Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.238
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000219

RESUMO

Chlorin e6 is a well-known photosensitizer used in photodynamic diagnosis and therapy. A method for identifying and purifying a novel process-related impurity during the synthesis of chlorin e6 has been developed. Its structure was elucidated using NMR and HRMS. This new impurity is formed from chlorophyll b rather than chlorophyll a, which is the source of chlorin e6. The intermediates formed during chlorin e6 synthesis were monitored using HPLC-mass spectrometry. This new impurity was identified as rhodin g7 71-ethyl ester, the structure of which remains unknown to date. The cytotoxic effects of this novel compound in both dark and light conditions were studied against five cancer cell lines (HT29, MIA-PaCa-2, PANC-1, AsPC-1, and B16F10) and a normal cell line (RAW264.7) and compared to those of chlorin e6. Upon irradiation using a laser at 0.5 J/cm2, rhodin g7 71-ethyl ester demonstrated higher cytotoxicity (2-fold) compared to chlorin e6 in the majority of the cancer cell lines. Furthermore, this new compound exhibited higher dark cytotoxicity compared to chlorin e6. Studies on singlet oxygen generation, the accumulation in highly vascular liver tissue, and the production of reactive oxygen species in MIA-PaCa-2 cancer cells via rhodin g7 71-ethyl ester correspond to its higher cytotoxicity as a newly developed photosensitizer. Therefore, rhodin g7 71-ethyl ester could be employed as an alternative or complementary agent to chlorin e6 in the photodynamic therapy for treating cancer cells.


Assuntos
Clorofilídeos , Fármacos Fotossensibilizantes , Porfirinas , Porfirinas/química , Porfirinas/farmacologia , Humanos , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Linhagem Celular Tumoral , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fotoquimioterapia/métodos , Oxigênio Singlete/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
J Agric Food Chem ; 72(28): 15755-15764, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954802

RESUMO

Squalene has been proven to possess various bioactive functions that are widely present in vegetable oils. A more comprehensive understanding of the reaction behavior of squalene under oxidative conditions was achieved by studying its antioxidant capacity and thermal degradation products. The total singlet oxygen quenching rate constant (kr + kq) of squalene was 3.8 × 107 M-1 s-1, and both physical and chemical quenching mechanisms equally contribute to the overall singlet oxygen quenching. Fourteen degradation products of squalene were identified at 180 °C by using gas chromatography-mass spectrometry (GC-MS). Combining with DFT calculations, the thermal degradation pathway of squalene was proposed: the aldehydes, ketones, and alcohols, and epoxy compounds were formed by the homolytic cleavage of squalene hydroperoxides to form alkoxy radicals, followed by ß-scission of the alkoxyl radicals at adjacent C-C bonds or intramolecular cyclization.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Oxirredução , Oxigênio Singlete , Esqualeno , Esqualeno/química , Oxigênio Singlete/química , Cinética , Antioxidantes/química , Óleos de Plantas/química , Estrutura Molecular
3.
Methods Mol Biol ; 2833: 51-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949700

RESUMO

Photodynamic therapy (PDT) is an established therapy used for the treatment of cutaneous skin cancers and other non-infective ailments. There has been recent interest in the opportunity to use aPDT (antimicrobial PDT) to treat skin and soft tissue infections. PDT utilizes photosensitizers that infiltrate all cells and "sensitize" them to a given wavelength of light. The photosensitizer is simply highly absorbent to a given wavelength of light and when excited will produce, in the presence of oxygen, damaging oxygen radicals and singlet oxygen. Bacterial cells are comparatively poor at combatting oxidative stress when compared with human cells therefore a degree of selective toxicity can be achieved with aPDT.In this chapter, we outline methodologies for testing aPDT in vitro using standard lab equipment.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Humanos , Oxigênio Singlete/metabolismo , Anti-Infecciosos/farmacologia
4.
Environ Sci Technol ; 58(26): 11470-11481, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864425

RESUMO

Reactive oxygen species (ROS) produced from the oxygenation of reactive Fe(II) species significantly affect the transformation of metalloids such as Sb at anoxic-oxic redox interfaces. However, the main ROS involved in Sb(III) oxidation and Fe (oxyhydr)oxides formation during co-oxidation of Sb(III) and Fe(II) are still poorly understood. Herein, this study comprehensively investigated the Sb(III) oxidation and immobilization process and mechanism during Fe(II) oxygenation. The results indicated that Sb(III) was oxidized to Sb(V) by the ROS produced in the aqueous and solid phases and then immobilized by formed Fe (oxyhydr)oxides via adsorption and coprecipitation. In addition, chemical analysis and extended X-ray absorption fine structure (EXAFS) characterization demonstrated that Sb(V) could be incorporated into the lattice structure of Fe (oxyhydr)oxides via isomorphous substitution, which greatly inhibited the formation of lepidocrocite (γ-FeOOH) and decreased its crystallinity. Notably, goethite (α-FeOOH) formation was favored at pH 6 due to the greater amount of incorporated Sb(V). Moreover, singlet oxygen (1O2) was identified as the dominant ROS responsible for Sb(III) oxidation, followed by surface-adsorbed ·OHads, ·OH, and Fe(IV). Our findings highlight the overlooked roles of 1O2 and Fe (oxyhydr)oxide formation in Sb(III) oxidation and immobilization during Fe(II) oxygenation and shed light on understanding the geochemical cycling of Sb coupled with Fe in redox-fluctuating environments.


Assuntos
Oxirredução , Oxigênio Singlete , Oxigênio Singlete/química , Antimônio/química , Ferro/química , Compostos Férricos/química , Compostos Ferrosos/química , Óxidos/química , Oxigênio/química
5.
ACS Appl Mater Interfaces ; 16(24): 30833-30846, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38842123

RESUMO

Dental caries is a widespread bacterial infectious disease that imposes a significant public health burden globally. The primary culprits in caries development are cariogenic bacteria, notably Streptococcus mutans (S. mutans), due to their robust biofilm-forming capabilities. To address this issue, a series of cationic pyridinium-substituted photosensitizers with aggregation-induced emission have been designed. All of these aggregation-induced emission luminogens (AIEgens) exhibit outstanding microbial visualization and photodynamic killing of S. mutans, thanks to their luminous fluorescence and efficient singlet oxygen generation ability. Notably, one of the membrane-anchored AIEgens (TDTPY) can inactivate planktic S. mutans and its biofilm without causing significant cytotoxicity. Importantly, application of TDTPY-mediated photodynamic treatment on in vivo rodent models has yielded commendable imaging results and effectively slowed down caries progression with assured biosafety. Unlike traditional single-mode anticaries materials, AIEgens integrate the dual functions of detecting and removing S. mutans and are expected to build a new caries management diagnosis and treatment platform. To the best of our knowledge, this is also the first report on the use of AIEgens for anticaries studies both in vitro and in vivo.


Assuntos
Biofilmes , Cárie Dentária , Fotoquimioterapia , Fármacos Fotossensibilizantes , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Cárie Dentária/microbiologia , Cárie Dentária/tratamento farmacológico , Animais , Biofilmes/efeitos dos fármacos , Camundongos , Oxigênio Singlete/metabolismo , Humanos , Antibacterianos/farmacologia , Antibacterianos/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124529, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824758

RESUMO

Considering the increasing number of pathogens resistant to commonly used antibiotics as well as antiseptics, there is an urgent need for antimicrobial approaches that can effectively inactivate pathogens without the risk of establishing resistance. An alternative approach in this context is antibacterial photodynamic therapy (APDT). APDT is a process that involves bacterial cell death using appropriate wavelength light energy and photosensitizer and causes the production of reactive oxygen species inside or outside the microbial cell depending on the penetration of light energy. In our study, a new porphyrin compound 4,4'-methylenebis(2-((E)-((4-(10,15,20-triphenylporphyrin-5-yl)phenyl)imino)methyl)phenol) (SP) was designed and synthesized as photosensitizer and its structure was clarified by NMR (13C and 1H) and mass determination method. Photophysical and photochemical properties were examined in detail using different methods. Singlet oxygen quantum yields were obtained as 0.48 and 0.59 by direct and indirect methods, respectively. Antibacterial activity studies have been conducted within the scope of biological activity and promising results have been obtained under LED light (500-700 nm, 265 V, 1500 LM), contributing to the antibacterial photodynamic therapy literature.


Assuntos
Antibacterianos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Oxigênio Singlete , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Porfirinas/química , Porfirinas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Testes de Sensibilidade Microbiana , Luz , Bactérias/efeitos dos fármacos , Desenho de Fármacos
7.
Inorg Chem ; 63(24): 11450-11458, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38823006

RESUMO

Two Ru(II) complexes, [Ru(pydppn)(bim)(py)]2+ [2; pydppn = 3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene; bim = 2,2'-bisimidazole; py = pyridine] and [Ru(pydppn)(Me4bim)(py)]2+ [3; Me4bim = 2,2'-bis(4,5-dimethylimidazole)], were synthesized and characterized, and their photophysical properties, DNA binding, and photocleavage were evaluated and compared to [Ru(pydppn)(bpy)(py)]2+ (1; bpy = 2,2'-bipyridine). Complexes 2 and 3 exhibit broad 1MLCT (metal-to-ligand charge transfer) transitions with maxima at ∼470 nm and shoulders at ∼525 and ∼600 nm that extend to ∼800 nm. These bands are red-shifted relative to those of 1, attributed to the π-donating ability of the bim and Me4bim ligands. A strong signal at 550 nm is observed in the transient absorption spectra of 1-3, previously assigned as arising from a pydppn-centered 3ππ* state, with lifetimes of ∼19 µs for 1 and 2 and ∼270 ns for 3. A number of methods were used to characterize the mode of binding of 1-3 to DNA, including absorption titrations, thermal denaturation, relative viscosity changes, and circular dichroism, all of which point to the intercalation of the pydpppn ligand between the nucleobases. The photocleavage of plasmid pUC19 DNA was observed upon the irradiation of 1-3 with visible and red light, attributed to the sensitized generation of 1O2 by the complexes. These findings indicate that the bim ligand, together with pydppn, serves to shift the absorption of Ru(II) complexes to the photodynamic therapy window, 600-900 nm, and also extend the excited state lifetimes for the efficient production of cytotoxic singlet oxygen.


Assuntos
Complexos de Coordenação , DNA , Fotoquimioterapia , Fármacos Fotossensibilizantes , Plasmídeos , Rutênio , Oxigênio Singlete , DNA/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Rutênio/química , Rutênio/farmacologia , Plasmídeos/química , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Estrutura Molecular , Clivagem do DNA/efeitos dos fármacos , Clivagem do DNA/efeitos da radiação
8.
Food Res Int ; 188: 114492, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823875

RESUMO

Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.


Assuntos
Curcumina , Conservação de Alimentos , Perciformes , Dióxido de Silício , Curcumina/farmacologia , Curcumina/química , Animais , Dióxido de Silício/química , Conservação de Alimentos/métodos , Nanopartículas , Alimentos Marinhos , Solubilidade , Oxigênio Singlete , Fotólise , Humanos
9.
J Am Chem Soc ; 146(25): 17393-17403, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860693

RESUMO

Dual-locked activatable optical probes, leveraging the orthogonal effects of two biomarkers, hold great promise for the specific imaging of biological processes. However, their design approaches are limited to a short-distance energy or charge transfer mechanism, while the signal readout relies on fluorescence, which inevitably suffers from tissue autofluorescence. Herein, we report a long-distance singlet oxygen transfer approach to develop a bienzyme-locked activatable afterglow probe (BAAP) that emits long-lasting self-luminescence without real-time light excitation for the dynamic imaging of an intratumoral granule enzyme. Composed of an immuno-biomarker-activatable singlet oxygen (1O2) donor and a cancer-biomarker-activatable 1O2 acceptor, BAAP is initially nonafterglow. Only in the presence of both immune and cancer biomarkers can 1O2 be generated by the activated donor and subsequently diffuse toward the activated acceptor, resulting in bright near-infrared afterglow with a high signal-to-background ratio and specificity toward an intratumoral granule enzyme. Thus, BAAP allows for real-time tracking of tumor-infiltrating cytotoxic T lymphocytes, enabling the evaluation of cancer immunotherapy and the differentiation of tumor from local inflammation with superb sensitivity and specificity, which are unachievable by single-locked probes. Thus, this study not only presents the first dual-locked afterglow probe but also proposes a new design way toward dual-locked probes via reactive oxygen species transfer processes.


Assuntos
Imagem Óptica , Oxigênio Singlete , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Humanos , Corantes Fluorescentes/química , Animais , Camundongos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem
10.
Nat Commun ; 15(1): 4943, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858372

RESUMO

The development of Type I photosensitizers (PSs) is of great importance due to the inherent hypoxic intolerance of photodynamic therapy (PDT) in the hypoxic microenvironment. Compared to Type II PSs, Type I PSs are less reported due to the absence of a general molecular design strategy. Herein, we report that the combination of typical Type II PS and natural substrate carvacrol (CA) can significantly facilitate the Type I pathway to efficiently generate superoxide radical (O2-•). Detailed mechanism study suggests that CA is activated into thymoquinone (TQ) by local singlet oxygen generated from the PS upon light irradiation. With TQ as an efficient electron transfer mediator, it promotes the conversion of O2 to O2-• by PS via electron transfer-based Type I pathway. Notably, three classical Type II PSs are employed to demonstrate the universality of the proposed approach. The Type I PDT against S. aureus has been demonstrated under hypoxic conditions in vitro. Furthermore, this coupled photodynamic agent exhibits significant bactericidal activity with an antibacterial rate of 99.6% for the bacterial-infection female mice in the in vivo experiments. Here, we show a simple, effective, and universal method to endow traditional Type II PSs with hypoxic tolerance.


Assuntos
Benzoquinonas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Staphylococcus aureus , Benzoquinonas/química , Benzoquinonas/farmacologia , Benzoquinonas/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Animais , Camundongos , Feminino , Fotoquimioterapia/métodos , Transporte de Elétrons/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cimenos/farmacologia , Cimenos/química , Antibacterianos/farmacologia , Oxigênio Singlete/metabolismo , Superóxidos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Humanos , Luz , Camundongos Endogâmicos BALB C
11.
J Environ Manage ; 365: 121524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897082

RESUMO

Thallium (Tl) as a prominent priority contaminant in aquatic environment necessitates rigorous regulation. However, limited horizon devotes the impact of selective oxidation on the process of thallium purification. In this study, selective active radical of singlet oxygen (1O2) was continually generated for Tl(Ⅰ) oxidation accomplished with efficient Tl(Ⅲ) immobilization using iron-driven copper oxide (CuFe)/peroxymonosulfate (PMS). Fe-doping changed the active center of electronic structure for enhancing the catalytic and adsorptive reactivities, and installed magnetism for solid-liquid separation. Rapid reaction rate (0.253 min-1) coupled with vigorous elimination efficiency (98.32%) relied on electrostatic attraction, surface complexation, and H-bond interaction. EPR and XPS analyses demonstrated that the synergistic effects of ≡ Cu(Ⅰ)/≡Cu(Ⅱ) and ≡ Fe(Ⅲ)/≡Fe(Ⅱ) redounded to the sustained generation of 1O2 through the pathway of PMS → •O2- → 1O2, and 1O2 exploited an advantage to selectively oxidize Tl(Ⅰ) to Tl(Ⅲ). 3D isosurface cubic charts revealed that the immobilizing ability of Tl(Ⅲ) hydrate for CuFe was notably superior to that of Tl(Ⅲ) hydrate for CuO and Tl(Ⅰ) hydrate for CuO/CuFe, which further attested surface reactivity promoted stable immobilization form. This work develops the continuous generation of 1O2 and stable immobilization with the goal of efficiently cleansing Tl-containing wastewater.


Assuntos
Ferro , Oxigênio Singlete , Tálio , Tálio/química , Ferro/química , Oxigênio Singlete/química , Oxirredução , Cobre/química , Catálise
12.
World J Microbiol Biotechnol ; 40(8): 248, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904740

RESUMO

This manuscript presents a new report on the in vitro antimicrobial photo-inactivation of foodborne microorganisms (Salmonella spp. and Listeria monocytogenes) using tetra-cationic porphyrins. Isomeric tetra-cationic porphyrins (3MeTPyP, 4MeTPyP, 3PtTPyP, and 4PtTPyP) were tested, and antimicrobial activity assays were performed at specific photosensitizer concentrations under dark and white-light LED irradiation conditions. Among the tested bacterial strains, 4MeTPyP exhibited the highest efficiency, inhibiting bacterial growth within just 60 min at low concentrations (17.5 µM). The minimal inhibitory concentration of 4MeTPyP increased when reactive oxygen species scavengers were present, indicating the significant involvement of singlet oxygen species in the photooxidation mechanism. Furthermore, the checkerboard assay testing the association of 4MeTPyP showed an indifferent effect. Atomic force microscopy analyses and dynamic simulations were conducted to enhance our understanding of the interaction between this porphyrin and the strain's membrane.


Assuntos
Biofilmes , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Fármacos Fotossensibilizantes , Porfirinas , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Biofilmes/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Microbiologia de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Microscopia de Força Atômica , Espécies Reativas de Oxigênio/metabolismo , Luz , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química
13.
Org Biomol Chem ; 22(27): 5569-5577, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38887040

RESUMO

In this paper, two near-infrared BODIPY photosensitizers, Id-BDPI and Cz-BDPI, were obtained by modifying the indole and carbazole aromatic heterocycles in the core of BODIPY. The maximum absorption wavelengths of Id-BDPI and Cz-BDPI were 694 nm and 722 nm, and their singlet oxygen yields were 48% and 48.4%, respectively. In the simulated tumor cell photodynamic therapy, Id-BDPI and Cz-BDPI could effectively inhibit the growth of A549 tumor cells under near-infrared light. Meanwhile, the lysosomal co-localization coefficients of Id-BDPI and Cz-BDPI with A549 tumor cells were 0.94 and 0.89, respectively, showing high lysosomal targeting ability and biocompatibility. The two-photon absorption cross sections measured at 1050 nm by the Z-scanning method were 661.8 GM and 715.6 GM, respectively, and Cz-BDPI was further successfully applied to two-photon fluorescence imaging and two-photon excited singlet oxygen generation in zebrafish. The above results indicate that the introduction of aromatic heterocycles can effectively enhance the photodynamic efficacy of BODIPY photosensitizers, and the larger two-photon absorption cross section also brings potential for two-photon photodynamic therapy applications.


Assuntos
Compostos de Boro , Raios Infravermelhos , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes , Oxigênio Singlete , Peixe-Zebra , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Oxigênio Singlete/metabolismo , Humanos , Animais , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos
14.
Biotechnol J ; 19(5): e2400156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38804136

RESUMO

In spite of tremendous efforts dedicated to addressing bacterial infections and biofilm formation, the post-antibiotic ear continues to witness a gap between the established materials and an easily accessible yet biocompatible antibacterial reagent. Here we show carbon dots (CDs) synthesized via a single hydrothermal process can afford promising antibacterial activity that can be further enhanced by exposure to light. By using citric acid and polyethyleneimine as the precursors, the photoluminescence CDs can be produced within a one-pot, one-step hydrothermal reaction in only 2 h. The CDs demonstrate robust antibacterial properties against both Gram-positive and Gram-negative bacteria and, notably, a considerable enhancement of antibacterial effect can be observed upon photo-irradiation. Mechanistic insights reveal that the CDs generate singlet oxygen (1O2) when exposed to light, leading to an augmented reactive oxygen species level. The approach for disruption of biofilms and inhibition of biofilm formation by using the CDs has also been established. Our findings present a potential solution to combat antibacterial resistance and offer a path to reduce dependence on traditional antibiotics.


Assuntos
Antibacterianos , Biofilmes , Carbono , Pontos Quânticos , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Carbono/química , Carbono/farmacologia , Pontos Quânticos/química , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Luz , Oxigênio Singlete/metabolismo , Polietilenoimina/química , Polietilenoimina/farmacologia , Ácido Cítrico/química , Ácido Cítrico/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos
15.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697043

RESUMO

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Nanopartículas , Polímeros , Semicondutores , Imageamento por Ressonância Magnética/métodos , Animais , Elementos da Série dos Lantanídeos/química , Polímeros/química , Nanopartículas/química , Camundongos , Humanos , Gadolínio/química , Luminescência , Oxigênio Singlete/química , Ítrio/química , Fluoretos/química , Camundongos Nus
16.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792086

RESUMO

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Assuntos
Resinas Acrílicas , Ouro , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ouro/química , Fotoquimioterapia/métodos , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Resinas Acrílicas/química , Linhagem Celular Tumoral , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Porfirinas/química , Porfirinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Polímeros/química , Antineoplásicos/farmacologia , Antineoplásicos/química
17.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713621

RESUMO

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Humanos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Porfirinas/farmacologia , Porfirinas/química , Ligação Proteica , Nanopartículas/química
18.
Plant Signal Behav ; 19(1): 2347783, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38699898

RESUMO

As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (1O2), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three Arabidopsis thaliana mutants that conditionally accumulate chloroplast 1O2 (fluorescent in blue light (flu), chlorina 1 (ch1), and plastid ferrochelatase 2 (fc2)). We previously demonstrated that these mutants reveal at least two chloroplast 1O2 signaling pathways (represented by flu and fc2/ch1). Here, we test if the 1O2-accumulating lesion mimic mutant, accelerated cell death 2 (acd2), also utilizes these pathways. The pub4-6 allele delayed lesion formation in acd2 and restored photosynthetic efficiency and biomass. Conversely, an oxi1 mutation had no measurable effect on these phenotypes. acd2 mutants were not sensitive to excess light (EL) stress, yet pub4-6 and oxi1 both conferred EL tolerance within the acd2 background, suggesting that EL-induced 1O2 signaling pathways are independent from spontaneous lesion formation. Thus, 1O2 signaling in acd2 may represent a third (partially overlapping) pathway to control cellular degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Mutação , Transdução de Sinais , Oxigênio Singlete , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigênio Singlete/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transdução de Sinais/genética , Mutação/genética , Fotossíntese/genética
19.
J Colloid Interface Sci ; 670: 234-245, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761576

RESUMO

The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Fármacos Fotossensibilizantes , Rutênio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Humanos , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Tamanho da Partícula , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Poloxâmero/química , Ensaios de Seleção de Medicamentos Antitumorais , Propriedades de Superfície , Células A549
20.
Adv Healthc Mater ; 13(18): e2304209, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38691391

RESUMO

Photodynamic therapy (PDT) is a minimally invasive cancer treatment that, despite its significant attention, faces limitations in penetration depth, which restrict its effectiveness. Herein, it is found that gold nanobipyramid (AuNBs) coated with TiO2 can form a core-shell heterogeneous structure (AuNBs@TiO2) with strong absorption at second near infrared (NIR-II) region. A substantial quantity of reactive oxygen species (ROS), including singlet oxygen (1O2), superoxide anion radicals, and hydroxyl radicals, can be rapidly generated when subjecting the AuNBs@TiO2 aqueous suspension to 1064 nm laser irradiation. The quantum yield for sensitization of 1O2 by AuNBs@TiO2 is 0.36 at 1064 nm light excitation. In addition, the Au element as high-Z atoms in the nanosystem can improve the ability of computed tomographic (CT) imaging. As compared to commercial iohexol, the AuNBs@TiO2 nanoparticle exhibits significantly better CT imaging effect, which can be used to guide PDT. In addition, the nano-photosensitizer shows a remarkable therapeutic effect against established solid tumors and prevents tumor metastasis and potentiates immune checkpoint blockade therapy. More importantly, here the great potentials of AuNBs@TiO2 are highlighted as a theranostic platform for CT-guided cancer photodynamic immunotherapy.


Assuntos
Ouro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Titânio , Tomografia Computadorizada por Raios X , Titânio/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Ouro/química , Animais , Camundongos , Humanos , Tomografia Computadorizada por Raios X/métodos , Linhagem Celular Tumoral , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Feminino , Camundongos Endogâmicos BALB C , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...