Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
1.
Elife ; 122024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973593

RESUMO

Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.


Assuntos
Apresentação de Antígeno , Di-Hidro-Orotato Desidrogenase , Inibidores de Checkpoint Imunológico , Animais , Camundongos , Humanos , Apresentação de Antígeno/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Quinoxalinas/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Camundongos Endogâmicos C57BL , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Compostos de Bifenilo , Quinaldinas
2.
ACS Sens ; 9(6): 3357-3366, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38842796

RESUMO

The burgeoning field of continuous glucose monitoring (CGM) for diabetes management faces significant challenges, particularly in achieving precise and stable biosensor performance under changing environmental conditions such as varying glucose concentrations and O2 levels. To address this, we present a novel biosensor based on the electroless coupling of glucose oxidation catalyzed by flavin-dependent glucose dehydrogenase (FAD-GDH) and O2 reduction catalyzed by bilirubin oxidase (BOD) via a redox polymer, dimethylferrocene-modified linear poly(ethylenimine), FcMe2-LPEI. Initial cyclic voltammetry tests confirm the colocalization of both enzymatic reactions within the potential range of the polymer, indicating an effective electron shuttle mechanism. As a result, we created a hybrid biosensor that operates at open-circuit potential (OCP). It can detect glucose concentrations of up to 100 mM under various O2 conditions, including ambient air. This resulted from optimizing the enzyme ratio to 120 ± 10 mUBOD·UFAD-GDH-1·atmO2-1. This biosensor is highly sensitive, a crucial feature for CGM applications. This distinguishes it from FAD-GDH traditional biosensors, which require a potential to be applied to measure glucose concentrations up to 30 mM. In addition, this biosensor demonstrates the ability to function as a noninvasive, external device that can adapt to changing glucose levels, paving the way for its use in diabetes care and, potentially, personalized healthcare devices. Furthermore, by leveraging the altered metabolic pathways in tumor cells, this system architecture opened up new avenues for targeted glucose scavenging and O2 reduction in cancer therapy.


Assuntos
Técnicas Biossensoriais , Glucose 1-Desidrogenase , Glucose , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxigênio , Técnicas Biossensoriais/métodos , Oxigênio/química , Oxigênio/metabolismo , Glucose/análise , Glucose/metabolismo , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/metabolismo , Polímeros/química , Compostos Ferrosos/química , Polietilenoimina/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
3.
Technol Cancer Res Treat ; 23: 15330338241259780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847653

RESUMO

As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Neoplasias/metabolismo , Biomarcadores Tumorais , Espécies Reativas de Oxigênio/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Gerenciamento Clínico
4.
Redox Biol ; 73: 103221, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843768

RESUMO

Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3ß complex in response to insulin, hindering the accumulation of pGSK3ßS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3ßS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.


Assuntos
Glicogênio Sintase Quinase 3 beta , Resistência à Insulina , Insulina , Mitocôndrias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Transdução de Sinais , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Animais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Insulina/metabolismo , Camundongos , Humanos , Encéfalo/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resposta a Proteínas não Dobradas , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Alzheimer/metabolismo
5.
J Virol ; 98(6): e0049424, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38757985

RESUMO

Mitochondria are energy producers in cells, which can affect viral replication by regulating the host innate immune signaling pathways, and the changes in their biological functions are inextricably linked the viral life cycle. In this study, we screened a library of 382 mitochondria-targeted compounds and identified the antiviral inhibitors of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo synthesis pathway of pyrimidine ribonucleotides, against classical swine fever virus (CSFV). Our data showed that the inhibitors interfered with viral RNA synthesis in a dose-dependent manner, with half-maximal effective concentrations (EC50) ranging from 0.975 to 26.635 nM. Remarkably, DHODH inhibitors obstructed CSFV replication by enhancing the innate immune response including the TBK1-IRF3-STAT1 and NF-κB signaling pathways. Furthermore, the data from a series of compound addition and supplementation trials indicated that DHODH inhibitors also inhibited CSFV replication by blocking the de novo pyrimidine synthesis. Remarkably, DHODH knockdown demonstrated that it was essential for CSFV replication. Mechanistically, confocal microscopy and immunoprecipitation assays showed that the non-structural protein 4A (NS4A) recruited and interacted with DHODH in the perinuclear. Notably, NS4A enhanced the DHODH activity and promoted the generation of UMP for efficient viral replication. Structurally, the amino acids 65-229 of DHODH and the amino acids 25-40 of NS4A were pivotal for this interaction. Taken together, our findings highlight the critical role of DHODH in the CSFV life cycle and offer a potential antiviral target for the development of novel therapeutics against CSF. IMPORTANCE: Classical swine fever remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. dihydroorotate dehydrogenase (DHODH) inhibitors have been shown to suppress the replication of several viruses in vitro and in vivo, but the effects on Pestivirus remain unknown. In this study, three specific DHODH inhibitors, including DHODH-IN-16, BAY-2402234, and Brequinar were found to strongly suppress classical swine fever virus (CSFV) replication. These inhibitors target the host DHODH, depleting the pyrimidine nucleotide pool to exert their antiviral effects. Intriguingly, we observed that the non-structural protein 4A of CSFV induced DHODH to accumulate around the nucleus in conjunction with mitochondria. Moreover, NS4A exhibited a strong interaction with DHODH, enhancing its activity to promote efficient CSFV replication. In conclusion, our findings enhance the understanding of the pyrimidine synthesis in CSFV infection and expand the novel functions of CSFV NS4A in viral replication, providing a reference for further exploration of antiviral targets against CSFV.


Assuntos
Antivirais , Vírus da Febre Suína Clássica , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas não Estruturais Virais , Replicação Viral , Replicação Viral/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Vírus da Febre Suína Clássica/fisiologia , Animais , Proteínas não Estruturais Virais/metabolismo , Suínos , Antivirais/farmacologia , Transdução de Sinais , Linhagem Celular , Imunidade Inata , Mitocôndrias/metabolismo , Peste Suína Clássica/virologia , Peste Suína Clássica/metabolismo , Humanos , Compostos de Bifenilo , Quinaldinas
6.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 386-396, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805244

RESUMO

Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy. In the present work, using X-ray crystallography, an atypical rearrangement was identified in the binding pose of a potent inhibitor characterized by a polar pyridine-based moiety (compound 18). The crystal structure shows that upon binding compound 18 the dynamics of a protein loop involved in a gating mechanism at the cofactor-binding site is modulated by the presence of three water molecules, thus fine-tuning the polarity/hydrophobicity of the binding pocket. These solvent molecules are engaged in the formation of a hydrogen-bond mesh in which one of them establishes a direct contact with the pyridine moiety of compound 18, thus paving the way for a reappraisal of the inhibition of hDHODH. Using an integrated approach, the thermodynamics of such a modulation is described by means of isothermal titration calorimetry coupled with molecular modelling. These structural insights will guide future drug design to obtain a finer Kd/logD7.4 balance and identify membrane-permeable molecules with a drug-like profile in terms of water solubility.


Assuntos
Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Cristalografia por Raios X/métodos , Sítios de Ligação , Piridinas/química , Piridinas/farmacologia , Conformação Proteica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Ligação Proteica , Ligação de Hidrogênio
7.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731401

RESUMO

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Assuntos
Azadirachta , Di-Hidro-Orotato Desidrogenase , Simulação de Acoplamento Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Esquistossomose , Azadirachta/química , Animais , Esquistossomose/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Simulação de Dinâmica Molecular , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Simulação por Computador , Esquistossomicidas/farmacologia , Esquistossomicidas/química , Esquistossomicidas/uso terapêutico , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Praziquantel/farmacologia , Praziquantel/química , Praziquantel/uso terapêutico
8.
Sci Rep ; 14(1): 11985, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796629

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor of the urinary system. To explore the potential mechanisms of DHODH in ccRCC, we analyzed its molecular characteristics using public databases. TCGA pan-cancer dataset was used to analyze DHODH expression in different cancer types and TCGA ccRCC dataset was used to assess differential expression, prognosis correlation, immune infiltration, single-gene, and functional enrichment due to DHODH. The GSCALite and CellMiner databases were employed to explore drugs and perform molecular docking analysis with DHODH. Protein-protein interaction networks and ceRNA regulatory networks of DHODH were constructed using multiple databases. The effect of DHODH on ccRCC was confirmed in vitro. DHODH was highly expressed in ccRCC. Immune infiltration analysis revealed that DHODH may be involved in regulating the infiltration of immunosuppressive cells such as Tregs. Notably, DHODH influenced ccRCC progression by forming regulatory networks with molecules, such as hsa-miR-26b-5p and UMPS and significantly enhanced the malignant characteristics of ccRCC cells. Several drugs, such as lapatinib, silmitasertib, itraconazole, and dasatinib, were sensitive to DHODH expression and exhibited strong molecular binding with it. Thus, DHODH may promote ccRCC progression and is a candidate effective therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Biologia Computacional , Di-Hidro-Orotato Desidrogenase , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Biologia Computacional/métodos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Linhagem Celular Tumoral , Mapas de Interação de Proteínas , Simulação de Acoplamento Molecular , Prognóstico , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Biochemistry ; 63(10): 1347-1358, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38691339

RESUMO

The physiological role of dihydroorotate dehydrogenase (DHOD) enzymes is to catalyze the oxidation of dihydroorotate to orotate in pyrimidine biosynthesis. DHOD enzymes are structurally diverse existing as both soluble and membrane-associated forms. The Family 1 enzymes are soluble and act either as conventional single subunit flavin-dependent dehydrogenases known as Class 1A (DHODA) or as unusual heterodimeric enzymes known as Class 1B (DHODB). DHODBs possess two active sites separated by ∼20 Å, each with a noncovalently bound flavin cofactor. NAD is thought to interact at the FAD containing site, and the pyrimidine substrate is known to bind at the FMN containing site. At the approximate center of the protein is a single Fe2S2 center that is assumed to act as a conduit, facilitating one-electron transfers between the flavins. We present anaerobic transient state analysis of a DHODB enzyme from Lactoccocus lactis. The data presented primarily report the exothermic reaction that reduces orotate to dihydroorotate. The reductive half reaction reveals rapid two-electron reduction that is followed by the accumulation of a four-electron reduced state when NADH is added in excess, suggesting that the initial two electrons acquired reside on the FMN cofactor. Concomitant with the first reduction is the accumulation of a long-wavelength absorption feature consistent with the blue form of a flavin semiquinone. Spectral deconvolution and fitting to a model that includes reversibility for the second electron transfer reveals equilibrium accumulation of a flavin bisemiquinone state that has features of both red and blue semiquinones. Single turnover reactions with limiting NADH and excess orotate reveal that the flavin bisemiquinone accumulates with reduction of the enzyme by NADH and decays with reduction of the pyrimidine substrate, establishing the bisemiquinone as a fractional state of the two-electron reduced intermediate observed.


Assuntos
Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Lactococcus lactis/enzimologia , Lactococcus lactis/metabolismo , Oxirredução , Domínio Catalítico , Cinética , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , NAD/metabolismo , NAD/química , Catálise , Flavinas/metabolismo , Biocatálise , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química
10.
Biochemistry ; 63(10): 1241-1245, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38724483

RESUMO

Natural products are important sources of seed compounds for drug discovery. However, it has become difficult in recent years to discover new compounds with valuable pharmacological activities. On the other hand, among the vast number of natural products that have been isolated so far, a considerable number of compounds with specific biological activities are thought to be overlooked in screening that uses biological activity as an index. Therefore, it is conceivable that such overlooked useful compounds may be found by screening compound libraries that have been amassed previously through specific assays. Previously, NPD723, a member of the Natural Products Depository library comprised of a mixture of natural and non-natural products developed at RIKEN, and its metabolite H-006 were found to inhibit growth of various cancer cells at low nanomolar half-maximal inhibitory concentration. Subsequent analysis revealed that H-006 strongly inhibited human dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo pyrimidine biosynthetic pathway. Here, we elucidated the crystal structure of the DHODH-flavin mononucleotide-orotic acid-H-006 complex at 1.7 Å resolution to determine that furocoumavirin, the S-enantiomer of H-006, was the actual inhibitor. The overall mode of interaction of furocoumavirin with the inhibitor binding pocket was similar to that described for previously reported tight-binding inhibitors. However, the structural information together with kinetic characterizations of site-specific mutants identified key unique features that are considered to contribute to the sub-nanomolar inhibition of DHODH by furocoumavirin. Our finding identified new chemical features that could improve the design of human DHODH inhibitors.


Assuntos
Antivirais , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Antivirais/farmacologia , Antivirais/química , Cristalografia por Raios X , Furocumarinas/farmacologia , Furocumarinas/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Modelos Moleculares
11.
Redox Biol ; 73: 103207, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805974

RESUMO

Although 5-fluorouracil (5-FU) is the primary chemotherapy treatment for colorectal cancer (CRC), its efficacy is limited by drug resistance. Ferroptosis activation is a promising treatment for 5-FU-resistant cancer cells; however, potential therapeutic targets remain elusive. This study investigated ferroptosis vulnerability and dihydroorotate dehydrogenase (DHODH) activity using stable, 5-FU-resistant CRC cell lines and xenograft models. Ferroptosis was characterized by measuring malondialdehyde levels, assessing lipid metabolism and peroxidation, and using mitochondrial imaging and assays. DHODH function is investigated through gene knockdown experiments, tumor behavior assays, mitochondrial import reactions, intramitochondrial localization, enzymatic activity analyses, and metabolomics assessments. Intracellular lipid accumulation and mitochondrial DHODH deficiency led to lipid peroxidation overload, weakening the defense system of 5-FU-resistant CRC cells against ferroptosis. DHODH, primarily located within the inner mitochondrial membrane, played a crucial role in driving intracellular pyrimidine biosynthesis and was redistributed to the cytosol in 5-FU-resistant CRC cells. Cytosolic DHODH, like its mitochondrial counterpart, exhibited dihydroorotate catalytic activity and participated in pyrimidine biosynthesis. This amplified intracellular pyrimidine pools, thereby impeding the efficacy of 5-FU treatment through molecular competition. These findings contribute to the understanding of 5-FU resistance mechanisms and suggest that ferroptosis and DHODH are promising therapeutic targets for patients with CRC exhibiting resistance to 5-FU.


Assuntos
Neoplasias Colorretais , Di-Hidro-Orotato Desidrogenase , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Mitocôndrias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase/metabolismo , Fluoruracila/farmacologia , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Camundongos , Animais , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Peroxidação de Lipídeos/efeitos dos fármacos
12.
Biochem Biophys Res Commun ; 712-713: 149932, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38626530

RESUMO

The DHCR7 enzyme converts 7-DHC into cholesterol. Mutations in DHCR7 can block cholesterol production, leading to abnormal accumulation of 7-DHC and causing Smith-Lemli-Opitz syndrome (SLOS). SLOS is an autosomal recessive disorder characterized by multiple malformations, including microcephaly, intellectual disability, behavior reminiscent of autism, sleep disturbances, and attention-deficit/hyperactivity disorder (ADHD)-like hyperactivity. Although 7-DHC affects neuronal differentiation in ex vivo experiments, the precise mechanism of SLOS remains unclear. We generated Dhcr7 deficient (dhcr7-/-) zebrafish that exhibited key features of SLOS, including microcephaly, decreased neural stem cell pools, and behavioral phenotypes similar to those of ADHD-like hyperactivity. These zebrafish demonstrated compromised myelination, synaptic anomalies, and neurotransmitter imbalances. The axons of the dhcr7-/- zebrafish showed increased lysosomes and attenuated autophagy, suggesting that autophagy-related neuronal homeostasis is disrupted.


Assuntos
Axônios , Colesterol , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Peixe-Zebra , Animais , Autofagia , Axônios/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Neurogênese , Neurônios/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Bioorg Chem ; 147: 107359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613925

RESUMO

Twenty N-substituted pyrrolo[3,4-c]quinoline-1,3-diones 3a-t were synthesized by a cyclization reaction of Pfitzinger's quinoline ester precursor with the selected aromatic, heteroaromatic and aliphatic amines. The structures of all derivatives were confirmed by IR, 1H NMR, 13C NMR and HRMS spectra, while their purity was determined using HPLC techniques. Almost all compounds were identified as a new class ofpotent inhibitors against hDHODH among which 3a and 3t were the most active ones with the same IC50 values of 0.11 µM, about seven times better than reference drug leflunomide. These two derivatives also exhibited very low cytotoxic effects toward healthy HaCaT cells and the optimal lipophilic properties with logP value of 1.12 and 2.07 respectively, obtained experimentally at physiological pH. We further evaluated the comparative differences in toxicological impact of the three most active compounds 3a, 3n and 3t and reference drug leflunomide. The rats were divided into five groups and were treated intraperitoneally, control group (group I) with a single dose of leflunomide (20 mg/kg) group II and the other three groups, III, IV and V were treated with 3a, 3n and 3t (20 mg/kg bw) separately. The investigation was performed in liver, kidney and blood by examining serum biochemical parameters and parameters of oxidative stress.


Assuntos
Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Humanos , Masculino , Ratos , Linhagem Celular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Ratos Wistar , Relação Estrutura-Atividade , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacologia
14.
J Biol Chem ; 300(5): 107282, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604564

RESUMO

The major human pathogen Streptococcus pneumoniae encounters the immune-derived oxidant hypothiocyanous acid (HOSCN) at sites of colonization and infection. We recently identified the pneumococcal hypothiocyanous acid reductase (Har), a member of the flavoprotein disulfide reductase enzyme family, and showed that it contributes to the HOSCN tolerance of S. pneumoniae in vitro. Here, we demonstrate in mouse models of pneumococcal infection that Har is critical for colonization and invasion. In a colonization model, bacterial load was attenuated dramatically in the nasopharynx when har was deleted in S. pneumoniae. The Δhar strain was also less virulent compared to wild type in an invasion model as reflected by a significant reduction in bacteria in the lungs and no dissemination to the blood and brain. Kinetic measurements with recombinant Har demonstrated that this enzyme reduced HOSCN with near diffusion-limited catalytic efficiency, using either NADH (kcat/KM = 1.2 × 108 M-1s-1) or NADPH (kcat/KM = 2.5 × 107 M-1s-1) as electron donors. We determined the X-ray crystal structure of Har in complex with the FAD cofactor to 1.50 Å resolution, highlighting the active site architecture characteristic for this class of enzymes. Collectively, our results demonstrate that pneumococcal Har is a highly efficient HOSCN reductase, enabling survival against oxidative host immune defenses. In addition, we provide structural insights that may aid the design of Har inhibitors.


Assuntos
Proteínas de Bactérias , Infecções Pneumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/enzimologia , Animais , Camundongos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/enzimologia , Infecções Pneumocócicas/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Humanos , Feminino , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Tiocianatos
15.
Aging (Albany NY) ; 16(7): 5967-5986, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526324

RESUMO

BACKGROUND: Energy metabolism has a complex intersection with pathogenesis and development of breast cancer (BC). This allows for the possibility of identifying energy-metabolism-related genes (EMRGs) as novel prognostic biomarkers for BC. 7-dehydrocholesterol reductase (DHCR7) is a key enzyme of cholesterol biosynthesis involved in many cancers, and in this paper, we investigate the effects of DHCR7 on the proliferation and mitochondrial function of BC. METHODS: EMRGs were identified from the Gene Expression Omnibus (GEO) and MSigDB databases using bioinformatics methods. Key EMRGs of BC were then identified and validated by functional enrichment analysis, interaction analysis, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, Cox analysis, and immune infiltration. Western blot, qRT-PCR, immunohistochemistry (IHC), MTT assay, colony formation assay and flow cytometry assay were then used to analyze DHCR7 expression and its biological effects on BC cells. RESULTS: We identified 31 EMRGs in BC. These 31 EMRGs and related transcription factors (TFs), miRNAs, and drugs were enriched in glycerophospholipid metabolism, glycoprotein metabolic process, breast cancer, and cell cycle. Crucially, DHCR7 was a key EMRG in BC identified and validated by WGCNA, LASSO regression and receiver operating characteristic (ROC) curve analysis. High DHCR7 expression was significantly associated with tumor immune infiltration level, pathological M, and poor prognosis in BC. In addition, DHCR7 knockdown inhibited cell proliferation, induced apoptosis and affected mitochondrial function in BC cells. CONCLUSIONS: DHCR7 was found to be a key EMRG up-regulated in BC cells. This study is the first to our knowledge to report that DHCR7 acts as an oncogene in BC, which might become a novel therapeutic target for BC patients.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Mitocôndrias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Feminino , Proliferação de Células/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Prognóstico , Células MCF-7
16.
Nat Commun ; 15(1): 2195, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472233

RESUMO

Recent evidence indicates ferroptosis is implicated in the pathophysiology of various liver diseases; however, the organ-specific regulation mechanism is poorly understood. Here, we demonstrate 7-dehydrocholesterol reductase (DHCR7), the terminal enzyme of cholesterol biosynthesis, as a regulator of ferroptosis in hepatocytes. Genetic and pharmacological inhibition (with AY9944) of DHCR7 suppress ferroptosis in human hepatocellular carcinoma Huh-7 cells. DHCR7 inhibition increases its substrate, 7-dehydrocholesterol (7-DHC). Furthermore, exogenous 7-DHC supplementation using hydroxypropyl ß-cyclodextrin suppresses ferroptosis. A 7-DHC-derived oxysterol metabolite, 3ß,5α-dihydroxycholest-7-en-6-one (DHCEO), is increased by the ferroptosis-inducer RSL-3 in DHCR7-deficient cells, suggesting that the ferroptosis-suppressive effect of DHCR7 inhibition is associated with the oxidation of 7-DHC. Electron spin resonance analysis reveals that 7-DHC functions as a radical trapping agent, thus protecting cells from ferroptosis. We further show that AY9944 inhibits hepatic ischemia-reperfusion injury, and genetic ablation of Dhcr7 prevents acetaminophen-induced acute liver failure in mice. These findings provide new insights into the regulatory mechanism of liver ferroptosis and suggest a potential therapeutic option for ferroptosis-related liver diseases.


Assuntos
Ferroptose , Hepatopatias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Camundongos , Animais , Humanos , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
17.
Biomolecules ; 14(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397392

RESUMO

Biliverdin reductase-A (BVRA) is a multi-functional enzyme with a multitude of important roles in physiologic redox homeostasis. Classically, BVRA is well known for converting the heme metabolite biliverdin to bilirubin, which is a potent antioxidant in both the periphery and the brain. However, BVRA additionally participates in many neuroprotective signaling cascades in the brain that preserve cognition. Here, we review the neuroprotective roles of BVRA and bilirubin in the brain, which together constitute a BVRA/bilirubin axis that influences healthy aging and cognitive function.


Assuntos
Bilirrubina , Biliverdina , Encéfalo , Neuroproteção , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Bilirrubina/metabolismo , Biliverdina/metabolismo , Encéfalo/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Camundongos
18.
FEBS J ; 291(7): 1400-1403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38297957

RESUMO

Reduction of the 17,18-double bond in the D-ring during chlorophyll biosynthesis is catalyzed by the rare, naturally occurring photoenzyme protochlorophyllide oxidoreductase (POR). A conserved tyrosine residue has been suggested to donate a proton to C18 of the substrate in the past decades. Taylor and colleagues scrutinized the model with a powerful tool that utilized a modified genetic code to introduce fluorinated tyrosine analogues into POR. The presented results show that the suggested catalytically critical tyrosine is unlikely to participate in the reaction chemistry but is required for substrate binding, and instead, a cysteine residue preceding the lid helix is proposed to have the role of proton donor.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida , Halogenação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Protoclorifilida/química , Prótons , Clorofila/biossíntese , Clorofila/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-38407305

RESUMO

Endothelial cells (ECs) senescence is critical for vascular dysfunction, which leads to age-related disease. DHCR24, a 3ß-hydroxysterol δ 24 reductase with multiple functions other than enzymatic activity, has been involved in age-related disease. However, little is known about the relationship between DHCR24 and vascular ECs senescence. We revealed that DHCR24 expression is chronologically decreased in senescent human umbilical vein endothelial cells (HUVECs) and the aortas of aged mice. ECs senescence in endothelium-specific DHCR24 knockout mice was characterized by increased P16 and senescence-associated secretory phenotype, decreased SIRT1 and cell proliferation, impaired endothelium-dependent relaxation, and elevated blood pressure. In vitro, DHCR24 knockdown in young HUVECs resulted in a similar senescence phenotype. DHCR24 deficiency impaired endothelial migration and tube formation and reduced nitric oxide (NO) levels. DHCR24 suppression also inhibited the caveolin-1/ERK signaling, probably responsible for increased reactive oxygen species production and decreased eNOS/NO. Conversely, DHCR24 overexpression enhanced this signaling pathway, blunted the senescence phenotype, and improved cellular function in senescent cells, effectively blocked by the ERK inhibitor U0126. Moreover, desmosterol accumulation induced by DHCR24 deficiency promoted HUVECs senescence and inhibited caveolin-1/ERK signaling. Our findings demonstrate that DHCR24 is essential in ECs senescence.


Assuntos
Caveolina 1 , Senescência Celular , Células Endoteliais da Veia Umbilical Humana , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Humanos , Camundongos , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Transdução de Sinais
20.
J Chem Inf Model ; 64(2): 435-448, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38175956

RESUMO

We used a structure-based drug discovery approach to identify novel inhibitors of human dihydroorotate dehydrogenase (DHODH), which is a therapeutic target for treating cancer and autoimmune and inflammatory diseases. In the case of acute myeloid leukemia, no previously discovered DHODH inhibitors have yet succeeded in this clinical application. Thus, there remains a strong need for new inhibitors that could be used as alternatives to the current standard-of-care. Our goal was to identify novel inhibitors of DHODH. We implemented prefiltering steps to omit PAINS and Lipinski violators at the earliest stages of this project. This enriched compounds in the data set that had a higher potential of favorable oral druggability. Guided by Glide SP docking scores, we found 20 structurally unique compounds from the ChemBridge EXPRESS-pick library that inhibited DHODH with IC50, DHODH values between 91 nM and 2.7 µM. Ten of these compounds reduced MOLM-13 cell viability with IC50, MOLM-13 values between 2.3 and 50.6 µM. Compound 16 (IC50, DHODH = 91 nM) inhibited DHODH more potently than the known DHODH inhibitor, teriflunomide (IC50, DHODH = 130 nM), during biochemical characterizations and presented a promising scaffold for future hit-to-lead optimization efforts. Compound 17 (IC50, MOLM-13 = 2.3 µM) was most successful at reducing survival in MOLM-13 cell lines compared with our other hits. The discovered compounds represent excellent starting points for the development and optimization of novel DHODH inhibitors.


Assuntos
Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...