Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.627
Filtrar
1.
Drug Dev Res ; 85(5): e22231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38956926

RESUMO

The close association between inflammation and cancer inspired the synthesis of a series of 1,3,4-oxadiazole derivatives (compounds H4-A-F) of 6-methoxynaphtalene. The chemical structures of the new compounds were validated utilizing Fourier-transform infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopic techniques and CHN analysis. Computer-aided drug design methods were used to predict the compounds biological target, ADMET properties, toxicity, and to evaluate the molecular similarities between the design compounds and erlotinib, a standard epidermal growth factor receptor (EGFR) inhibitor. The antiproliferative effects of the new compounds were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, cell cycle analysis, apoptosis detection by microscopy, quantitative reverse transcription-polymerase chain reaction, and immunoblotting, and EGFR enzyme inhibition assay. In silico analysis of the new oxadiazole derivatives indicated that these compounds target EGFR, and that compounds H4-A, H4-B, H4-C, and H4-E show similar molecular properties to erlotinib. Additionally, the results indicated that none of the synthesized compounds are carcinogenic, and that compounds H4-A, H4-C, and H4-F are nontoxic. Compound H4-A showed the best-fit score against EGFR pharmacophore model, however, the in vitro studies indicated that compound H4-C was the most cytotoxic. Compound H4-C caused cytotoxicity in HCT-116 colorectal cancer cells by inducing both apoptosis and necrosis. Furthermore, compounds H4-D, H4-C, and H4-B had potent inhibitory effect on EGFR tyrosine kinase that was comparable to erlotinib. The findings of this inquiry offer a basis for further investigation into the differences between the synthesized compounds and erlotinib. However, additional testing will be needed to assess all of these differences and to identify the most promising compound for further research.


Assuntos
Antineoplásicos , Receptores ErbB , Simulação de Acoplamento Molecular , Naproxeno , Oxidiazóis , Receptores ErbB/antagonistas & inibidores , Humanos , Oxidiazóis/farmacologia , Oxidiazóis/química , Oxidiazóis/síntese química , Naproxeno/farmacologia , Naproxeno/análogos & derivados , Naproxeno/química , Naproxeno/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proliferação de Células/efeitos dos fármacos
2.
Sci Rep ; 14(1): 15100, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956204

RESUMO

The design and radiosynthesis of [18F]NT376, a high potency inhibitor of class-IIa histone deacetylases (HDAC) is reported. We utilized a three-step radiochemical approach that led to the radiosynthesis of [18F]NT376 in a good radiochemical yield, (17.0 ± 3%, decay corrected), high radiochemical purity (> 97%) and relatively high molar activity of 185.0 GBq/µmol (> 5.0 Ci/µmol). The repositioning of the 18F-radiolabel into a phenyl ring (18F-Fluoro-aryl) of the class-IIa HDAC inhibitor avoided the shortcomings of the direct radiolabeling of the 5-trifluoromethyl-1,2,4-oxadiazole moiety that was reported by us previously and was associated with low molar activity (0.74-1.51 GBq/µmol, 20-41 mCi/µmol). This radiochemical approach could find a wider application for radiolabeling similar molecules with good radiochemical yield and high molar activity.


Assuntos
Radioisótopos de Flúor , Inibidores de Histona Desacetilases , Compostos Radiofarmacêuticos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Radioisótopos de Flúor/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Desenho de Fármacos , Humanos , Radioquímica/métodos , Oxidiazóis/química , Oxidiazóis/síntese química
3.
J Med Chem ; 67(12): 10076-10095, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38847803

RESUMO

The NAD+-dependent lysine deacylase sirtuin 2 (Sirt2) is involved in multiple pathological conditions such as cancer. Targeting Sirt2 has thus received an increased interest for therapeutic purposes. Furthermore, the orthologue from Schistosoma mansoni (SmSirt2) has been considered for the potential treatment of the neglected tropical disease schistosomiasis. We previously identified a 1,2,4-oxadiazole-based scaffold from the screening of the "Kinetobox" library as a dual inhibitor of human Sirt2 (hSirt2) and SmSirt2. Herein, we describe the structure-activity studies on 1,2,4-oxadiazole-based analogues, which are potent inhibitors of human Sirt2 deacetylation. As proposed by docking studies, a substrate-competitive and cofactor-noncompetitive binding mode of inhibition could be determined in vitro via binding assays and kinetic analysis and further confirmed by a crystal structure of an oxadiazole inhibitor in complex with hSirt2. Optimized analogues reduced cell viability and inhibited prostate cancer cell migration, in correlation with Sirt2 deacetylase inhibition both in vitro and in cells.


Assuntos
Oxidiazóis , Sirtuína 2 , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo , Oxidiazóis/farmacologia , Oxidiazóis/química , Oxidiazóis/síntese química , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Movimento Celular/efeitos dos fármacos
4.
Sci Total Environ ; 945: 173817, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880139

RESUMO

Tioxazafen (TXF) is the first 1,2,4-oxadiazole nematicide. In the present study, the aqueous degradation of TXF was investigated in terms of hydrolysis and photolysis. Under the irradiation of simulated sunlight, TXF degraded very fast in ultrapure water and buffers with half-lives (t1/2s) <8.3 min. A sole photoproduct (PP) PP228a was isolated, and identified by spectroscopic means (UV, IR, HRMS, and 1H NMR) to be the thiophen-3-yl isomer converted from its thiophen-2-yl parent. Comparing with TXF, PP228a had quite extended t1/2s ranging from 6.9 to 7.9 d. The photolysis kinetics of TXF and PP228a showed no pH-dependence, and varied for each individual compound as affected by nitrate, fulvic acid, and humic acid. Besides, both compounds were hydrolytically stable. 6 PPs of PP228a were identified, with two of them being its isomers. The mechanisms involved in the process included the biradical photosensitization, photoinduced electron transfer, and ring contraction-ring expansion reactions. The 48 h-EC50 to Daphnia magna was 0.808 mg/L for PP228a comparing to >1.12 mg/L for TXF, while the results of Vibrio fischeri assays indicated that one or more PPs of PP228a might have higher toxicity.


Assuntos
Fotólise , Poluentes Químicos da Água , Cinética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Oxidiazóis/química , Oxidiazóis/toxicidade , Daphnia/efeitos dos fármacos , Animais
5.
Chem Biol Drug Des ; 103(6): e14552, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825735

RESUMO

The five-membered 1,3,4-oxadiazole heterocyclic ring has received considerable attention because of its unique bio-isosteric properties and an unusually wide spectrum of biological activities. After a century since 1,3,4-oxadiazole was discovered, its uncommon potential attracted medicinal chemist's attention, leading to the discovery of a few presently accessible drugs containing 1,3,4-oxadiazole units, and a large number of patents have been granted on research related to 1,3,4-oxadiazole. It is worth noting that interest in 1,3,4-oxadiazoles' biological applications has doubled in the last few years. Herein, this review presents a comprehensive overview of the recent achievements in the synthesis of 1,3,4-oxadiazole-based compounds and highlights the major advances in their biological applications in the last 10 years, as well as brief remarks on prospects for further development. We hope that researchers across the scientific streams will benefit from the presented review articles for designing their work related to 1,3,4-oxadiazoles.


Assuntos
Oxidiazóis , Oxidiazóis/química , Oxidiazóis/farmacologia , Humanos
6.
Drug Dev Res ; 85(4): e22218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825827

RESUMO

We report herein, the design and synthesis of benzimidazole-oxadiazole derivatives as new inhibitors for vascular endothelial growth factor receptor-2 (VEGFR-2). The designed members were assessed for their in vitro anticancer activity against three cancer cell lines and two normal cell lines; A549, MCF-7, PANC-1, hTERT-HPNE and CCD-19Lu. Compounds 4c and 4d were found to be the most effective compounds against three cancer cell lines. Compounds 4c and 4d were then tested for their in vitro VEGFR-2 inhibitory activity, safety profiles, and selectivity indices using the normal hTERT-HPNE and CCD-19Lu cell lines. It was determined that compound 4c was the most effective and safe member of the produced chemical family. Vascular endothelial growth factor A (VEGFA) immunolocalizations of compounds 4c and 4d were evaluated relative to control by VEGFA immunofluorescence staining. Compounds 4c and 4d inhibited VEGFR-2 enzyme with half-maximal inhibitory concentration values of 0.475 ± 0.021 and 0.618 ± 0.028 µM, respectively. Molecular docking of the target compounds was carried out in the active site of VEGFR-2 (Protein Data Bank: 4ASD).


Assuntos
Antineoplásicos , Benzimidazóis , Simulação de Acoplamento Molecular , Oxidiazóis , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Oxidiazóis/farmacologia , Oxidiazóis/química , Oxidiazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos
7.
J Med Chem ; 67(12): 10211-10232, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38871484

RESUMO

Papain-like protease (PLpro) is a promising therapeutic target for its pivotal role in the life cycle of SARS-CoV-2. A series of 1,2,4-oxadiazole derivatives was designed and synthesized via a ring formation strategy based on SARS-CoV-2 PLpro-GRL0617 complex structure. Systematic structure-activity relationship studies revealed that introducing oxadiazole and aryl carboxylic acid moieties to GRL0617 enhanced the enzymatic inhibition activity, affinity, and deubiquitination capacity toward PLpro. 1,2,4-Oxadiazole compounds 13f and 26r, which had PLpro inhibition activity (IC50 = 1.8 and 1.0 µM) and antiviral activity against SARS-CoV-2 (EC50 = 5.4 and 4.3 µM), exhibited good metabolic stability (t1/2 > 93.2 min) and higher plasma exposure (AUC0-t = 17,380.08 and 24,289.76 ng·h/mL) in mice. Especially, compound 26r with moderate oral bioavailability of 39.1% and potent antiviral activity is worthy of further studies in vivo. Our findings provide a new insight for the discovery of antiviral agents targeting PLpro.


Assuntos
Antivirais , Desenho de Fármacos , Oxidiazóis , SARS-CoV-2 , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Oxidiazóis/farmacocinética , Animais , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Antivirais/farmacocinética , Relação Estrutura-Atividade , SARS-CoV-2/efeitos dos fármacos , Camundongos , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/síntese química , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/farmacocinética , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo
8.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892072

RESUMO

Histone deacetylase 6 (HDAC6) is increasingly recognized for its potential in targeted disease therapy. This study delves into the mechanistic and structural nuances of HDAC6 inhibition by difluoromethyl-1,3,4-oxadiazole (DFMO) derivatives, a class of non-hydroxamic inhibitors with remarkable selectivity and potency. Employing a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) kinetic experiments, comprehensive enzymatic characterizations, and X-ray crystallography, we dissect the intricate details of the DFMO-HDAC6 interaction dynamics. More specifically, we find that the chemical structure of a DMFO and the binding mode of its difluoroacetylhydrazide derivative are crucial in determining the predominant hydrolysis mechanism. Our findings provide additional insights into two different mechanisms of DFMO hydrolysis, thus contributing to a better understanding of the HDAC6 inhibition by oxadiazoles in disease modulation and therapeutic intervention.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Oxidiazóis , Oxidiazóis/química , Oxidiazóis/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Cristalografia por Raios X , Cinética , Ligação Proteica , Modelos Moleculares , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892212

RESUMO

Heterocycles are fundamental moieties for the construction of new compounds with perspective applications ranging from drugs to materials [...].


Assuntos
Oxidiazóis , Oxidiazóis/química , Oxidiazóis/farmacologia
10.
ACS Infect Dis ; 10(6): 2222-2238, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717116

RESUMO

Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood-brain barrier permeability. Subsequently, extensive structure-activity-relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.


Assuntos
Descoberta de Drogas , Oxidiazóis , Trypanosoma brucei brucei , Oxidiazóis/farmacologia , Oxidiazóis/química , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Antiparasitários/farmacologia , Antiparasitários/química , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Leishmania infantum/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/química
11.
J Agric Food Chem ; 72(20): 11351-11359, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720167

RESUMO

Tobacco mosaic virus (TMV), as one of the most traditional and extensive biological stresses, poses a serious threat to plant growth and development. In this work, a series of 1-phenyl/tertbutyl-5-amino-4-pyrazole oxadiazole and arylhydrazone derivatives was synthesized. Bioassay evaluation demonstrated that the title compounds (P1-P18) without a "thioether bond" lost their anti-TMV activity, while some of the ring-opening arylhydrazone compounds exhibited superior in vivo activity against TMV in tobacco. The EC50 value of title compound T8 for curative activity was 139 µg/mL, similar to that of ningnanmycin (NNM) (EC50 = 152 µg/mL). Safety analysis revealed that compound T8 had no adverse effects on plant growth or seed germination at a concentration of 250 µg/mL. Morphological observation revealed that compound T8 could restore the leaf tissue of a TMV-stressed host and the leaf stomatal aperture to normal. A mechanism study further revealed that compound T8 not only restored the photosynthetic and growth ability of the damaged host to normal levels but also enhanced catalase (CAT) activity and reduced the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the damaged host, thereby reducing the oxidation damage to the host. TMV-green fluorescent protein (GFP) experiments further demonstrated that compound T8 not only slowed the transmission speed of TMV in the host but also inhibited its reproduction. All of the experimental results demonstrated that compound T8 could reduce the oxidative damage caused by TMV stress and regulate the photosynthetic ability of the host, achieving the ability to repair damage, to make the plant grow normally.


Assuntos
Antivirais , Hidrazonas , Nicotiana , Oxidiazóis , Doenças das Plantas , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Vírus do Mosaico do Tabaco/fisiologia , Oxidiazóis/química , Oxidiazóis/farmacologia , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Nicotiana/virologia , Nicotiana/efeitos dos fármacos , Doenças das Plantas/virologia , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Desenho de Fármacos , Relação Estrutura-Atividade , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Estrutura Molecular
12.
Bioorg Chem ; 147: 107341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593531

RESUMO

A series of new indole-oxadiazole derivatives was designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited significant inhibitory activity with IC50 values ranging from 1.78 to 19.74 µM against ER-positive human breast cancer (BC) cell lines T-47D and MCF-7. Among them, compounds (5a, 5c, 5e-5h, 5j-5o) displayed superior activity against ER-α dominant (ratio of ER-α/ER-ß is 9/1) T-47D cells compared to the standard drug bazedoxifene (IC50 = 12.78 ± 0.92 µM). Compounds 5c and 5o exhibited remarkable anti-proliferative activity with IC50 values of 3.24 ± 0.46 and 1.72 ± 1.67 µM against T-47D cells, respectively. Further, compound 5o manifested 1589-fold higher ER-α binding affinity (213.4 pM) relative to bazedoxifene (339.2 nM) in a competitive ER-α binding assay, while compound 5c showed a binding affinity of 446.6 nM. The Western blot analysis proved that both compounds influenced the ER-α protein's expression, impeding its subsequent transactivation and signalling pathway within T-47D cells. Additionally, a molecular docking study suggests that compounds 5c and 5o bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Also, pharmacokinetic profiles showed that all compounds have drug-like properties. Further, molecular dynamic (MD) simulations and density functional theory (DFT) analysis confirmed the stability, conformational behaviour, reactivity, and biological feasibility of compounds 5c and 5o. In conclusion, based on our findings, compounds 5c and 5o, which exhibit significant ER-α antagonistic activity, can act as potential lead compounds for developing anti-breast cancer agents.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptor alfa de Estrogênio , Indóis , Oxidiazóis , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral
13.
Bioorg Chem ; 147: 107383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653151

RESUMO

Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.


Assuntos
Relação Dose-Resposta a Droga , Oxidiazóis , Prostaglandina-E Sintases , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/metabolismo , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Microssomos/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química
14.
Int J Biol Macromol ; 267(Pt 1): 131489, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608980

RESUMO

This paper describes the in vitro inhibition potential of bisoxadiazole-substituted sulfonamide derivatives (6a-t) against bovine carbonic anhydrase (bCA) after they were designed through computational analyses and evaluated the predicted interaction via molecular docking. First, in silico ADMET predictions and physicochemical property analysis of the compounds provided insights into solubility and permeability, then density functional theory (DFT) calculations were performed to analyse their ionization energies, nucleophilicity, in vitro electron affinity, dipole moments and molecular interactions under vacuum and dimethyl sulfoxide (DMSO) conditions. After calculating the theoretical inhibition constants, IC50 values determined from enzymatic inhibition were found between 12.93 and 45.77 µM. Molecular docking evaluation revealed favorable hydrogen bonding and π-interactions of the compounds within the bCA active site. The experimentally most active compound, 6p, exhibited the strongest inhibitory activity with a theoretical inhibition constant value of 9.41 nM and H-bonds with Gln91, Thr198, and Trp4 residues and His63 Pi-cation interactions with His63 residues. Overall, the study reveals promising bCA blocking potential for the synthesized derivatives, similar to acetazolamide.


Assuntos
Inibidores da Anidrase Carbônica , Simulação de Acoplamento Molecular , Oxidiazóis , Sulfonamidas , Bovinos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Animais , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Oxidiazóis/química , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Ligação de Hidrogênio , Relação Estrutura-Atividade , Domínio Catalítico
15.
ChemMedChem ; 19(11): e202300716, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38426720

RESUMO

The eukaryotic initiation factor 2B (eIF2B) is a key regulator in protein-regulated signaling pathways and is closely related to the function of the central nervous system. Modulating eIF2B could retard the process of neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and vanishing white matter disease (VWM) et al. Here, we designed and synthesized a series of novel eIF2B activators containing oxadiazole fragments. The activating effects of compounds on eIF2B were investigated through testing the inhibition of ATF4 expression. Of all the targeted compounds, compounds 21 and 29 exhibited potent inhibition on ATF4 expression with IC50 values of 32.43 nM and 47.71 nM, respectively, which were stronger than that of ISRIB (IC50=67.90 nM). ATF4 mRNA assay showed that these two compounds could restore ATF4 mRNA to normal levels in thapsigargin-stimulated HeLa cells. Protein Translation assay showed that both compounds were effective in restoring protein synthesis. Compound potency assay showed that both compounds had similar potency to ISRIB with EC50 values of 5.844 and 37.70 nM. Cytotoxicity assay revealed that compounds 21 and 29 had low toxicity and were worth further investigation.


Assuntos
Fator 4 Ativador da Transcrição , Desenho de Fármacos , Fator de Iniciação 2B em Eucariotos , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Células HeLa , Relação Estrutura-Atividade , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/antagonistas & inibidores , Estrutura Molecular , Relação Dose-Resposta a Droga , Oxidiazóis/farmacologia , Oxidiazóis/química , Oxidiazóis/síntese química
16.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542890

RESUMO

An unparalleled copper(I)-catalyzed synthesis of 1,3,4-oxadiazoles from tertiary amines in one step has been described. The one-pot reactions involving (N-isocyanimine)triphenylphosphorane, tertiary amines, and carboxylic acids resulted in the formation of 1,3,4-oxadiazoles in moderate to good yields through a consecutive oxidative Ugi/aza-Wittig reaction, enabling the direct functionalization of sp3 C-H bonds adjacent to the nitrogen atom. This method offered several notable advantages, including ligands-free, exceptional productivity and a high functional group tolerance. The preliminary biological evaluation demonstrated that compound 4f inhibited hepatoma cells efficiently, suggesting potentially broad applications of the approach for synthesis and medicinal chemistry.


Assuntos
Cobre , Compostos Organofosforados , Oxidiazóis , Cobre/química , Oxidiazóis/química , Aminas/química , Catálise , Estresse Oxidativo
17.
Bioorg Chem ; 145: 107208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354501

RESUMO

Hepatocellular carcinoma (HCC) is a major challenge for human healthy. Daphnane-type diterpenes have attracted increasingly attention due to remarkable pharmaceutical potential including anti-HCC activity. To further develop this class of compounds as inhibitors of HCC, the daphnane diterpenoids 12-O-debenzoyl-Yuanhuacine (YHC) and 12-hydroxydaphnetoxin (YHE) were prepared by a standard chemical transformation from dried flower buds of the Daphne genkwa plant. Subsequently, 22 daphnane diterpenoidal 1,3,4-oxdiazole derivatives were rationally designed and synthesized based on YHC and YHE. The assessment of the target compound's anti-hepatocellular carcinoma activity revealed that YHC1 exhibited comparable activity to sorafenib in the Hep3B cell line, while demonstrating higher selectivity. The mechanistic investigation demonstrates that compound YHC1 induces cell cycle arrest at the G0/G1 phase, cellular senescence, apoptosis, and elevates cellular reactive oxygen species levels. Moreover, molecular docking and CETSA results confirm the interaction between YHC1 and YAP1 as well as TEAD1. Co-IP experiments further validated that YHC1 can effectively inhibit the binding of YAP1 and TEAD1. In conclusion, YHC1 selectively targets YAP1 and TEAD1, exhibiting its anti-hepatocellular carcinoma effects through the inhibition of their interaction.


Assuntos
Carcinoma Hepatocelular , Daphne , Diterpenos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Daphne/química , Diterpenos/farmacologia , Diterpenos/química , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia
18.
J Agric Food Chem ; 72(9): 4622-4629, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386000

RESUMO

A new class of chiral pyranone fused indole derivatives were prepared by means of N-heterocyclic carbene (NHC) organocatalysis and demonstrated notable antibacterial activity against Xanthomonas oryzae pv oryzae (Xoo). Bioassays showed that compounds (3S,4R)-5b, (3S,4R)-5d, and (3S,4R)-5l exhibited promising in vitro efficacy against Xoo, with EC50 values of 9.05, 9.71, and 5.84 mg/L, respectively, which were superior to that of the positive controls with commercial antibacterial agents, bismerthiazol (BT, EC50 = 27.8 mg/L) and thiodiazole copper (TC, EC50 = 70.1 mg/L). Furthermore, single enantiomer (3S,4R)-5l was identified as an optimal structure displaying 55.3% and 52.0% curative and protective activities against Xoo in vivo tests at a concentration of 200 mg/L, which slightly surpassed the positive control with TC (curative and protective activities of 47.2% and 48.8%, respectively). Mechanistic studies through molecular docking analysis revealed preliminary insights into the distinct anti-Xoo activity of the two single enantiomers (3S,4R)-5l and (3R,4S)-5l, wherein the (3S,4R)-configured stereoisomer could form a more stable interaction with XooDHPS (dihydropteroate synthase). These findings underscore the significant anti-Xoo potential of these chiral pyranone fused indole derivatives, and shall inspire further exploration as promising lead structures for a novel class of bactericides to combat bacterial infections and other plant diseases.


Assuntos
Oryza , Xanthomonas , Oryza/microbiologia , Estereoisomerismo , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Oxidiazóis/química , Antibacterianos/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Indóis/farmacologia
19.
Med Chem ; 20(4): 443-451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38279758

RESUMO

BACKGROUND: Non-Hodgkin lymphoma of B cell origin is the common type of lymphoma- related malignancy with poor response rate with conventional front-line therapies. AIM: The aim of the present study was to investigate the potential of new anti-inflammatory oxadiazole derivatives of Diclofenac as an anti-lymphoma agent through in vitro and in silico approaches. METHODS: Anti-lymphoma potential was evaluated by alamar blue technique. MTT assay employed for cytotoxicity. Gene and protein expression studies was performed by qRT-PCR and ELISA respectively. Docking studies was performed by using MOE program. RESULTS: Among five diclofenac derivatives, (II) showed promising anti-lymphoma effects, where it inhibited the expression of BCL-2, p-38 MAPK and TGF-ß in both follicular and Burkitt's lymphoma cells and was non-toxic against normal human fibroblast cells. The in silico studies against BCL-2 revealed that the unsubstituted Sulphur group in (II) is involved in the crucial interactions with the binding site residue. CONCLUSION: The compound (II) can be a potential therapeutic candidate for B-cell non-Hodgkin lymphoma and deserves further development as a novel anti-lymphoma agent.


Assuntos
Antineoplásicos , Proliferação de Células , Diclofenaco , Simulação de Acoplamento Molecular , Oxidiazóis , Humanos , Oxidiazóis/farmacologia , Oxidiazóis/química , Oxidiazóis/síntese química , Diclofenaco/farmacologia , Diclofenaco/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Arch Pharm (Weinheim) ; 357(1): e2300328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840397

RESUMO

Oxadiazoles and thiadiazoles are malleable heterocycles that have recently generated major interest in the field of medicinal chemistry. Compounds based on these moieties have versatile biological applications such as anticonvulsant, anticancer, antidiabetic, and antioxidant agents. Due to the versatile nature and stability of the oxadiazole and thiadiazole nucleus, medicinal chemists have changed the structural elements of the ring in numerous ways. These compounds have shown significant anticonvulsant effects, demonstrating their potential in the management of epileptic disorders. In this review, we have covered numerous biological pathways and in silico targeted proteins of oxadiazole and thiadiazole derivatives for treating various biological disorders. The data compiled in this article will be helpful for researchers, research scientists, and research chemists who work in the field of drug discovery and drug development.


Assuntos
Oxidiazóis , Tiadiazóis , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , Oxidiazóis/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Descoberta de Drogas , Tiadiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...