacinas de DNA , Animais , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Eletroporação/métodos , Camundongos , Imunoterapia/métodos , Administração Cutânea , Neoplasias/terapia , Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Células Apresentadoras de Antígenos/imunologia , Feminino , Camundongos Endogâmicos C57BL , Humanos , Vacinação/métodos
4.
Cell Death Dis ; 15(6): 400, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849380

RESUMO

Emerging evidence demonstrates that pyroptosis has been implicated in the pathogenesis of asthma. Gasdermin D (GSDMD) is the pyroptosis executioner. The mechanism of GSDMD in asthma remains unclear. The aim of this study was to elucidate the potential role of GSDMD in asthmatic airway inflammation and remodeling. Immunofluorescence staining was conducted on airway epithelial tissues obtained from both asthma patients and healthy controls (HCs) to evaluate the expression level of N-GSDMD. ELISA was used to measure concentrations of cytokines (IL-1ß, IL-18, IL-17A, and IL-10) in serum samples collected from asthma patients and healthy individuals. We demonstrated that N-GSDMD, IL-18, and IL-1ß were significantly increased in samples with mild asthma compared with those from the controls. Then, wild type and Gsdmd-knockout (Gsdmd-/-) mice were used to establish asthma model. We performed histopathological staining, ELISA, and flow cytometry to explore the function of GSDMD in allergic airway inflammation and tissue remodeling in vivo. We observed that the expression of N-GSDMD, IL-18, and IL-1ß was enhanced in OVA-induced asthma mouse model. Gsdmd knockout resulted in attenuated IL-18, and IL-1ß production in both bronchoalveolar lavage fluid (BALF) and lung tissue in asthmatic mice. In addition, Gsdmd-/- mice exhibit a significant reduction in airway inflammation and remodeling, which might be associated with reduced Th17 inflammatory response and M2 polarization of macrophages. Further, we found that GSDMD knockout may improve asthmatic airway inflammation and remodeling through regulating macrophage adhesion, migration, and macrophage M2 polarization by targeting Notch signaling pathway. These findings demonstrate that GSDMD deficiency profoundly alleviates allergic inflammation and tissue remodeling. Therefore, GSDMD may serve as a potential therapeutic target against asthma.


Assuntos
Asma , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Ovalbumina , Proteínas de Ligação a Fosfato , Animais , Asma/genética , Asma/patologia , Asma/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Humanos , Remodelação das Vias Aéreas , Feminino , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Masculino , Citocinas/metabolismo , Piroptose , Pulmão/patologia , Pulmão/metabolismo , Gasderminas
5.
Biomed Res ; 45(3): 115-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839354

RESUMO

Mixed lymphocyte culture under the blockade of CD80/CD86-CD28 co-stimulation induces anergic (completely hyporesponsive) T cells with immune suppressive function (inducible suppressing T cells: iTS cells). Previously, iTS cell therapy has demonstrated outstanding benefits in clinical trials for organ transplantation. Here, we examined whether peptide antigen-specific iTS cells are inducible. DO 11.10 iTS cells were obtained from splenocytes of BALB/c DO 11.10 mice by stimulation with OVA peptide and antagonistic anti-CD80/CD86 mAbs. When DO 11.10 iTS or Foxp3- DO 11.10 iTS cells were stimulated with OVA, these cells produced IL-13, but not IL-4. DO 11.10 iTS cells decreased IL-4 and increased IL-13 production from OVA-stimulated naïve DO 11.10 splenocytes. When Foxp3+ DO 11.10 iTS cells were prepared, these cells significantly inhibited the production of IL-4 and IL-13 compared with freshly isolated Foxp3+ DO 11.10 T cells. Moreover, an increase in the population expressing OX40, ICOS, and 4-1BB suggested activation of Foxp3+ DO 11.10 iTS cells. Thus, blockade of CD80/CD86-CD28 co-stimulation during peptide antigen stimulation augments the inhibitory function of Foxp3+ regulatory T cells, and does not induce anergic Foxp3- conventional T cells. Peptide-specific Foxp3+ regulatory iTS cells could be useful for the treatment of allergic and autoimmune diseases without adverse effects.


Assuntos
Antígeno B7-1 , Antígeno B7-2 , Antígenos CD28 , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Camundongos , Antígeno B7-1/metabolismo , Antígeno B7-1/imunologia , Antígeno B7-2/metabolismo , Antígeno B7-2/imunologia , Camundongos Endogâmicos BALB C , Fatores de Transcrição Forkhead/metabolismo , Peptídeos/farmacologia , Peptídeos/imunologia , Ativação Linfocitária/imunologia , Interleucina-4/metabolismo , Interleucina-4/imunologia , Interleucina-13/metabolismo , Interleucina-13/imunologia , Ovalbumina/imunologia , Baço/imunologia , Baço/citologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/imunologia
6.
Respir Res ; 25(1): 230, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824593

RESUMO

BACKGROUND: Airway epithelium is an important component of airway structure and the initiator of airway remodeling in asthma. The changes of extracellular matrix (ECM), such as collagen deposition and structural disturbance, are typical pathological features of airway remodeling. Thus, identifying key mediators that derived from airway epithelium and capable of modulating ECM may provide valuable insights for targeted therapy of asthma. METHODS: The datasets from Gene Expression Omnibus database were analyzed to screen differentially expressed genes in airway epithelium of asthma. We collected bronchoscopic biopsies and serum samples from asthmatic and healthy subjects to assess lysyl oxidase like 2 (LOXL2) expression. RNA sequencing and various experiments were performed to determine the influences of LOXL2 knockdown in ovalbumin (OVA)-induced mouse models. The roles and mechanisms of LOXL2 in bronchial epithelial cells were explored using LOXL2 small interfering RNA, overexpression plasmid and AKT inhibitor. RESULTS: Both bioinformatics analysis and further experiments revealed that LOXL2 is highly expressed in airway epithelium of asthmatics. In vivo, LOXL2 knockdown significantly inhibited OVA-induced ECM deposition and epithelial-mesenchymal transition (EMT) in mice. In vitro, the transfection experiments on 16HBE cells demonstrated that LOXL2 overexpression increases the expression of N-cadherin and fibronectin and reduces the expression of E-cadherin. Conversely, after silencing LOXL2, the expression of E-cadherin is up-regulated. In addition, the remodeling and EMT process that induced by transforming growth factor-ß1 could be enhanced and weakened after LOXL2 overexpression and silencing in 16HBE cells. Combining the RNA sequencing of mouse lung tissues and experiments in vitro, LOXL2 was involved in the regulation of AKT signaling pathway. Moreover, the treatment with AKT inhibitor in vitro partially alleviated the consequences associated with LOXL2 overexpression. CONCLUSIONS: Taken together, the results demonstrated that epithelial LOXL2 plays a role in asthmatic airway remodeling partly via the AKT signaling pathway and highlighted the potential of LOXL2 as a therapeutic target for airway remodeling in asthma.


Assuntos
Remodelação das Vias Aéreas , Aminoácido Oxirredutases , Asma , Ovalbumina , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/biossíntese , Ovalbumina/toxicidade , Remodelação das Vias Aéreas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Humanos , Asma/patologia , Asma/metabolismo , Asma/enzimologia , Asma/genética , Transdução de Sinais/fisiologia , Feminino , Camundongos Endogâmicos BALB C , Masculino , Transição Epitelial-Mesenquimal/fisiologia
7.
Front Immunol ; 15: 1362404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745671

RESUMO

Introduction: The anti-inflammatory effect of green tea extract (GTE) has been confirmed in asthmatic mice, however, the pharmacological mechanism is not fully elucidated. Methods: To investigate the therapeutic efficacy of GTE in asthma and identify specific pathways, murine model of allergic asthma was established by ovalbumin (OVA) sensitization and the challenge for 4 weeks, with oral treatment using GTE and dexamethasone (DEX). Inflammatory cell counts, cytokines, OVA-specific IgE, airway hyperreactivity, and antioxidant markers in the lung were evaluated. Also, pulmonary histopathological analysis and western blotting were performed. In vitro, we established the model by stimulating the human airway epithelial cell line NCI-H292 using lipopolysaccharide, and treating with GTE and mitogen-activated protein kinases (MAPKs) inhibitors. Results: The GTE100 and GTE400 groups showed a decrease in airway hyperresponsiveness and the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) compared to the OVA group. GTE treatment also reduced interleukin (IL)-13, IL-5, and IL-4 levels in the BALF, and OVA-specific immunoglobulin E levels in the serum compared to those in the OVA group. GTE treatment decreased OVA-induced mucus secretion and airway inflammation. In addition, GTE suppressed the oxidative stress, and phosphorylation of MAPKs, which generally occurs after exposure to OVA. GTE administration also reduced matrix metalloproteinase-9 activity and protein levels. Conclusion: GTE effectively inhibited asthmatic respiratory inflammation and mucus hyperproduction induced by OVA inhalation. These results suggest that GTE has the potential to be used for the treatment of asthma.


Assuntos
Asma , Células Epiteliais , Metaloproteinase 9 da Matriz , Estresse Oxidativo , Extratos Vegetais , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Humanos , Extratos Vegetais/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Modelos Animais de Doenças , Chá/química , Feminino , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Citocinas/metabolismo , Ovalbumina/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
8.
Nat Commun ; 15(1): 4444, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789421

RESUMO

Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Mitocôndrias , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Respiração Celular , Linhagem Celular Tumoral , Feminino , Ovalbumina/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia
9.
Int Immunopharmacol ; 134: 112199, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713938

RESUMO

Asthma is a prevalent chronic respiratory disease, yet understanding its ecology and pathogenesis remains a challenge. Trim27, a ubiquitination ligase belonging to the TRIM (tripartite motif-containing) family, has been implicated in regulating multiple pathophysiological processes such as inflammation, oxidative stress, apoptosis, and cell proliferation. However, the role of Trim27 in asthma has not been investigated. Our study found that Trim27 expression significantly increases in the airway epithelium of asthmatic mice. Knockdown of Trim27 expression effectively relieved ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) and lung tissue histopathological changes. Moreover, Trim27 knockdown exhibited a significant reduction in airway inflammation and oxidative stress in asthmatic mice, and in vitro analysis confirmed the favorable effect of Trim27 deletion on inflammation and oxidative stress in mouse airway epithelial cells. Furthermore, our study revealed that deletion of Trim27 in MLE12 cells significantly decreased NLRP3 inflammasome activation, as evidenced by reduced expression of NLRP3, ASC, and pro-IL-1ß mRNA. This downregulation was reversed when Trim27, but not its mutant lacking ubiquitination ligase activity, was replenished in these cells. Consistent with these findings, protein levels of NLRP3, pro-caspase-1, pro-IL-1ß, cleaved-caspase-1, and cleaved-IL-1ß were higher in Trim27-replenished cells compared to cells expressing Trim27C/A. Functionally, the downregulation of IL-1ß and IL-18 levels induced by Trim27 deletion was rescued by replenishing Trim27. Overall, our findings provide evidence that Trim27 contributes to airway inflammation and oxidative stress in asthmatic mice via NLRP3 inflammasome activation, providing crucial insights into potential therapeutic interventions targeting Trim27 as a way to treat asthma.


Assuntos
Asma , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Animais , Asma/metabolismo , Asma/imunologia , Asma/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Linhagem Celular , Feminino , Modelos Animais de Doenças , Inflamação/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Proteínas com Motivo Tripartido , Proteínas de Ligação a DNA
10.
J Nanobiotechnology ; 22(1): 267, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764014

RESUMO

Enhancing immune response activation through the synergy of effective antigen delivery and immune enhancement using natural, biodegradable materials with immune-adjuvant capabilities is challenging. Here, we present NAPSL.p that can activate the Toll-like receptor 4 (TLR4) pathway, an amphiphilic exopolysaccharide, as a potential self-assembly adjuvant delivery platform. Its molecular structure and unique properties exhibited remarkable self-assembly, forming a homogeneous nanovaccine with ovalbumin (OVA) as the model antigen. When used as an adjuvant, NAPSL.p significantly increased OVA uptake by dendritic cells. In vivo imaging revealed prolonged pharmacokinetics of NAPSL. p-delivered OVA compared to OVA alone. Notably, NAPSL.p induced elevated levels of specific serum IgG and isotype titers, enhancing rejection of B16-OVA melanoma xenografts in vaccinated mice. Additionally, NAPSL.p formulation improved therapeutic effects, inhibiting tumor growth, and increasing animal survival rates. The nanovaccine elicited CD4+ and CD8+ T cell-based immune responses, demonstrating the potential for melanoma prevention. Furthermore, NAPSL.p-based vaccination showed stronger protective effects against influenza compared to Al (OH)3 adjuvant. Our findings suggest NAPSL.p as a promising, natural self-adjuvanting delivery platform to enhance vaccine design across applications.


Assuntos
Adjuvantes Imunológicos , Melanoma Experimental , Camundongos Endogâmicos C57BL , Ovalbumina , Probióticos , Animais , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Probióticos/farmacologia , Melanoma Experimental/imunologia , Feminino , Células Dendríticas/imunologia , Receptor 4 Toll-Like/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Linfócitos T CD4-Positivos/imunologia
11.
Sci Rep ; 14(1): 11999, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796469

RESUMO

Allergic rhinitis is a prevalent inflammatory condition that impacts individuals of all age groups. Despite reports indicating the potential of berberine in alleviating allergic rhinitis symptoms, the specific molecular mechanisms and therapeutic targets of berberine remain unclear. This research aims to explore the pharmacological mechanism of berberine in the treatment of allergic rhinitis through bioinformatic analyses and experimental validation. The research utilized public databases to identify potential targets of berberine. Furthermore, differentially expressed genes (DEGs) related to allergic rhinitis were pinpointed from the GSE52804 dataset. Through bioinformatics techniques, the primary targets were discovered and key KEGG and GO-BP pathways were established. To confirm the therapeutic mechanisms of berberine on allergic rhinitis, an OVA-induced allergic rhinitis model was developed using guinea pigs. We identified 32 key genes responsible for the effectiveness of berberine in treating allergic rhinitis. In addition, five central genes (Alb, Il6, Tlr4, Ptas2, and Il1b) were pinpointed. Further examination using KEGG and GO-BP pathways revealed that the main targets were primarily involved in pathways such as NF-kappa B, IL-17, TNF, and inflammatory response. Molecular docking analysis demonstrated that berberine exhibited strong affinity towards these five key targets. Furthermore, the expression levels of IL-6, TLR4, PTGS2, and IL-1ß were significantly upregulated in the model group but downregulated following berberine treatment. This research has revealed the mechanism through which berberine combats allergic rhinitis and has identified its potential to regulate pathways linked to inflammation. These discoveries provide valuable insights for the development of novel medications for the treatment of allergic rhinitis.


Assuntos
Berberina , Biologia Computacional , Simulação de Acoplamento Molecular , Rinite Alérgica , Berberina/farmacologia , Berberina/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/genética , Rinite Alérgica/metabolismo , Animais , Cobaias , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Masculino , Ovalbumina
12.
Mol Biol Rep ; 51(1): 698, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811424

RESUMO

BACKGROUND: Existing investigations suggest that the blockade of phosphoinositide 3-kinase (PI3K) activity contributes to inflammatory solution in allergic asthma, but whether this inhibition directly attenuates neutrophilic airway inflammation in vivo is still unclear. We explored the pharmacological effects of LY294002, a specific inhibitor of PI3K on the progression of neutrophilic airway inflammation and investigated the underlying mechanism. METHODS AND RESULTS: Female C57BL/6 mice were intranasally sensitized with ovalbumin (OVA) together with lipopolysaccharide (LPS) on days 0 and 6, and challenged with OVA on days 14-17 to establish a neutrophilic airway disease model. In the challenge phase, a subset of mice was treated intratracheally with LY294002. We found that treatment of LY294002 attenuates clinic symptoms of inflammatory mice. Histological studies showed that LY294002 significantly inhibited inflammatory cell infiltration and mucus production. The treatment also significantly inhibited OVA-LPS induced increases in inflammatory cell counts, especially neutrophil counts, and IL-17 levels in bronchoalveolar lavage fluid (BALF). LY294002 treated mice exhibited significantly increased IL-10 levels in BALF compared to the untreated mice. In addition, LY294002 reduced the plasma concentrations of IL-6 and IL-17. The anti-inflammatory effects of LY29402 were correlated with the downregulation of NLRP3 inflammasome. CONCLUSIONS: Our findings suggested that LY294002 as a potential pharmacological target for neutrophilic airway inflammation.


Assuntos
Asma , Líquido da Lavagem Broncoalveolar , Cromonas , Modelos Animais de Doenças , Inflamassomos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Morfolinas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos , Ovalbumina , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Feminino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cromonas/farmacologia , Morfolinas/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Interleucina-17/metabolismo
13.
Int Immunopharmacol ; 136: 112329, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815351

RESUMO

PURPOSE: Our team identified a new cardiac glycoside, Toxicarioside H (ToxH), in a tropical plant. Previous research has indicated the potential of cardenolides in mitigating inflammation, particularly in the context of NETosis. Therefore, this study sought to examine the potential of ToxH in attenuating allergic airway inflammation by influencing the immune microenvironment. METHODS: An OVA-induced airway inflammation model was established in BALB/c mice. After the experiment was completed, serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected and further examined using H&E and PAS staining, flow cytometry, immunofluorescence observation, and Western blot analysis. RESULTS: Treatment with ToxH was found to be effective in reducing airway inflammation and mucus production. This was accompanied by an increase in Th1 cytokines (IFN-γ, IL-2, and TNF-ß), and the Th17 cytokine IL-17, while levels of Th2 cytokines (IL-4, IL-5, and IL-13) and Treg cytokines (IL-10 and TGF-ß1) were decreased in both the bronchoalveolar lavage fluid (BALF) and the CD45+ immune cells in the lungs. Additionally, ToxH inhibited the infiltration of inflammatory cells and decreased the number of pulmonary CD44+ memory T cells, while augmenting the numbers of Th17 and Treg cells. Furthermore, the neutrophil elastase inhibitor GW311616A was observed to suppress airway inflammation and mucus production, as well as alter the secretion of immune Th1, Th2, Th17, and Treg cytokines in the lung CD45+ immune cells. Moreover, our study also demonstrated that treatment with ToxH efficiently inhibited ROS generation, thereby rectifying the dysregulation of immune cells in the immune microenvironment in OVA-induced allergic asthma. CONCLUSIONS: Our findings indicate that ToxH could serve as a promising therapeutic intervention for allergic airway inflammation and various other inflammatory disorders. Modulating the balance of Th1/Th2 and Treg/Th17 cells within the pulmonary immune microenvironment may offer an effective strategy for controlling allergic airway inflammation.


Assuntos
Citocinas , Pulmão , Camundongos Endogâmicos BALB C , Ovalbumina , Animais , Ovalbumina/imunologia , Citocinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Camundongos , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Modelos Animais de Doenças , Asma/imunologia , Asma/tratamento farmacológico , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Muco/metabolismo , Muco/imunologia , Alérgenos/imunologia
14.
J Agric Food Chem ; 72(23): 13320-13327, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819406

RESUMO

Conventional radical grafting of proteins with catechins consumed the most antioxidant-active hydroxyls during grafting, thus failing to effectively retain antioxidant activity in conjugates. In this study, a novel strategy of selective protection of the most reactive hydroxyls before grafting was developed to preserve the most reactive hydroxyls and effectively retain antioxidant activity in conjugates. Selective protection of the most reactive hydroxyls of (-)-epigallocatechin-3-gallate (EGCG) was successfully realized in a yield of 87% applying trimethyl orthopropionate and catalytic calcium triflate at 40 °C. The novel ovalbumin (OVA)-EGCG conjugate with 93% grafting ratio was prepared by radical grafting with the selectively protected EGCG and subsequent deprotection. Substantially enhanced antioxidant performance of the novel OVA-EGCG conjugate in liposomes was unveiled with notably reduced curcumin degradation and leakage. The strategy and approaches developed in this study will be valuable to effectively improve the antioxidant activities of protein-catechin grafting conjugates.


Assuntos
Antioxidantes , Catequina , Ovalbumina , Ovalbumina/química , Catequina/química , Catequina/análogos & derivados , Antioxidantes/química , Lipossomos/química
15.
Environ Health Perspect ; 132(5): 54003, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814861

RESUMO

The anticaking agent, used in a wide variety of powdered food products, interfered with immune tolerance of ovalbumin, a model antigen; and it worsened gut inflammation in a mouse model of celiac disease.


Assuntos
Hipersensibilidade Alimentar , Dióxido de Silício , Animais , Camundongos , Dióxido de Silício/toxicidade , Ovalbumina , Aditivos Alimentares/toxicidade , Doença Celíaca/induzido quimicamente , Modelos Animais de Doenças , Nanopartículas/toxicidade
16.
J Control Release ; 370: 379-391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697317

RESUMO

Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.


Assuntos
Vacinas Anticâncer , Galactosilceramidas , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Animais , Galactosilceramidas/administração & dosagem , Galactosilceramidas/química , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Feminino , Nanopartículas/química , Nanopartículas/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Vacinas de mRNA , Adjuvantes Imunológicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , RNA Mensageiro/administração & dosagem , Camundongos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Lipídeos/química , Lipossomos
17.
Am J Vet Res ; 85(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697189

RESUMO

OBJECTIVE: To examine the potential of galangin in a mouse model of ovalbumin (OVA)-induced allergic rhinitis (AR), as chronic AR, induced by immunoglobulin-E (IgE), leads to histamine release and nasal inflammation, and although galangin exhibits antiasthmatic and anti-inflammatory potential, its effect on AR is yet to be investigated. ANIMALS: 126 BALB/c mice. METHODS: AR induction involved sensitizing female mice with OVA (5%, 500 µL, IP) for 14 days. Post OVA challenge, the mice were divided into 7 groups (n = 18/group), including normal, AR control, montelukast (10 mg/kg), galangin (5, 10, and 20 mg/kg), and per se (galangin [20 mg/kg] treatment. Various outcomes were evaluated, including nasal symptoms, histopathology, biochemistry, and nasal lavage fluid inflammatory cytokines and signaling pathways in nasal mucosal to assess galangin potential in AR. RESULTS: In AR mice, galangin (10 and 20 mg/kg) significantly (P < .05) reduced sneezing, rubbing, and nasal discharge post-OVA challenge. Galangin treatment attenuated (P < .05) elevated serum histamine, ß-hexosaminidase, IgE, and Immunoglobulin G1 levels in AR control mice. Additionally, galangin significantly (P < .05) decreased OVA-induced alterations in IL-4, IL-6, IL-13, and interferon-γ levels in nasal lavage fluid compared to AR control mice. Western blot analysis demonstrated that galangin lowered OVA-induced AR by significantly (P < .05) downregulating the phosphorylated protein kinase B and mammalian target of rapamycin-protein expressions while markedly (P < .05) upregulating the glycogen synthase kinase-3ß protein expressions in nasal mucosal. Galangin also significantly ameliorated (P < .05) the OVA-induced histological aberrations in the nasal mucosa, reflected by reduced eosinophil infiltration, hyperplasia, and edema. CLINICAL RELEVANCE: Galangin exhibits antihistaminic and anti-inflammatory effects in AR mice by regulating IgE-mediated histamine and inflammatory release and modulating the phosphatidylinositol 3-kinase/Ak strain transforming/mammalian target of rapamycin pathways.


Assuntos
Flavonoides , Camundongos Endogâmicos BALB C , Ovalbumina , Rinite Alérgica , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Camundongos , Feminino , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Modelos Animais de Doenças , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Citocinas/metabolismo , Mucosa Nasal/efeitos dos fármacos , Imunoglobulina E/sangue , Acetatos , Ciclopropanos , Sulfetos
18.
Nanomedicine ; 58: 102749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719107

RESUMO

New adjuvant strategies are needed to improve protein-based subunit vaccine immunogenicity. We examined the potential to use nanostructure of 6-O-ascorbyl palmitate to formulate ovalbumin (OVA) protein and an oligodeoxynucleotide (CpG-ODN) (OCC). In mice immunized with a single dose, OCC elicited an OVA-specific immune response superior to OVA/CpG-ODN solution (OC). Rheological studies demonstrated OCC's self-assembling viscoelastic properties. Biodistribution studies indicated that OCC prolonged OVA and CpG-ODN retention at injection site and lymph nodes, reducing systemic spread. Flow-cytometry assays demonstrated that OCC promoted OVA and CpG-ODN co-uptake by Ly6ChiCD11bhiCD11c+ monocytes. OCC and OC induced early IFN-γ in lymph nodes, but OCC led to higher concentration. Conversely, mice immunized with OC showed higher serum IFN-γ concentration compared to those immunized with OCC. In mice immunized with OCC, NK1.1+ cells were the IFN-γ major producers, and IFN-γ was essential for OVA-specific IgG2c switching. These findings illustrate how this nanostructure improves vaccine's response.


Assuntos
Nanoestruturas , Oligodesoxirribonucleotídeos , Ovalbumina , Vacinas de Subunidades Antigênicas , Animais , Nanoestruturas/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/farmacocinética , Camundongos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacocinética , Ovalbumina/imunologia , Ovalbumina/química , Feminino , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacocinética , Interferon gama/metabolismo , Distribuição Tecidual , Ácido Ascórbico/análogos & derivados
19.
Theranostics ; 14(7): 2897-2914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773985

RESUMO

Background: IL-35 potently inhibits immune responses both in vivo and in vitro. However, the specific characteristics of IL-35-producing cells, including their developmental origin, cellular phenotype, and function, are unknown. Methods: By using a novel IL-35 reporter mouse (Ebi3-Dre-Thy1.1) and double transgenic fate-mapping reporter mice (35EbiT-Rosa26-rox-tdTomato reporter mice or Foxp3 fate-mapping system), we tracked and analyzed the differentiation and developmental trajectories of Tr35 cells in vivo. And then we investigated the therapeutic effects of OVA-specific Tr35 cells in an OVA-induced allergic airway disease model. Results: We identified a subset of cells, denoted Tr35 cells, that secrete IL-35 but do not express Foxp3. These cells have high expression of molecules associated with T-cell activation and can inhibit T-cell proliferation in vitro. Our analyses showed that Tr35 cells are a distinct subpopulation of cells that are independent of Tr1 cells. Tr35 cells exhibit a unique gene expression profile and tissue distribution. The presence of Thy1.1 (Ebi3) expression in Tr35 cells indicates their active secretion of IL-35. However, the proportion of ex-Tr35 cells (Thy1.1-) is significantly higher compared to Tr35 cells (Thy1.1+). This suggests that Tr35 cells possess the ability to regulate IL-35 expression rapidly in vivo. Tr35 cells downregulated the expression of the inflammatory cytokines IL-4, IFN-γ and IL-17A. However, once Tr35 cells lost IL-35 expression and became exTr35 cells, the expression of inflammatory cytokines was upregulated. Importantly, our findings indicate that Tr35 cells have therapeutic potential. In an OVA-induced allergic airway disease mouse model, Tr35 cell reinfusion significantly reduced airway hyperresponsiveness and histopathological airway and lung inflammation. Conclusions: We have identified a subset of Tregs, Tr35 cells, that are distinct from Tr1 cells. Tr35 cells can dynamically regulate the secretion of inflammatory cytokines by controlling IL-35 expression to regulate inflammatory immune responses.


Assuntos
Interleucinas , Camundongos Transgênicos , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Interleucinas/metabolismo , Interleucinas/genética , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Modelos Animais de Doenças , Plasticidade Celular , Camundongos Endogâmicos C57BL , Ativação Linfocitária , Ovalbumina/imunologia , Proliferação de Células , Diferenciação Celular , Feminino
20.
Vaccine ; 42(17): 3721-3732, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38719694

RESUMO

Nanotechnology has emerged as a promising avenue for enhancing the efficacy of vaccine delivery systems. This study investigates the utilization of nanogels as carriers for the model antigen ovalbumin, with a focus on in vivo assessments in equine and murine models. Nanogels, owing to their biocompatibility and tunable physicochemical properties, offer a versatile platform for efficient antigen encapsulation and controlled release. The encapsulation efficiency and physicochemical characteristics of ovalbumin-loaded nanogels were comprehensively characterized. In vitro biocompatibility was evaluated, finding excellent properties of these nanogels. In vivo evaluations were conducted on both equine and murine subjects, assessing immunogenicity through antibody and splenic cell response. Furthermore, the study propose the potential use of nanogels in tailoring immune responses through the modulation of antigen release kinetics. The results obtained in the in vitro assays showed an increase in the uptake of nanogels by APCs compared to free antigen (OVA). In mice, an absence of inflammatory response in the inoculation site was observed, without systemic damage in the evaluated organs. In addition, non-significant humoral response was found nor cellular proliferation and proinflammatory cytokine production, compared with a traditional adjuvant as aluminum hydroxide, in both animal models. These findings allow further insights into nanogel-based delivery systems and offer valuable insights into their application in various animal models. In conclusion, this research establishes the utility of nanogels as effective carriers for antigens-based vaccines, with interesting biocompatibility properties and highly taken affinity by antigen-presenting cells, without inducing inflammation at the injection site. The study underscores the potential of nanogel technology in revolutionizing vaccine design and highlights the importance of tailored approaches for diverse target species.


Assuntos
Ovalbumina , Animais , Camundongos , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Cavalos/imunologia , Nanogéis/química , Vacinas/imunologia , Vacinas/administração & dosagem , Feminino , Portadores de Fármacos/química , Antígenos/imunologia , Antígenos/administração & dosagem , Camundongos Endogâmicos BALB C , Materiais Biocompatíveis/química , Adjuvantes Imunológicos/administração & dosagem , Citocinas/metabolismo , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Polietilenoimina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA