Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.632
Filtrar
1.
Nat Commun ; 15(1): 5447, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992007

RESUMO

Air pollution has the potential to disrupt ecologically- and economically-beneficial services provided by invertebrates, including pollination and natural pest regulation. To effectively predict and mitigate this disruption requires an understanding of how the impacts of air pollution vary between invertebrate groups. Here we conduct a global meta-analysis of 120 publications comparing the performance of different invertebrate functional groups in unpolluted and polluted atmospheres. We focus on the pollutants ozone, nitrogen oxides, sulfur dioxide and particulate matter. We show that beneficial invertebrate performance is reduced by air pollution, whereas the performance of plant pest invertebrates is not significantly affected. Ozone pollution has the most detrimental impacts, and these occur at concentrations below national and international air quality standards. Changes in invertebrate performance are not dependent on air pollutant concentrations, indicating that even low levels of pollution are damaging. Predicted increases in tropospheric ozone could result in unintended consequences to global invertebrate populations and their valuable ecological services.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Invertebrados , Ozônio , Material Particulado , Animais , Poluição do Ar/efeitos adversos , Invertebrados/efeitos dos fármacos , Ozônio/toxicidade , Ozônio/efeitos adversos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos , Dióxido de Enxofre/toxicidade , Óxidos de Nitrogênio/toxicidade , Polinização
2.
Sci Rep ; 14(1): 16220, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003417

RESUMO

Long-term mortality effects of particulate air pollution have been investigated in a causal analytic frame, while causal evidence for associations with gaseous air pollutants remains extensively lacking, especially for carbon monoxide (CO) and sulfur dioxide (SO2). In this study, we estimated the causal relationship of long-term exposure to nitrogen dioxide (NO2), CO, SO2, and ozone (O3) with mortality. Utilizing the data from National Morbidity, Mortality, and Air Pollution Study, we applied a variant of difference-in-differences (DID) method with conditional Poisson regression and generalized weighted quantile sum regression (gWQS) to investigate the independent and joint effects. Independent exposures to NO2, CO, and SO2 were causally associated with increased risks of total, nonaccidental, and cardiovascular mortality, while no evident associations with O3 were identified in the entire population. In gWQS analyses, an interquartile range-equivalent increase in mixture exposure was associated with a relative risk of 1.067 (95% confidence interval: 1.010-1.126) for total mortality, 1.067 (1.009-1.128) for nonaccidental mortality, and 1.125 (1.060-1.193) for cardiovascular mortality, where NO2 was identified as the most significant contributor to the overall effect. This nationwide DID analysis provided causal evidence for independent and combined effects of NO2, CO, SO2, and O3 on increased mortality risks among the US general population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Dióxido de Nitrogênio , Ozônio , Dióxido de Enxofre , Humanos , Estados Unidos/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Dióxido de Enxofre/análise , Dióxido de Enxofre/efeitos adversos , Ozônio/análise , Ozônio/efeitos adversos , Ozônio/toxicidade , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/toxicidade , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Mortalidade , Monóxido de Carbono/análise , Monóxido de Carbono/efeitos adversos , Doenças Cardiovasculares/mortalidade , Material Particulado/efeitos adversos , Material Particulado/análise , Adolescente , Adulto Jovem
3.
Front Public Health ; 12: 1353384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939565

RESUMO

Background: Ozone pollution is associated with cardiovascular disease mortality, and there is a high correlation between different pollutants. This study aimed to assess the association between ozone and cardiovascular disease deaths and the resulting disease burden in Nanjing, China. Methods: A total of 151,609 deaths from cardiovascular disease were included in Nanjing, China from 2013 to 2021. Daily data on meteorological and air pollution were collected to apply a generalized additional model with multiple pollutants to perform exposure-response analyses, stratification analysis, and evaluation of excess deaths using various standards. Results: In the multi-pollutant model, an increase of 10 µg/m3 in O3 was significantly associated with a 0.81% (95%CI: 0.49, 1.12%) increase in cardiovascular disease deaths in lag05. The correlation weakened in both the single-pollutant model and two-pollutant models, but remained more pronounced in females, the older group, and during warm seasons. From 2013 to 2021, the number of excess deaths attributed to ozone exposure in cardiovascular disease continued to rise with an increase in ozone concentration in Nanjing. If the ozone concentration were to be reduced to the WHO standard and the minimum level, the number of deaths would decrease by 1,736 and 10,882, respectively. Conclusion: The risk of death and excess deaths from cardiovascular disease due to ozone exposure increases with higher ozone concentration. Reducing ozone concentration to meet WHO standards or lower can provide greater cardiovascular disease health benefits.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Exposição Ambiental , Ozônio , Ozônio/análise , Ozônio/toxicidade , Ozônio/efeitos adversos , Humanos , Doenças Cardiovasculares/mortalidade , China/epidemiologia , Feminino , Masculino , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Pessoa de Meia-Idade , Idoso , Estações do Ano , Adulto , Rios
4.
J Hazard Mater ; 475: 134870, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876019

RESUMO

Exposure to ozone (O3) has been associated with cardiovascular outcomes in humans, yet the underlying mechanisms of the adverse effect remain poorly understood. We aimed to investigate the association between O3 exposure and glycerophospholipid metabolism in healthy young adults. We quantified plasma concentrations of phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) using a UPLC-MS/MS system. Time-weighted personal exposures were calculated to O3 and co-pollutants over 4 time windows, and we employed orthogonal partial least squares discriminant analysis to discern differences in lipids profiles between high and low O3 exposure. Linear mixed-effects models and mediation analysis were utilized to estimate the associations between O3 exposure, lipids, and cardiovascular physiology indicators. Forty-three healthy adults were included in this study, and the mean (SD) time-weighted personal exposures to O3 was 9.08 (4.06) ppb. With shorter exposure durations, O3 increases were associated with increasing PC and lysoPC levels; whereas at longer exposure times, the opposite relationship was shown. Furthermore, two specific lipids, namely lysoPC a C26:0 and lysoPC a C17:0, showed significantly positive mediating effects on associations of long-term O3 exposure with pulse wave velocity and systolic blood pressure, respectively. Alterations in specific lipids may underlie the cardiovascular effects of O3 exposure.


Assuntos
Poluentes Atmosféricos , Ozônio , Humanos , Ozônio/toxicidade , Masculino , Feminino , Adulto , Poluentes Atmosféricos/toxicidade , Adulto Jovem , Lisofosfatidilcolinas/sangue , Glicerofosfolipídeos/sangue , Glicerofosfolipídeos/metabolismo , Exposição Ambiental , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/sangue
5.
J Hazard Mater ; 472: 134505, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703689

RESUMO

It is critical to explore intervenable environmental factors in suicide mortality. Based on 30,688 suicide cases obtained from the Mortality Surveillance System of the Jiangsu Provincial Centre for Disease Control and Prevention, we utilized a case-crossover design, and found that the OR of suicide deaths increased by a maximum of 0.71 % (95 % CI: 0.09 %, 1.32 %), 0.68 % (95 % CI: 0.12 %, 1.25 %), 0.77 % (95 % CI: 0.19 %, 1.37 %), 2.95 % (95 % CI: 1.62 %, 4.29 %), 4.18 % (95 % CI: 1.55 %, 6.88 %), and 0.93 % (95 % CI: 0.10 %, 1.77 %), respectively, for per 10 µg/m3 increase in the particulate matter (PM) with diameters ≤ 2.5 µm (PM2.5), PM with diameters ≤ 10 µm (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and per 0.1 mg/m3 increase in carbon monoxide (CO) concentrations with the conditional logistic regression analysis. People living in county-level cities were more susceptible. Particularly, a significant positive association was found between air pollutant mixture exposure and suicide deaths (OR=1.04,95 % CI: 1.01, 1.06). The excess fraction of suicide deaths due to air pollution reached a maximum of 8.07 %. In conclusion, we found associations between individual and mixed ambient air pollutants and suicide deaths, informing the development of integrated air pollution management and targeted measures for suicide prevention and intervention. ENVIRONMENTAL IMPLICATION: As a major contributor to the global burden of disease, air pollution was confirmed by accumulating studies to have adverse impact on mental health, and potentially lead to suicide deaths. However, systematic studies on the association between air pollution and suicide mortality are lacking. We explored the associations of multiple air pollutants and pollution mixtures with suicide deaths and assessed excess suicide mortality due to air pollution, emphasizing the importance of air pollution control on suicide prevention. Our study provides evidence to support mechanistic studies on the association between air pollution and suicide, and informs comprehensive air pollution management.


Assuntos
Poluentes Atmosféricos , Estudos Cross-Over , Material Particulado , Suicídio , Humanos , Suicídio/estatística & dados numéricos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , China/epidemiologia , Ozônio/toxicidade , Ozônio/análise , Dióxido de Enxofre/análise , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Idoso , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Monóxido de Carbono/análise , Monóxido de Carbono/toxicidade , Adulto Jovem
6.
J Hazard Mater ; 472: 134453, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723481

RESUMO

Crop plants face complex tropospheric ozone (O3) stress, emphasizing the need for a food security-focused management strategy. While research extensively explores O3's harmful effects, this study delves into the combined impacts of O3 and CO2. This study investigates the contrasting responses of O3-sensitive (PBW-550) and O3-resistant (HUW-55) wheat cultivars, towards elevated ozone (eO3) and elevated carbon dioxide (eCO2), both individually and in combination. The output of the present study confirms the positive effect of eCO2 on wheat cultivars exposed to eO3 stress, with more prominent effects on O3-sensitive cultivar PBW-550, as compared to the O3-resistant HUW-55. The differential response of the two wheat cultivars can be attributed to the mechanistic variations in the enzyme activities of the Halliwell-Asada pathway (AsA-GSH cycle) and the ascorbate and glutathione pool. The results indicate that eCO2 was unable to uplift the regeneration of the glutathione pool in HUW-55, however, PBW-550 responded well, under similar eO3 conditions. The study's findings, highlighting mechanistic variations in antioxidants, show a more positive yield response in PBW-550 compared to HUW-55 under ECO treatment. This insight can inform agricultural strategies, emphasizing the use of O3-sensitive cultivars for sustained productivity in future conditions with high O3 and CO2 concentrations.


Assuntos
Ácido Ascórbico , Dióxido de Carbono , Glutationa , Ozônio , Triticum , Ozônio/toxicidade , Ozônio/farmacologia , Triticum/efeitos dos fármacos , Triticum/metabolismo , Dióxido de Carbono/metabolismo , Glutationa/metabolismo , Ácido Ascórbico/metabolismo , Poluentes Atmosféricos/toxicidade
7.
J Hazard Mater ; 472: 134504, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704910

RESUMO

The relationship of ozone (O3), particularly the long-term exposure, with impacting metabolic homeostasis in population was understudied and under-recognised. Here, we used data from ChinaHEART, a nationwide, population-based cohort study, combined with O3 and PM2.5 concentration data with high spatiotemporal resolution, to explore the independent association of exposure to O3 with the prevalence of insulin resistance (IR). Among the 271 540 participants included, the crude prevalence of IR was 39.1%, while the age and sex standardized prevalence stood at 33.0%. Higher IR prevalence was observed with each increase of 10.0 µg/m3 in long-term O3 exposure, yielding adjusted odds ratios (OR) of 1.084 (95% CI: 1.079-1.089) in the one-pollutant model and 1.073 (95% CI: 1.067-1.079) in the two-pollutant model. Notably, a significant additive interaction between O3 and PM2.5 on the prevalence of IR was observed (P for additive interaction < 0.001). Our main findings remained consistent and robust in the sensitivity analyses. Our study suggests long-term exposure to O3 was independently and positively associated with prevalence of IR. It emphasized the benefits of policy interventions to reduce O3 and PM2.5 exposure jointly, which could ultimately alleviate the health and economic burden related to DM.


Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Resistência à Insulina , Ozônio , Ozônio/toxicidade , Ozônio/análise , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , China/epidemiologia , Adulto , Estudos de Coortes , Material Particulado/toxicidade , Idoso , Prevalência
8.
Environ Res ; 252(Pt 4): 119069, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735376

RESUMO

Dwarf bamboo (Indocalamus decorus) is an O3-tolerant plant species. To identify the possible mechanism and response of leaf morphological, antioxidant, and anatomical characteristics to elevated atmospheric O3 (EO3) concentrations, we exposed three-year-old I. decorus seedlings to three O3 levels (low O3-LO: ambient air; medium O3-MO: Ambient air+70 ppb high O3-HO: Ambient air+140 ppb O3) over a growing season using open-top chambers. Leaf shape and stomatal characteristics, and leaf microscopic structure of I. decorus were examined. The results indicated that 1) the stomata O3 flux (Fst) of HO decreased more rapidly under EO3 as the exposure time increased. The foliar O3 injury of HO and MO occurred when AOT40 was 26.62 ppm h and 33.20 ppm h, respectively, 2) under EO3, leaf number, leaf mass per area, leaf area, and stomata length/width all decreased, while leaf thickness, stomatal density, width, and area increased compared to the control, 3) MDA and total soluble protein contents all showed significantly increase under HO (36.57% and 32.77%) and MO(31.91% and 19.52%) while proline contents only increased under HO(33.27%). 4) MO and HO increased bulliform cells numbers in the leaves by 6.28% and 23.01%, respectively. HO reduced the transverse area of bulliform cells by 13.73%, while MO treatments had no effect, and 5) the number of fusoid cells interspace, the transverse area of fusoid cells interspace, and mesophyll thickness of HO significantly increased by 11.16%, 28.58%, and 13.42%, respectively. In conclusion, I. decorus exhibits strong O3 tolerance characteristics, which stem from adaptions in the leaf's morphological, structural, antioxidant, and anatomical features. One critical attribute was the enlargement of the bulliform cell transverse area and the transverse area of fusoid cells interspace that drove this resistance to O3. Local bamboo species with high resistance to O3 pollution thus need to be promoted for sustained productivity and ecosystem services in areas with high O3 pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Folhas de Planta , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Ozônio/toxicidade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poaceae/efeitos dos fármacos , Poaceae/anatomia & histologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/anatomia & histologia
9.
Environ Monit Assess ; 196(5): 426, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573396

RESUMO

This article, based on OMI data products, utilizes spatial distribution, ozone-sensitive control areas, Pearson correlation methods, and the Ben-MAP model to study the changes in ozone column concentration from 2018 to 2022, along with the influencing factors and the health of populations exposed to ozone. The findings suggest a spatial variation in the ozone column concentration within the study area, with an increasing trend observed from west to east and from south to north. Over time, the ozone column concentration exhibits an initial increase followed by a subsequent decrease, with the peak concentration observed in 2019 at 37.45 DU and the nadir recorded in 2022 at 33.10 DU. The monthly mean distribution exhibits an inverted V-shaped pattern during the warm season from April to September, with a peak in July (46.71 DU) and a trough in April (35.29 DU). The Hetao Plain Oasis area is primarily a NOx control area in sensitive control areas. The concentrations of O3 and precursor HCHO exhibited significant positive correlations with vegetation index and air temperature, while showing significant negative correlations with wind speed and air pressure. The precursor NO2, in contrast, exhibited a significant negative correlation with both the vegetation index and relative humidity. Based on the ground-based monitoring sites and analysis of human health benefits, the study area witnessed 1944.45 deaths attributed to warm season O3 exposure in 2018, with a subsequent reduction in premature deaths by 149.7, 588.2, and 231.75 for the years 2019 to 2021 respectively when compared to the baseline year. In 2021, the observed decrease in warm-season O3 concentration within that region compared to 2018 resulted in a significant reduction, leading to the prevention of 126 premature deaths.


Assuntos
Monitoramento Ambiental , Ozônio , Humanos , Mortalidade Prematura , Ozônio/toxicidade , Estações do Ano , Temperatura
10.
Front Public Health ; 12: 1361274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651121

RESUMO

Climate change is accompanied by changes in the exposome, including increased heat, ground-level ozone, and other air pollutants, infectious agents, pollens, and psychosocial stress. These exposures alter the internal component of the exposome and account for some of the health effects of climate change. The adverse outcome pathways describe biological events leading to an unfavorable health outcome. In this perspective study, I propose to use this toxicological framework to better describe the biological steps linking a stressor associated with climate change to an adverse outcome. Such a framework also allows for better identification of possible interactions between stressors related to climate change and others, such as chemical pollution. More generally, I call for the incorporation of climate change as part of the exposome and for improved identification of the biological pathways involved in its health effects.


Assuntos
Mudança Climática , Exposição Ambiental , Expossoma , Humanos , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Ozônio/toxicidade
11.
Sci Total Environ ; 928: 172411, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608898

RESUMO

Exposure to diisodecyl phthalate (DIDP) during early pregnancy may be a risk factor for depressive behavior in offspring. While ozone (O3) exposure also raises the probability of depressive behavior during the preceding DIDP-induced process. In the present study, we investigated the effects of prenatal exposure to DIDP and O3 on the development of depressive-like behavior in offspring mice. The study found that prenatal exposure to both DIDP and O3 significantly increased depressive-like behavior in the offspring mice compared to either DIDP or O3 alone. Prenatal exposure to DIDP and O3 obviously increased the levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol, and decreased the levels of brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the brain tissues of offspring mice. Transcriptome analysis further revealed significant alterations in genes related to oxidative stress and TWIST1 (a helix-loop-helix transcription factor) in response to the combined exposure to DIDP and O3. HPA axis activation, dysregulation of neurodevelopmental factors, oxidative stress and TWIST1 involvement, collectively contributed to the development of depression-like behaviors in offspring mice following prenatal exposure to DIDP and O3. Moreover, the study also verified the potential role of oxidative stress using vitamin E as an antioxidant. The findings provide valuable evidence for the relationship between co-exposure to DIDP and O3 and depression, highlighting the importance of considering the combined effects of multiple environmental pollutants in assessing their impact on mental health outcomes.


Assuntos
Depressão , Estresse Oxidativo , Ozônio , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Animais , Ozônio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Feminino , Gravidez , Camundongos , Ácidos Ftálicos/toxicidade , Depressão/induzido quimicamente , Poluentes Atmosféricos/toxicidade , Comportamento Animal/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Exposição Materna/efeitos adversos
12.
Environ Res ; 252(Pt 1): 118854, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574983

RESUMO

BACKGROUND: This study sought to investigate the association of prenatal and early life exposure to a mixture of air pollutants on cognitive and adaptive outcomes separately in children with or without autism spectrum disorder (ASD). METHODS: Utilizing data from the CHARGE case-control study (birth years: 2000-2016), we predicted daily air concentrations of NO2, O3, and particulate matter <0.1 µm (PM0.1), between 0.1 and 2.5 µm (PM0.1-2.5), and between 2.5 and 10 µm (PM2.5-10) using chemical transport models with ground-based monitor adjustments. Exposures were evaluated for pre-pregnancy, each trimester, and the first two years of life. Individual and combined effects of pollutants were assessed with Vineland Adaptive Behavior Scales (VABS) and Mullen Scales of Early Learning (MSEL), separately for children with ASD (n = 660) and children without ASD (typically developing (TD) and developmentally delayed (DD) combined; n = 753) using hierarchical Bayesian Kernel Machine Regression (BKMR) models with three groups: PM size fractions (PM0.1, PM0.1-2.5, PM2.5-10), NO2, and O3. RESULTS: Pre-pregnancy Ozone was strongly negatively associated with all scores in the non-ASD group (group posterior inclusion probability (gPIP) = 0.83-1.00). The PM group during year 2 was also strongly negatively associated with all scores in the non-ASD group (gPIP = 0.59-0.93), with PM0.1 driving the group association (conditional PIP (cPIP) = 0.73-0.96). Weaker and less consistent associations were observed between PM0.1-2.5 during pre-pregnancy and ozone during year 1 and VABS scores in the ASD group. CONCLUSIONS: These findings prompt further investigation into ozone and ultrafine PM as potential environmental risk factors for neurodevelopment.


Assuntos
Poluentes Atmosféricos , Transtorno do Espectro Autista , Ozônio , Material Particulado , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ozônio/análise , Ozônio/efeitos adversos , Ozônio/toxicidade , Material Particulado/análise , Feminino , Gravidez , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Pré-Escolar , Estudos de Casos e Controles , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/epidemiologia , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Cognição/efeitos dos fármacos , Poluição do Ar/efeitos adversos , Exposição Materna/efeitos adversos , Exposição Ambiental/efeitos adversos
13.
Ecotoxicol Environ Saf ; 276: 116328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636262

RESUMO

BACKGROUND: The relationships between maternal genetic and environmental exposure and conotruncal heart defects (CTDs) have been extensively investigated. Nevertheless, there is limited knowledge regarding the impact of ozone (O3) on the risk of CTDs. OBJECTIVE: To explore the correlation between maternal exposure to O3 and CTDs in China. METHODS: Pregnant women who underwent fetal echocardiography at Beijing Anzhen Hospital between January 2013 and December 2021 were enrolled. Their sociodemographic characteristics and lifestyle information, along with fetal data, were systematically collected. Fetal echocardiography was used to detect CTDs. Maternal exposure to ambient O3 during the embryonic period, the first trimester, the three months preceding the last menstrual period, and the perinatal period was estimated using residential addresses or hospital addresses associated with prenatal visits. The concentration of O3 was divided by quartiles, with the first quartile serving as a reference. Adjusted logistic regression models were employed to examine the associations between every 10 µg/m3 increase or quartile increase in ambient O3 exposure and CTDs. RESULTS: Among 24,278 subjects, 1069 exhibited fetuses with CTDs. Maternal exposure to ambient O3 during three pregnancy periods was associated with increased CTD risk. The adjusted odds ratio (OR) and 95% confidence interval (CI) were 1.271 (1.189-1.360) per 10 µg/m3 increase in O3 during the perinatal period. For each quartile of O3, the risk increased with increasing exposure concentration, particularly during the perinatal period (OR = 2.206 for quartile 2, 2.367 for quartile 3, and 3.378 for quartile 4, all P<0.05). CONCLUSIONS: Elevated maternal exposure to O3 during pregnancy, particularly in the perinatal period, is linked to an increased risk of fetal CTDs. Further longitudinal analyses are needed to validate these results.


Assuntos
Poluentes Atmosféricos , Cardiopatias Congênitas , Exposição Materna , Ozônio , Ozônio/toxicidade , Feminino , Humanos , Gravidez , Exposição Materna/efeitos adversos , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/epidemiologia , Adulto , China , Poluentes Atmosféricos/toxicidade , Estudos de Coortes , Adulto Jovem
14.
Skin Res Technol ; 30(4): e13675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558144

RESUMO

AIMS: This research assessed the safety of aqueous ozone (AO) on human skin after multiple exposures for up to 40 hours. METHODS AND RESULTS: Full thickness recombinant human skin (EpiDerm FT, EFT-400) was exposed to AO for 7 seconds per minute for the first 6 minutes of each hour, repeated hourly over four time periods (4, 10, 20 and 40 hours). An MTT assay assessed viability of skin cells after exposure, compared to incubator control, negative control and vehicle control (distilled water). No significant difference in tissue viability was found between the AO condition and any of the control conditions through 20 hours of exposures. At 40 hours of exposure, tissue viability was lower in the AO group when compared with negative control (p = 0.030) but not the other controls. CONCLUSIONS: The current study supports further consideration of repeated application of AO on human skin, such as for hand hygiene. IMPACT STATEMENT: The present research is the first well-controlled in vitro study assessing the cytotoxicity of repeated exposures of AO on a full-thickness human skin model. This information helps to inform the evaluation of AO as a potential alternative for hand and wound antisepsis.


Assuntos
Higiene das Mãos , Ozônio , Humanos , Ozônio/toxicidade , Pele , Epiderme , Água
15.
Environ Int ; 185: 108559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461778

RESUMO

Exposure to ozone has been associated with metabolic disorders in humans, but the underlying mechanism remains unclear. In this study, the role of the gut-liver axis and the potential mechanism behind the metabolic disorder were investigated by histological examination, microbiome and metabolome approaches in mice during the subacute (4-week) and subchronic (12-week) exposure to 0.5 ppm and 2.5 ppm ozone. Ozone exposure resulted in slowed weight gain and reduced hepatic lipid contents in a dose-dependent manner. After exposure to ozone, the number of intestinal goblet cells decreased, while the number of tuft cells increased. Tight junction protein zonula occludens-1 (ZO-1) was significantly downregulated, and the apoptosis of epithelial cells increased with compensatory proliferation, indicating a compromised chemical and physical layer of the intestinal barrier. The hepatic and cecal metabolic profiles were altered, primarily related to lipid metabolism and oxidative stress. The abundance of Muribaculaceae increased dose-dependently in both colon and cecum, and was associated with the decrease of metabolites such as bile acids, betaine, and L-carnitine, which subsequently disrupted the intestinal barrier and lipid metabolism. Overall, this study found that subacute and subchronic exposure to ozone induced metabolic disorder via disturbing the gut-liver axis, especially the intestinal barrier. These findings provide new mechanistic understanding of the health risks associated with environmental ozone exposure and other oxidative stressors.


Assuntos
Microbiota , Ozônio , Humanos , Camundongos , Animais , Fígado/metabolismo , Metaboloma , Lipídeos , Ozônio/toxicidade
16.
J Hazard Mater ; 470: 134151, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554517

RESUMO

Ground-level ozone ranks sixth among common air pollutants. It worsens lung diseases like asthma, emphysema, and chronic bronchitis. Despite recent attention from researchers, the link between exhaled breath and ozone-induced injury remains poorly understood. This study aimed to identify novel exhaled biomarkers in ozone-exposed mice using ultra-sensitive photoinduced associative ionization time-of-flight mass spectrometry and machine learning. Distinct ion peaks for acetonitrile (m/z 42, 60, and 78), butyronitrile (m/z 70, 88, and 106), and hydrogen sulfide (m/z 35) were detected. Integration of tissue characteristics, oxidative stress-related mRNA expression, and exhaled breath condensate free-radical analysis enabled a comprehensive exploration of the relationship between ozone-induced biological responses and potential biomarkers. Under similar exposure levels, C57BL/6 mice exhibited pulmonary injury characterized by significant inflammation, oxidative stress, and cardiac damage. Notably, C57BL/6 mice showed free radical signals, indicating a distinct susceptibility profile. Immunodeficient non-obese diabetic Prkdc-/-/Il2rg-/- (NPI) mice exhibited minimal biological responses to pulmonary injury, with little impact on the heart. These findings suggest a divergence in ozone-induced damage pathways in the two mouse types, leading to alterations in exhaled biomarkers. Integrating biomarker discovery with comprehensive biopathological analysis forms a robust foundation for targeted interventions to manage health risks posed by ozone exposure.


Assuntos
Biomarcadores , Testes Respiratórios , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Ozônio , Animais , Ozônio/toxicidade , Biomarcadores/metabolismo , Biomarcadores/análise , Masculino , Estresse Oxidativo/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Camundongos , Espectrometria de Massas , Expiração , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo
17.
Respir Res ; 25(1): 105, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419020

RESUMO

BACKGROUND: Increasing evidence is appearing that ozone has adverse effects on health. However, the association between long-term ozone exposure and lung function is still inconclusive. OBJECTIVES: To investigate the associations between long-term exposure to ozone and lung function in Chinese young adults. METHODS: We conducted a prospective cohort study among 1594 college students with a mean age of 19.2 years at baseline in Shandong, China from September 2020 to September 2021. Lung function indicators were measured in September 2020 and September 2021, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), forced expiratory flow at the 25th, 50th, and 75th percentile of the FVC (FEF25, FEF50, and FEF75) and mean flow rate between 25% and 75% of the FVC (FEF25-75) were measured. Daily 10 km×10 km ozone concentrations come from a well-validated data-fusion approach. The time-weighted average concentrations in 12 months before the lung function test were defined as the long-term ozone exposure. The associations between long-term ozone exposure and lung function indicators in Chinese young adults were investigated using a linear mixed effects model, followed by stratified analyses regarding sex, BMI and history of respiratory diseases. RESULTS: Each interquartile range (IQR) (8.9 µg/m3) increase in long-term ozone exposure were associated with a -204.3 (95% confidence interval (CI): -361.6, -47.0) ml/s, -146.3 (95% CI: -264.1, -28.4) ml/s, and - 132.8 (95% CI: -239.2, -26.4) ml/s change in FEF25, FEF50, and FEF25-75, respectively. Stronger adverse associations were found in female participants or those with BMI ≥ 24 kg/m2 and history of respiratory diseases. CONCLUSION: Long-term exposure to ambient ozone is associated with impaired small airway indicators in Chinese young adults. Females, participants with BMI ≥ 24 kg/m2 and a history of respiratory disease have stronger associations.


Assuntos
Poluentes Atmosféricos , Ozônio , Doenças Respiratórias , Humanos , Feminino , Adulto Jovem , Adulto , Pulmão , Estudos Longitudinais , Estudos Prospectivos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Ozônio/toxicidade , Estudos de Coortes , Volume Expiratório Forçado , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/diagnóstico , Doenças Respiratórias/epidemiologia , Poluentes Atmosféricos/análise
18.
Funct Plant Biol ; 512024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310884

RESUMO

Tropospheric ozone (O3 ) is a significant abiotic stressor whose rising concentration negatively influences plant growth. Studies related to the differential response of Abelmoschus cytotypes to elevated O3 treatment are scarce and need further exploration to recognise the role of polyploidisation in stress tolerance. In this study, we analysed the changes in growth pattern, ultrastructure, physiology and foliar protein profile occurring under O3 stress in Abelmoschus moschatus (monoploid), Abelmoschus esculentus (diploid) and Abelmoschus caillei (triploid). Our findings showed that higher stomatal conductance in A. moschatus triggered higher O3 intake, causing damage to stomatal cells and photosynthetic pigments. Additionally, it caused a reduction in photosynthetic rates, leading to reduced plant growth, total biomass and economic yield. This O3 -induced toxicity was less in diploid and triploid cytotypes of Abelmoschus . Protein profiling by sodium dodecyl sulpate-polyacrylamide gel electrophoresis showed a significant decrease in the commonly found RuBisCO larger and smaller subunits. The decrease was more prominent in monoploid compared to diploid and triploid. This study provides crucial data for research that aim to enhance plant ability to withstand O3 induced oxidative stress. Our findings may help in developing a tolerant variety through plant breeding techniques, which will be economically more advantageous in reaching the objective of sustainable production at the high O3 levels projected under a climate change scenario.


Assuntos
Abelmoschus , Ozônio , Folhas de Planta , Ozônio/toxicidade , Ozônio/análise , Ozônio/metabolismo , Triploidia , Melhoramento Vegetal
19.
Plant Physiol Biochem ; 208: 108450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402800

RESUMO

Plants possess different degrees of tolerance to abiotic stress, which can mitigate the detrimental effect of environmental inputs affecting carbon balance. Less is known about the functions of osmoprotectants in scavenging of reactive oxygen species (ROS), generated at different sites depending on leaf age. This study aimed to clarify the osmotic adjustments adopted by old and young leaves of Oxford and I-214 poplar clones [differing in ozone (O3) sensitivity] to cope with three levels of O3 [ambient (AA), and two elevated O3 levels]. In both clones, the impact of intermediate O3 concentrations (1.5 × AA) on ROS production appeared to be leaf age-specific, given the accumulation of hydrogen peroxide (H2O2) observed only in old leaves of the Oxford plants and in young leaves of the I-214 ones (2- fold higher than AA and +79%, respectively). The induction of an oxidative burst was associated with membrane injury, indicating an inadequate response of the antioxidative systems [decrease of lutein and ß-carotene (-37 and -85% in the old leaves of the Oxford plants), accumulation of proline and tocopherols (+60 and +12% in the young leaves of the I-214 ones)]. Intermediate O3 concentrations reacted with unsaturated lipids of the plasma membrane in old and young leaves of the Oxford plants, leading to an increase of malondialdehyde by-products (more than 2- fold higher than AA), while no effect was recorded for I-214. The impact of the highest O3 concentrations (2.0 × AA) on ROS production did not appear clone-specific, which may react with cell wall components by leading to oxidative pressure. Outcomes demonstrated the ability of young leaves of I-214 plants in contain O3 phytotoxic effects.


Assuntos
Ozônio , Populus , Antioxidantes/metabolismo , Ozônio/toxicidade , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Células Clonais/metabolismo , Fotossíntese
20.
Toxins (Basel) ; 16(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38393142

RESUMO

Deoxynivalenol (DON), a trichothecene mycotoxin, could lead to cytotoxicity in both animal bodies and plant seed cells. Ozone degradation technology has been applied to DON control. However, the safety and quality of the contaminated grain after DON degradation are largely obscured. In this work, we evaluated the cytotoxicity of ozone-treated DON through seed germination experiments and cytotoxicity tests. Cell experiments showed that the inhibition rate of HepG2 viability gradually increased within the concentrations of 1-10 mg/L of DON, alongside which an IC50 (half maximal inhibitory concentration) of 9.1 mg/L was determined. In contrast, degrading DON had no significant inhibitory effect on cell growth. Moreover, a 1-10 mg/L concentration of DON increased production of a large amount of reactive oxygen radicals in HepG2, with obvious fluorescence color development. However, fluorescence intensity decreased after DON degradation. Further, DON at a concentration of >1 mg/L significantly inhibited the germination of mung bean seeds, whereas no significant inhibition of their germination or growth were observed if DON degraded. Changes in total protein content, fatty acid value, and starch content were insignificant in wheat samples suffering ozone degradation, compared to the untreated group. Lastly, the ozone-treated wheat samples exhibited higher tenacity and whiteness. Together, our study indicated that the toxicity of DON-contaminated wheat was significantly reduced after ozone degradation.


Assuntos
Fusarium , Micotoxinas , Ozônio , Tricotecenos , Animais , Ozônio/toxicidade , Triticum , Micotoxinas/toxicidade , Ácidos Graxos/metabolismo , Contaminação de Alimentos/análise , Fusarium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...