Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 800
Filtrar
1.
Respir Res ; 25(1): 345, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313791

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung epithelial phenotypes, fibroblast activation, and increased extracellular matrix deposition. Transforming growth factor-beta (TGF-ß)1-induced Smad signaling and downregulation of peroxisomal genes are involved in the pathogenesis and can be inhibited by peroxisome proliferator-activated receptor (PPAR)-α activation. However, the three PPARs, that is PPAR-α, PPAR-ß/δ, and PPAR-γ, are known to interact in a complex crosstalk. METHODS: To mimic the pathogenesis of lung fibrosis, primary lung fibroblasts from control and IPF patients with comparable levels of all three PPARs were treated with TGF-ß1 for 24 h, followed by the addition of PPAR ligands either alone or in combination for another 24 h. Fibrosis markers (intra- and extracellular collagen levels, expression and activity of matrix metalloproteinases) and peroxisomal biogenesis and metabolism (gene expression of peroxisomal biogenesis and matrix proteins, protein levels of PEX13 and catalase, targeted and untargeted lipidomic profiles) were analyzed after TGF-ß1 treatment and the effects of the PPAR ligands were investigated. RESULTS: TGF-ß1 induced the expected phenotype; e.g. it increased the intra- and extracellular collagen levels and decreased peroxisomal biogenesis and metabolism. Agonists of different PPARs reversed TGF-ß1-induced fibrosis even when given 24 h after TGF-ß1. The effects included the reversals of (1) the increase in collagen production by repressing COL1A2 promoter activity (through PPAR-ß/δ activation); (2) the reduced activity of matrix metalloproteinases (through PPAR-ß/δ activation); (3) the decrease in peroxisomal biogenesis and lipid metabolism (through PPAR-γ activation); and (4) the decrease in catalase protein levels in control (through PPAR-γ activation) and IPF (through a combined activation of PPAR-ß/δ and PPAR-γ) fibroblasts. Further experiments to explore the role of catalase showed that an overexpression of catalase protein reduced collagen production. Additionally, the beneficial effect of PPAR-γ but not of PPAR-ß/δ activation on collagen synthesis depended on catalase activity and was thus redox-sensitive. CONCLUSION: Our data provide evidence that IPF patients may benefit from a combined activation of PPAR-ß/δ and PPAR-γ.


Assuntos
Fibrose Pulmonar Idiopática , PPAR delta , PPAR gama , PPAR beta , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , PPAR gama/metabolismo , PPAR gama/genética , PPAR beta/metabolismo , PPAR beta/genética , PPAR beta/agonistas , Células Cultivadas , PPAR delta/metabolismo , PPAR delta/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos dos fármacos , Peroxissomos/metabolismo , Peroxissomos/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Masculino , Fator de Crescimento Transformador beta1/metabolismo , Feminino
2.
Shock ; 62(4): 574-581, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227395

RESUMO

ABSTRACT: Background: The kidney is the most commonly affected organ in sepsis patients, and Krüppel-like transcription factor 15 (KLF15) has a kidney-protective effect and is highly enriched in the kidneys. This study aims to explore the role of KLF15 in sepsis-related acute kidney injury. Methods: A septic injury model in HK2 cells was established through the administration of lipopolysaccharide (LPS), followed by the transfection of an overexpression plasmid for KLF15. Cell viability was assessed using Cell Counting Kit-8 assay, and apoptosis was measured via flow cytometry. The levels of inflammatory cytokines were detected using ELISA, and western blot assay was employed to assess the expression of KLF15, PPARδ, as well as inflammatory and apoptosis-related proteins. The interaction between KLF15 and PPARδ was confirmed through the utilization of online databases and immunoprecipitation experiments. The mechanism was further validated using PPARδ agonists and small interfering RNA. Results: LPS-induced HK2 cells showed downregulated expression of KLF15 and PPARδ, along with decreased viability, accompanied by increased levels of apoptosis, TNFα, IL-1ß, and IL-6. Additionally, LPS upregulated the expression of Bax, cytoplasmic cytochrome C [Cytc (cyt)], Cox-2, and p-NF-κB-p65 in HK2 cells, while simultaneously downregulating the expression of Bcl2 and mitochondrial cytochrome c [Cytc (mit)]. immunoprecipitation experiment revealed a possible interaction between KLF15 and PPARδ in HK2 cells. Ov-KLF15, Ov-PPARδ, or administration of PPARδ agonists effectively alleviated the aforementioned alterations induced by LPS. However, interference with PPARδ significantly attenuated the protective effect of Ov-KLF15 on HK2 cells. Conclusion: KLF15 attenuates LPS-induced apoptosis and inflammatory responses in HK2 cells via PPARδ.


Assuntos
Apoptose , Células Epiteliais , Inflamação , Túbulos Renais , Fatores de Transcrição Kruppel-Like , Lipopolissacarídeos , PPAR delta , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Apoptose/efeitos dos fármacos , Humanos , PPAR delta/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Inflamação/metabolismo , Linhagem Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Injúria Renal Aguda/metabolismo
3.
Chem Res Toxicol ; 37(9): 1574-1587, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39235066

RESUMO

ZLY06 is a dual agonist of peroxisome proliferator-activated receptor (PPAR) δ/γ, showing potential therapeutic effects on metabolic syndrome. However, our research has revealed that ZLY06 exhibits hepatotoxicity in normal C57BL/6J mice, though the precise mechanism remains unclear. This study aims to investigate the manifestations and mechanisms of ZLY06-induced hepatotoxicity. We administered ZLY06 via oral gavage to C57BL/6J mice (once daily for six weeks) and monitored various indicators to preliminarily explore its hepatotoxicity. Additionally, we further investigate the specific mechanisms of ZLY06-induced hepatotoxicity using PPAR inhibitors (GW9662 and GSK0660) and the Protein kinase B (AKT) activator (SC79). Results showed that ZLY06 led to increased serum ALP, ALT and AST, as well as elevated liver index and hepatic lipid levels. There was upregulation in the gene and protein expression of lipid metabolism-related molecules Acc, Scd1, Cd36, Fabp1 and Fabp2 in hepatocytes, with Cd36 showing the most significant change. Furthermore, cotreatment with SC79 significantly reduced ZLY06-induced hepatotoxicity in AML12 cells, evidenced by decreased intracellular TG levels and downregulation of CD36 expression. Specific knockdown of CD36 also mitigated ZLY06-induced hepatotoxicity. The study found that ZLY06 may bind to AKT1, inhibiting its phosphorylation activation, with the downregulation of p-AKT1 preceding the upregulation of CD36. In summary, ZLY06 mediates the upregulation of CD36 by potentially binding to and inhibiting the phosphorylation of AKT1, leading to hepatic lipid metabolism disorder and inducing liver toxicity.


Assuntos
Antígenos CD36 , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , PPAR gama , Proteínas Proto-Oncogênicas c-akt , Regulação para Cima , Animais , Antígenos CD36/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação/efeitos dos fármacos , Camundongos , Regulação para Cima/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , PPAR gama/agonistas , PPAR gama/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR delta/metabolismo , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores
4.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337503

RESUMO

The role of astroglial and microglial cells in the pathogenesis of epilepsy is currently under active investigation. It has been proposed that the activity of these cells may be regulated by the agonists of peroxisome proliferator-activated nuclear receptors (PPARs). This study investigated the effects of a seven-day treatment with the PPAR ß/δ agonist GW0742 (Fitorine, 5 mg/kg/day) on the behavior and gene expression of the astroglial and microglial proteins involved in the regulation of epileptogenesis in the rat brain within a lithium-pilocarpine model of temporal lobe epilepsy (TLE). TLE resulted in decreased social and increased locomotor activity in the rats, increased expression of astro- and microglial activation marker genes (Gfap, Aif1), pro- and anti-inflammatory cytokine genes (Tnfa, Il1b, Il1rn), and altered expression of other microglial (Nlrp3, Arg1) and astroglial (Lcn2, S100a10) genes in the dorsal hippocampus and cerebral cortex. GW0742 attenuated, but did not completely block, some of these impairments. Specifically, the treatment affected Gfap gene expression in the dorsal hippocampus and Aif1 gene expression in the cortex. The GW0742 injections attenuated the TLE-specific enhancement of Nlrp3 and Il1rn gene expression in the cortex. These results suggest that GW0742 may affect the expression of some genes involved in the regulation of epileptogenesis.


Assuntos
Astrócitos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Microglia , PPAR delta , PPAR beta , Tiazóis , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Ratos , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , Masculino , Tiazóis/farmacologia , Tiazóis/uso terapêutico , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Pilocarpina/farmacologia , Citocinas/metabolismo , Citocinas/genética , Fenóis , Compostos de Sulfidrila
5.
Biomed Pharmacother ; 179: 117303, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153437

RESUMO

The role of peroxisome proliferator-activated receptor (PPAR)ß/δ in hepatic fibrosis remains a subject of debate. Here, we examined the effects of a PPARß/δ agonist on the pathogenesis of liver fibrosis and the activation of hepatic stellate cells (HSCs), the main effector cells in liver fibrosis, in response to the pro-fibrotic stimulus transforming growth factor-ß (TGF-ß). The PPARß/δ agonist GW501516 completely prevented glucose intolerance and peripheral insulin resistance, blocked the accumulation of collagen in the liver, and attenuated the expression of inflammatory and fibrogenic genes in mice fed a choline-deficient high-fat diet (CD-HFD). The antifibrogenic effect of GW501516 observed in the livers CD-HFD-fed mice could occur through an action on HSCs since primary HSCs isolated from Ppard-/- mice showed increased mRNA levels of the profibrotic gene Col1a1. Moreover, PPARß/δ activation abrogated TGF-ß1-mediated cell migration (an indicator of cell activation) in LX-2 cells (immortalized activated human HSCs). Likewise, GW501516 attenuated the phosphorylation of the main downstream intracellular protein target of TGF-ß1, suppressor of mothers against decapentaplegic (SMAD)3, as well as the levels of the SMAD3 co-activator p300 via the activation of AMP-activated protein kinase (AMPK) and the subsequent inhibition of extracellular signal-regulated kinase-1/2 (ERK1/2) in LX-2 cells. Overall, these findings uncover a new mechanism by which the activation of AMPK by a PPARß/δ agonist reduces TGF-ß1-mediated activation of HSCs and fibrosis via the reduction of both SMAD3 phosphorylation and p300 levels.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína p300 Associada a E1A , Células Estreladas do Fígado , Cirrose Hepática , Camundongos Endogâmicos C57BL , PPAR delta , PPAR beta , Proteína Smad3 , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Animais , Fosforilação/efeitos dos fármacos , PPAR beta/agonistas , PPAR beta/metabolismo , PPAR beta/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , PPAR delta/metabolismo , PPAR delta/agonistas , PPAR delta/genética , Proteína Smad3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína p300 Associada a E1A/metabolismo , Masculino , Camundongos , Humanos , Tiazóis/farmacologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Knockout , Resistência à Insulina , Linhagem Celular , Fator de Crescimento Transformador beta1/metabolismo
6.
Biomolecules ; 14(8)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39199415

RESUMO

Leptin, acting centrally or peripherally, has complex effects on cardiac remodeling and heart function. We previously reported that central leptin exerts an anti-hypertrophic effect in the heart via cardiac PPARß/δ activation. Here, we assessed the impact of central leptin administration and PPARß/δ inhibition on cardiac function. Various cardiac properties, including QRS duration, R wave amplitude, heart rate (HR), ejection fraction (EF), end-diastolic left ventricular mass (EDLVM), end-diastolic volume (EDV), and cardiac output (CO) were analyzed. Central leptin infusion increased cardiac PPARß/δ protein content and decreased HR, QRS duration, and R wave amplitude. These changes induced by central leptin suggested a decrease in the ventricular wall growth, which was confirmed by MRI. In fact, the EDLVM was reduced by central leptin while increased in rats co-treated with leptin and GSK0660, a selective antagonist of PPARß/δ activity. In summary, central leptin plays a dual role in cardiac health, potentially leading to ventricular atrophy and improving heart function when PPARß/δ signaling is intact. The protective effects of leptin are lost by PPARß/δ inhibition, underscoring the importance of this pathway. These findings highlight the therapeutic potential of targeting leptin and PPARß/δ pathways to combat cardiac alterations and heart failure, particularly in the context of obesity.


Assuntos
Leptina , PPAR delta , PPAR beta , Animais , Leptina/farmacologia , Leptina/metabolismo , PPAR beta/metabolismo , PPAR beta/agonistas , PPAR delta/metabolismo , PPAR delta/agonistas , Ratos , Masculino , Coração/efeitos dos fármacos , Ratos Wistar , Atrofia , Frequência Cardíaca/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Sulfonas , Tiofenos
7.
World J Gastroenterol ; 30(28): 3428-3446, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39091710

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality, but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis. Peroxisome proliferator activated receptor (PPAR) α and δ play a key role in lipid metabolism and intestinal barrier homeostasis, which are major contributors to the pathological progression of ALD. Meanwhile, elafibranor (EFN), which is a dual PPARα and PPARδ agonist, has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease and primary biliary cholangitis. However, the benefits of EFN for ALD treatment is unknown. AIM: To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model. METHODS: ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol (EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly (1 mL/kg) for 8 weeks. EFN (3 and 10 mg/kg/day) was orally administered during the experimental period. Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis, fibrosis, and intestinal barrier integrity. The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays. RESULTS: The hepatic steatosis, apoptosis, and fibrosis in the ALD mice model were significantly attenuated by EFN treatment. EFN promoted lipolysis and ß-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells, primarily through PPARα activation. Moreover, EFN inhibited the Kupffer cell-mediated inflammatory response, with blunted hepatic exposure to lipopolysaccharide (LPS) and toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling. EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses. The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation. CONCLUSION: EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis, enhancing hepatocyte autophagic and antioxidant capacities, and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.


Assuntos
Chalconas , Modelos Animais de Doenças , Mucosa Intestinal , Cirrose Hepática , Hepatopatias Alcoólicas , Camundongos Endogâmicos C57BL , PPAR alfa , Animais , Camundongos , Humanos , Feminino , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/tratamento farmacológico , PPAR alfa/metabolismo , PPAR alfa/agonistas , Chalconas/farmacologia , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Células CACO-2 , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Etanol/toxicidade , Apoptose/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR delta/agonistas , PPAR delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Propionatos
8.
Sci Immunol ; 9(98): eadn2717, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178275

RESUMO

The formation of memory T cells is a fundamental feature of adaptative immunity, allowing the establishment of long-term protection against pathogens. Although emerging evidence suggests that metabolic reprogramming is crucial for memory T cell differentiation and survival, the underlying mechanisms that drive metabolic rewiring in memory T cells remain unclear. Here, we found that up-regulation of the nuclear receptor peroxisome proliferator-activated receptor ß/δ (PPARß/δ) instructs the metabolic reprogramming that occurs during the establishment of central memory CD8+ T cells. PPARß/δ-regulated changes included suppression of aerobic glycolysis and enhancement of oxidative metabolism and fatty acid oxidation. Mechanistically, exposure to interleukin-15 and expression of T cell factor 1 facilitated activation of the PPARß/δ pathway, counteracting apoptosis induced by antigen clearance and metabolic stress. Together, our findings indicate that PPARß/δ is a master metabolic regulator orchestrating a metabolic switch that may be favorable for T cell longevity.


Assuntos
Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , PPAR delta , PPAR beta , Animais , PPAR beta/metabolismo , PPAR beta/imunologia , Linfócitos T CD8-Positivos/imunologia , PPAR delta/imunologia , PPAR delta/metabolismo , Camundongos , Memória Imunológica/imunologia , Células T de Memória/imunologia , Camundongos Knockout , Interleucina-15/imunologia , Interleucina-15/metabolismo , Camundongos Transgênicos , Reprogramação Metabólica , Receptores Citoplasmáticos e Nucleares
9.
Immunity ; 57(8): 1864-1877.e9, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39111315

RESUMO

Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Mitocôndrias , Microambiente Tumoral , Linfócitos T CD8-Positivos/imunologia , Animais , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Camundongos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Transdução de Sinais , Metabolismo Energético , PPAR delta/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Glicólise , Camundongos Knockout , Fosforilação Oxidativa
10.
J Pineal Res ; 76(5): e12988, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38982751

RESUMO

Vulnerable atherosclerotic plaque rupture, the leading cause of fatal atherothrombotic events, is associated with an increased risk of mortality worldwide. Peroxisome proliferator-activated receptor delta (PPARδ) has been shown to modulate vascular smooth muscle cell (SMC) phenotypic switching, and, hence, atherosclerotic plaque stability. Melatonin reportedly plays a beneficial role in cardiovascular diseases; however, the mechanisms underlying improvements in atherosclerotic plaque vulnerability remain unknown. In this study, we assessed the role of melatonin in regulating SMC phenotypic switching and its consequential contribution to the amelioration of atherosclerotic plaque vulnerability and explored the mechanisms underlying this process. We analyzed features of atherosclerotic plaque vulnerability and markers of SMC phenotypic transition in high-cholesterol diet (HCD)-fed apolipoprotein E knockout (ApoE-/-) mice and human aortic SMCs (HASMCs). Melatonin reduced atherosclerotic plaque size and necrotic core area while enhancing collagen content, fibrous cap thickness, and smooth muscle alpha-actin positive cell coverage on the plaque cap, which are all known phenotypic characteristics of vulnerable plaques. In atherosclerotic lesions, melatonin significantly decreased the synthetic SMC phenotype and KLF4 expression and increased the expression of PPARδ, but not PPARα and PPARγ, in HCD-fed ApoE-/- mice. These results were subsequently confirmed in the melatonin-treated HASMCs. Further analysis using PPARδ silencing and immunoprecipitation assays revealed that PPARδ plays a role in the melatonin-induced SMC phenotype switching from synthetic to contractile. Collectively, we provided the first evidence that melatonin mediates its protective effect against plaque destabilization by enhancing PPARδ-mediated SMC phenotypic switching, thereby indicating the potential of melatonin in treating atherosclerosis.


Assuntos
Fator 4 Semelhante a Kruppel , Melatonina , Miócitos de Músculo Liso , PPAR delta , Placa Aterosclerótica , Animais , Melatonina/farmacologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fator 4 Semelhante a Kruppel/metabolismo , Humanos , PPAR delta/metabolismo , PPAR delta/genética , Camundongos Knockout , Masculino , Camundongos Knockout para ApoE , Fenótipo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/deficiência , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Camundongos Endogâmicos C57BL
11.
Theriogenology ; 226: 130-140, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878465

RESUMO

Inflammation in the reproductive tract has become a serious threat to animal fertility. Recently, the role of peroxisome proliferator-activated receptor gamma (PPARγ) in the context of reproduction and the inflammatory response has been highlighted, but the role of PPARß/δ has not been fully elucidated. The aim of the present study was to investigate the in vitro effect of PPARß/δ ligands (agonist: L-165,041 and antagonist: GSK 3787) on the transcriptome profile of porcine endometrium during LPS-induced inflammation in the mid-luteal and follicular phases of the oestrous cycle (days 10-12 and 18-20, respectively) using the RNA-Seq method. During the mid-luteal phase of the oestrous cycle, the current study identified 145 and 143 differentially expressed genes (DEGs) after treatment with an agonist or antagonist, respectively. During the follicular phase of the oestrous cycle, 55 and 207 DEGs were detected after treatment with an agonist or antagonist, respectively. The detected DEGs are engaged in the regulation of various processes, such as the complement and coagulation cascade, NF-κB signalling pathway, or the pathway of 15-eicosatetraenoic acid derivatives synthesis. The results of the current study indicate that PPARß/δ ligands are involved in the control of the endometrial inflammatory response.


Assuntos
Endométrio , Inflamação , Lipopolissacarídeos , PPAR delta , PPAR beta , Animais , Feminino , Suínos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/metabolismo , PPAR beta/genética , Inflamação/induzido quimicamente , Fenoxiacetatos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Transcriptoma
12.
Biomolecules ; 14(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927010

RESUMO

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Assuntos
Queratinócitos , PPAR delta , PPAR beta , Estearoil-CoA Dessaturase , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , PPAR beta/metabolismo , PPAR beta/genética , Animais , Camundongos , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , PPAR delta/metabolismo , PPAR delta/genética , Ácidos Graxos/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Humanos , Ácido Oleico/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
13.
Metabolism ; 156: 155934, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762141

RESUMO

BACKGROUND AND AIM: Clinically, septic males tend to have higher mortality rates, but it is unclear if this is due to sex differences in cardiac dysfunction, possibly influenced by hormonal variations. Cardiac dysfunction significantly contributes to sepsis-related mortality, primarily influenced by metabolic imbalances. Peroxisome proliferator-activated receptor delta (PPARδ) is a key player in cardiac metabolism and its activation has been demonstrated to favor sepsis outcomes. While estradiol (E2) is abundant and beneficial in females, its impact on PPARδ-mediated metabolism in the heart with regards to sex during sepsis remains unknown. METHODS AND RESULTS: Here, we unveil that while sepsis diminishes PPARδ nuclear translocation and induces metabolic dysregulation, oxidative stress, apoptosis and dysfunction in the heart thereby enhancing mortality, these effects are notably more pronounced in males than females. Mechanistic experiments employing ovariectomized(OVX) mice, E2 administration, and G protein-coupled estrogen receptor 1(GPER-1) knockout (KO) mice revealed that under lipopolysaccharide (LPS)-induced sepsis, E2 acting via GPER-1 enhances cardiac electrical activity and function, promotes PPARδ nuclear translocation, and subsequently ameliorates cardiac metabolism while mitigating oxidative stress and apoptosis in females. Furthermore, PPARδ specific activation using GW501516 in female GPER-1-/- mice reduced oxidative stress, ultimately decreasing NLRP3 expression in the heart. Remarkably, targeted GPER-1 activation using G1 in males mirrors these benefits, improving cardiac electrical activity and function, and ultimately enhancing survival rates during LPS challenge. By employing NLRP3 KO mice, we demonstrated that the targeted GPER-1 activation mitigated injury, enhanced metabolism, and reduced apoptosis in the heart of male mice via the downregulation of NLRP3. CONCLUSION: Our findings collectively illuminate the sex-specific cardiac mechanisms influencing sepsis mortality, offering insights into physiological and pathological dimensions. From a pharmacological standpoint, this study introduces specific GPER-1 activation as a promising therapeutic intervention for males under septic conditions. These discoveries advance our understanding of the sex differences in sepsis-induced cardiac dysfunction and also present a novel avenue for targeted interventions with potential translational impact.


Assuntos
Estradiol , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos , Estradiol/farmacologia , Estradiol/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , PPAR delta/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sepse/metabolismo , Sepse/complicações , Caracteres Sexuais
14.
Biochem Biophys Res Commun ; 722: 150158, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38795455

RESUMO

The cytokine interleukin-38 (IL-38), a recently discovered member of the IL-1 family, has been shown to regulate inflammation and improve hepatic endoplasmic reticulum stress and lipid metabolism in individuals with obesity. However, its impact on insulin signaling in skeletal muscle cells and the underlying mechanisms remain unclear. In vitro obesity models were established using palmitate treatment, and Western blot analysis was performed to assess target proteins. Commercial kits were used to measure glucose uptake in cultured myocytes. Our study showed that IL-38 treatment alleviated the impairment of insulin signaling, including IRS-1 and Akt phosphorylation, and increased glucose uptake in palmitate-treated C2C12 myocytes. Increased levels of STAT3-mediated signaling and oxidative stress were observed in these cells following palmitate treatment, and these effects were reversed by IL-38 treatment. In addition, IL-38 treatment upregulated the expression of PPARδ, SIRT1 and antioxidants. Knockdown of PPARδ or SIRT1 using appropriate siRNAs abrogated the effects of IL-38 on insulin signaling, oxidative stress, and the STAT3-dependent pathway. These results suggest that IL-38 alleviates insulin resistance by inhibiting STAT3-mediated signaling and oxidative stress in skeletal muscle cells through PPARδ/SIRT1. This study provides fundamental evidence to support the potential use of IL-38 as a safe therapeutic agent for the treatment of insulin resistance and type 2 diabetes.


Assuntos
Hiperlipidemias , Resistência à Insulina , Estresse Oxidativo , Fator de Transcrição STAT3 , Transdução de Sinais , Sirtuína 1 , Animais , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator de Transcrição STAT3/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Hiperlipidemias/metabolismo , Hiperlipidemias/tratamento farmacológico , PPAR delta/metabolismo , PPAR delta/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Interleucinas/metabolismo , Interleucinas/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Interleucina-1/metabolismo , Interleucina-1/genética
15.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704134

RESUMO

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Assuntos
Células Progenitoras Endoteliais , Hematopoese , PPAR delta , Espécies Reativas de Oxigênio , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , NADPH Oxidases/metabolismo , PPAR delta/metabolismo , PPAR delta/genética , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo
16.
Med ; 5(5): 377-379, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733969

RESUMO

The study by Hirschfield et al.1 demonstrated safety profile and clinically significant effectiveness of the peroxisome proliferator-activated receptor delta (PPARδ) agonist seladelpar in patients with primary biliary cholangitis, highlighting its plausible use as a second-line treatment to reduce disease activity and pruritus.


Assuntos
Cirrose Hepática Biliar , Prurido , Humanos , Prurido/tratamento farmacológico , Cirrose Hepática Biliar/tratamento farmacológico , PPAR delta/agonistas , PPAR delta/metabolismo
17.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791255

RESUMO

A robust predictive model was developed using 136 novel peroxisome proliferator-activated receptor delta (PPARδ) agonists, a distinct subtype of lipid-activated transcription factors of the nuclear receptor superfamily that regulate target genes by binding to characteristic sequences of DNA bases. The model employs various structural descriptors and docking calculations and provides predictions of the biological activity of PPARδ agonists, following the criteria of the Organization for Economic Co-operation and Development (OECD) for the development and validation of quantitative structure-activity relationship (QSAR) models. Specifically focused on small molecules, the model facilitates the identification of highly potent and selective PPARδ agonists and offers a read-across concept by providing the chemical neighbours of the compound under study. The model development process was conducted on Isalos Analytics Software (v. 0.1.17) which provides an intuitive environment for machine-learning applications. The final model was released as a user-friendly web tool and can be accessed through the Enalos Cloud platform's graphical user interface (GUI).


Assuntos
PPAR delta , Relação Quantitativa Estrutura-Atividade , Software , PPAR delta/agonistas , PPAR delta/química , PPAR delta/metabolismo , Simulação de Acoplamento Molecular , Humanos , Aprendizado de Máquina
18.
Phytomedicine ; 129: 155695, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728922

RESUMO

BACKGROUND: Exercise is an effective strategy to prevent sarcopenia, but high physical inactivity in the elderly requires alternative therapeutic approaches. Exercise mimetics are therapeutic compounds that simulate the beneficial effects of exercise on skeletal muscles. However, the toxicity and adverse effects of exercise mimetics raise serious concerns. PURPOSE: We aimed to search novel plant-based alternatives to activate exercise induced-signaling. METHODS: We used open databases and luciferase assays to identify plant-derived alternatives to activate exercise-induced signaling and compared its efficacy to mild intensity continuous training (MICT) in aged C57BL/6 mice. The nineteen-month-old mice were either fed an experimental diet supplemented with the isolated alternative or subjected to MICT for up to 21 mo of age. RESULTS: Our analysis revealed that Chrysanthemum zawadskii Herbich var latillobum (Maxim.) Kitamura (CZH), a medicinal plant rich in linarin, is a novel activator of peroxisome proliferator-activated receptor δ (PPARδ) and estrogen-related receptor γ (ERRγ), key regulators of exercise-induced positive effects on muscles. CZH supplementation ameliorated the loss of muscle function and mass, and increased PPARδ and ERRγ expression in mouse muscles. CZH also improved mitochondrial functions and proteostasis in aged mice, similar to MICT. Furthermore, CZH and linarin induced the activation of Sestrin 1, a key mediator of exercise benefits, in muscle. Silencing Sestrin 1 negated the increase in myogenesis and mitochondrial respiration by CZH and linarin in primary myoblasts from old mice. CONCLUSION: Our findings suggest the potential of CZH as a novel plant-derived alternative to activate exercise-induced signaling for preventing sarcopenia in sedentary older adults. This could offer a safer therapeutic option for sarcopenia treatment.


Assuntos
Chrysanthemum , Camundongos Endogâmicos C57BL , Sarcopenia , Transdução de Sinais , Animais , Chrysanthemum/química , Transdução de Sinais/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Masculino , PPAR delta/metabolismo , Extratos Vegetais/farmacologia , Receptores de Estrogênio/metabolismo , Humanos , Envelhecimento/efeitos dos fármacos , Glicosídeos
19.
J Med Food ; 27(6): 521-532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651680

RESUMO

To probe the functions of Aster glehni (AG) extract containing various caffeoylquinic acids on dyslipidemia, obesity, and skeletal muscle-related diseases focused on the roles of skeletal muscle, we measured the levels of biomarkers involved in oxidative phosphorylation and type change of skeletal muscle in C2C12 cells and skeletal muscle tissues from apolipoprotein E knockout (ApoE KO) mice. After AG extract treatment in cell and animal experiments, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to estimate the levels of proteins that participated in skeletal muscle type change and oxidative phosphorylation. AG extract elevated protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor beta/delta (PPARß/δ), myoblast determination protein 1 (MyoD), and myoglobin in skeletal muscle tissues. Furthermore, it elevated the ATP concentration. However, protein expression of myostatin was decreased by AG treatment. In C2C12 cells, increments of MyoD, myoglobin, myosin, ATP-producing pathway, and differentiation degree by AG were dependent on PPARß/δ and caffeoylquinic acids. AG extract can contribute to the amelioration of skeletal muscle inactivity and sarcopenia through myogenesis in skeletal muscle tissues from ApoE KO mice, and function of AG extract may be dependent on PPARß/δ, and the main functional constituents of AG are trans-5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. In addition, in skeletal muscle, AG has potent efficacies against dyslipidemia and obesity through the increase of the type 1 muscle fiber content to produce more ATP by oxidative phosphorylation in skeletal muscle tissues from ApoE KO mice.


Assuntos
Camundongos Knockout , Desenvolvimento Muscular , Músculo Esquelético , PPAR delta , PPAR beta , Extratos Vegetais , Ácido Quínico , Animais , Camundongos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Extratos Vegetais/farmacologia , PPAR beta/metabolismo , PPAR beta/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , PPAR delta/metabolismo , PPAR delta/genética , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Proteína MyoD/metabolismo , Proteína MyoD/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo
20.
Clin Res Hepatol Gastroenterol ; 48(6): 102343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641250

RESUMO

Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARß/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARß/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARß/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.


Assuntos
Hepatopatias , PPAR delta , PPAR beta , Humanos , PPAR beta/fisiologia , PPAR beta/metabolismo , PPAR delta/fisiologia , PPAR delta/metabolismo , Hepatopatias/metabolismo , Hepatopatias/tratamento farmacológico , Terapia de Alvo Molecular , Resistência à Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...