Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 796
Filtrar
1.
PLoS One ; 19(7): e0306546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968198

RESUMO

Social science research argues that differences in individuals' literary and cultural tastes originate in social environments. Yet, it might be that these differences are partly associated with genetic differences between individuals. To address this possibility, we use nation-scale registry data on library borrowing among Danish twins (N = 67,900) to assess the heritability of literary tastes. We measure literary tastes via borrowing of books of different genres (e.g., crime and biographical novels) and formats (physical, digital, and audio) and decompose the total variance in literary tastes into components attributable to shared genes (heritability), shared environments (social environment shared by siblings), and unique environments (social environments not shared by siblings). We find that genetic differences account for 45-70 percent of the total variance in literary tastes, shared environments account for almost none of the variance, and unique environments account for a moderate share. These results suggest that literary tastes are approximately as heritable as other human phenotypes (e.g., physical traits, cognition, and health). Moreover, heritability is higher for socioeconomically disadvantaged groups than for advantaged groups. Overall, our results suggest that research should consider the role of genetic differences in accounting for individual differences in literary and broader cultural tastes.


Assuntos
Fenótipo , Humanos , Masculino , Feminino , Adulto , Meio Social , Gêmeos/genética , Livros , Pessoa de Meia-Idade , Paladar/genética , Dinamarca , Gêmeos Monozigóticos/genética , Gêmeos Dizigóticos/genética , Adulto Jovem
2.
Nutrients ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892689

RESUMO

Dietary intake and alcohol consumption might be influenced by genetic variations in taste receptor genes. The objectives of this study were to examine the relationship between polymorphisms in the bitter taste receptor genes TAS2R13 (rs1015443) and TAS2R38 (rs1726866, rs10246939, and rs713598) as well as alcohol consumption and body fat percentage in college students. Four hundred and two students with a mean age of 20.2 years participated in this study. An NIH Diet History Questionnaire (DHQ II) was used to collect data on their dietary intake, while an AUDIT survey was used to determine their level of alcohol consumption. Bitter taste receptor gene polymorphisms were assessed by TaqMan allelic discrimination assays. Despite significant associations between TAS2R13 (rs1015443) and certain aspects of alcohol consumption, including the frequency of alcohol intake, no significant associations were found between TAS2R13 (rs1015443) and alcohol consumption after accounting for confounding variables in the regression model. Neither association was found regarding percent of body fat. In contrast, ethnicity and gender significantly influenced percent of body fat (p < 0.001), while no significant association was observed between TAS2R13 (rs1015443) and percent of body fat. Likewise, TAS2R38 (rs1726866, rs10246939, and rs713598) demonstrated no significant association with alcohol consumption and percent of body fat. These results were controlled for confounding factors, such as ethnicity and gender. Body fat percentage and alcohol consumption may be influenced by ethnicity, gender, and age rather than SNPs of TAS2R13 and TAS2R38 genes. Assessing taste genes' interactions with diet and body composition might be useful in identifying human disease risk.


Assuntos
Tecido Adiposo , Consumo de Bebidas Alcoólicas , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Paladar , Humanos , Masculino , Feminino , Consumo de Bebidas Alcoólicas/genética , Receptores Acoplados a Proteínas G/genética , Adulto Jovem , Paladar/genética , Tecido Adiposo/metabolismo , Adolescente , Adulto
3.
Appetite ; 200: 107561, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905855

RESUMO

Genetic variation in the bitter taste receptor gene taste receptor type 2, member 38 (TAS2R38) is associated with an individual's bitter taste sensitivity, food preference and consumption, which may also influence overall diet quality. This study aims to determine whether the TAS2R38 bitter taste receptor genetic variation is associated with overall diet quality using the Korean Healthy Eating Index (KHEI). A total of 41,839 individuals from the Korean Genome and Epidemiology Study were analyzed for their TAS2R38 diplotypes (rs713598, rs1726866, and rs10246939), general characteristics, and KHEI scores by obesity status. Results revealed that in the non-obese group, individuals with the AVI/AVI diplotype had a significantly higher score of 'ratio of white meat to red meat' than individuals with the PAV/* diplotype (3.89 ± 3.23 vs. 3.79 ± 3.18, adjusted p = 0.029). However, obese individuals with the PAV/* diplotype showed a significantly higher level of the mean score of 'moderation' (19.32 ± 5.82 vs. 18.92 ± 5.80, adjusted p = 0.026) and total KHEI score (61.07 ± 12.19 vs. 60.52 ± 12.29, adjusted p = 0.008) than those with the AVI/AVI diplotype. Finally, an interactive effect between bitterness genetic variation and obesity level was observed in those scores of 'ratio of white meat to red meat' (adjusted p = 0.007), 'moderation' (adjusted p = 0.013), and total KEHI (adjusted p = 0.007). In conclusion, TAS2R38 genetic variation is associated with overall diet quality in Koreans, which is more evident in the obese group.


Assuntos
Preferências Alimentares , Obesidade , Receptores Acoplados a Proteínas G , Paladar , Humanos , Receptores Acoplados a Proteínas G/genética , Feminino , República da Coreia , Masculino , Obesidade/genética , Paladar/genética , Pessoa de Meia-Idade , Adulto , Variação Genética , Dieta Saudável , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Dieta , População do Leste Asiático
4.
BMC Genom Data ; 25(1): 46, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783179

RESUMO

BACKGROUND: Primulina juliae has recently emerged as a novel functional vegetable, boasting a significant biomass and high calcium content. Various breeding strategies have been employed to the domestication of P. juliae. However, the absence of genome and transcriptome information has hindered the research of mechanisms governing the taste and nutrients in this plant. In this study, we conducted a comprehensive analysis, combining the full-length transcriptomics and metabolomics, to unveil the molecular mechanisms responsible for the development of nutrients and taste components in P. juliae. RESULTS: We obtain a high-quality reference transcriptome of P. juliae by combing the PacBio Iso-seq and Illumina sequencing technologies. A total of 58,536 cluster consensus sequences were obtained, including 28,168 complete protein coding transcripts and 8,021 Long Non-coding RNAs. Significant differences were observed in the composition and content of compounds related to nutrients and taste, particularly flavonoids, during the leaf development. Our results showed a decrease in the content of most flavonoids as leaves develop. Malate and succinate accumulated with leaf development, while some sugar metabolites were decreased. Furthermore, we identified the different accumulation of amino acids and fatty acids, which are associated with taste traits. Moreover, our transcriptomic analysis provided a molecular basis for understanding the metabolic variations during leaf development. We identified 4,689 differentially expressed genes in the two developmental stages, and through a comprehensive transcriptome and metabolome analysis, we discovered the key structure genes and transcription factors involved in the pathways. CONCLUSIONS: This study provides a high-quality reference transcriptome and reveals molecular mechanisms associated with the development of nutrients and taste components in P. juliae. These findings will enhance our understanding of the breeding and utilization of P. juliae as a vegetable.


Assuntos
Metabolômica , Folhas de Planta , Paladar , Transcriptoma , Paladar/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Nutrientes/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Aminoácidos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metaboloma/genética , Malatos/metabolismo
5.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732551

RESUMO

The salivary protein, Gustin/carbonic anhydrase VI, has been described as a trophic factor responsible for the growth of taste buds. We found, in a genetically homogeneous population, that the polymorphism rs2274333 (A/G) of the Gustin gene is crucial for the full functionality of the protein and is associated with taste sensitivity. However, other studies have failed to find this evidence. Here, we verified if Gustin gene methylation can affect the salivary levels of the protein, also concerning the polymorphism rs2274333 and PROP bitter responsiveness. The Gustin gene methylation profiling and the quantification of the Gustin salivary levels were determined in sixty-six volunteers genotyped for the polymorphism rs2274333 (A/G) (Ser90Gly in the protein sequence). The fungiform papillae density was also determined. The results confirm our earlier observations by showing that AA genotypes had a greater density of fungiform taste papillae, whereas the GG genotypes showed a lower density. We also found variations in the protein levels in the three genotype groups and an inverse relationship between Gustin gene methylation and the salivary levels of the protein, mostly evident in AA and ST volunteers, i.e., in volunteers who would be carriers of the functional isoform of the protein. These findings could justify the conflicting data in the literature.


Assuntos
Anidrases Carbônicas , Saliva , Papilas Gustativas , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Metilação de DNA , Genótipo , Polimorfismo de Nucleotídeo Único , Saliva/metabolismo , Paladar/genética , Papilas Gustativas/metabolismo
6.
Lifestyle Genom ; 17(1): 57-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38810602

RESUMO

INTRODUCTION: It has been suggested that capsaicin (CAP), a major pungent component in chili peppers, can be used as an anti-obesity ingredient due to effects on energy metabolism, but evidence is not consistent. Genetics may account for differences in CAP tolerance and its impact on adiposity status. The aim of this study was to systematically review current evidence concerning the role of genetic polymorphisms influencing CAP tolerance. METHODS: The present systematic review analyzed and synthesized available evidence concerning associations between genetic polymorphisms and CAP tolerance following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) guidelines. Databases such as PubMed/MEDLINE, Cochrane, Scopus, Google Scholar, SciELO, and LILACS were screened. Out of 228 publications identified, only 6 meet inclusion criteria and were finally included in the final report. RESULTS: Overall, a total of 28 single nucleotide polymorphisms were associated with several CAP tolerance traits including sensitivity to burning/stinging, heat pain, and cough reactions, and detection of bitter taste thresholds. These genetic variants were located within 6 genes involved in key physiological processes such synthesis of tetrahydrobiopterin and nitric oxide production (GCH1), CAP uptake and transduction of thermal stimuli (TRPV1), and bitter taste perception (TAS2R38, TAS2R3, TAS2R4, and TAS2R5). CONCLUSION: There is evidence about the influence of genetic polymorphisms on CAP tolerance by affecting nociceptive signaling, CAP binding, and bitter tasting. This knowledge may facilitate the design and implementation of innovative CAP-based nutrigenetic strategies for a more precise clinical management of obesity.


Assuntos
Capsaicina , Obesidade , Polimorfismo de Nucleotídeo Único , Humanos , Capsaicina/farmacologia , Obesidade/genética , Capsicum/genética , Paladar/genética , Percepção Gustatória/genética , Canais de Cátion TRPV/genética , Medicina de Precisão
7.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732607

RESUMO

Bitterness from phenylthiocarbamide and 6-n-propylthiouracil (PROP) varies with polymorphisms in the TAS2R38 gene. Three SNPs form two common (AVI, PAV) and four rare haplotypes (AAI, AAV, PVI, and PAI). AVI homozygotes exhibit higher detection thresholds and lower suprathreshold bitterness for PROP compared to PAV homozygotes and heterozygotes, and these differences may influence alcohol and vegetable intake. Within a diplotype, substantial variation in suprathreshold bitterness persists, and some AVI homozygotes report moderate bitterness at high concentrations. A second receptor encoded by a gene containing a functional polymorphism may explain this. Early work has suggested that PROP might activate TAS2R4 in vitro, but later work did not replicate this. Here, we identify three TAS2R4 SNPs that result in three diplotypes-SLN/SLN, FVS/SLN, and FVS/FVS-which make up 25.1%, 44.9%, and 23.9% of our sample. These TAS2R4 haplotypes show minimal linkage disequilibrium with TAS2R38, so we examined the suprathreshold bitterness as a function of both. The participants (n = 243) rated five PROP concentrations in duplicate, interleaved with other stimuli. As expected, the TAS2R38 haplotypes explained ~29% (p < 0.0001) of the variation in the bitterness ratings, with substantial variation within the haplotypes (AVI/AVI, PAV/AVI, and PAV/PAV). Notably, the TAS2R4 diplotypes (independent of the TAS2R38 haplotypes) explained ~7-8% of the variation in the bitterness ratings (p = 0.0001). Given this, we revisited if PROP could activate heterologously expressed TAS2R4 in HEK293T cells, and calcium imaging indicated 3 mM PROP is a weak TAS2R4 agonist. In sum, our data are consistent with the second receptor hypothesis and may explain the recovery of the PROP tasting phenotype in some AVI homozygotes; further, this finding may potentially help explain the conflicting results on the TAS2R38 diplotype and food intake.


Assuntos
Haplótipos , Polimorfismo de Nucleotídeo Único , Propiltiouracila , Receptores Acoplados a Proteínas G , Paladar , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Homozigoto , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Paladar/genética , Limiar Gustativo/genética
8.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38748818

RESUMO

Bitter taste perception plays a critical role in deterring animals from consuming harmful and toxic substances. To characterize the evolution of primate Tas2r, test the generality of Tas2r duplication in Cercopithecidae species, and examine whether dietary preferences have shaped the Tas2r repertoire of primate species, we identified Tas2r in the genomes of 35 primate species, including 16 Cercopithecidae, 6 Hominidae, 4 Cebidae, 3 Lemuridae, and 6 other species. The results showed that the total number of primate Tas2r ranged from 27 to 51, concentrating on 2 to 4 scaffolds of each species. Closely related genes were tandemly duplicated in the same scaffold. Phylogenetic construction revealed that Tas2r can be divided into 21 clades, including anthropoid-, Strepsirrhini-, and Cercopithecidae-specific Tas2r duplications. Phylogenetically independent contrast analysis revealed that the number of intact Tas2r significantly correlated with feeding preferences. Altogether, our data support diet as a driver of primate Tas2r evolution, and Cercopithecidae species have developed some specific Tas2r duplication during evolution. These results are probably because most Cercopithecidae species feed on plants containing many toxins, and it is necessary to develop specialized Tas2r to protect them from poisoning.


Assuntos
Dieta , Evolução Molecular , Filogenia , Primatas , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/genética , Primatas/genética , Duplicação Gênica , Paladar/genética , Humanos
10.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38649162

RESUMO

Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.


Assuntos
Evolução Molecular , Família Multigênica , Filogenia , Receptores Odorantes , Roedores , Órgão Vomeronasal , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Roedores/genética , Olfato/genética , Paladar/genética , Órgão Vomeronasal/metabolismo
11.
PLoS One ; 19(4): e0300071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683826

RESUMO

BACKGROUND: The liking for sweet taste is a powerful driver for consuming added sugars, and therefore, understanding how sweet liking is formed is a critical step in devising strategies to lower added sugars consumption. However, current research on the influence of genetic and environmental factors on sweet liking is mostly based on research conducted with individuals of European ancestry. Whether these results can be generalized to people of other ancestry groups warrants investigation. METHODS: We will determine the differences in allele frequencies in sweet-related genetic variants and their effects on sweet liking in 426 adults of either African or East Asian ancestry, who have the highest and lowest average added sugars intake, respectively, among ancestry groups in the U.S. We will collect information on participants' sweet-liking phenotype, added sugars intake (sweetness exposure), anthropometric measures, place-of-birth, and for immigrants, duration of time living in the U.S. and age when immigrated. Ancestry-specific polygenic scores of sweet liking will be computed based on the effect sizes of the sweet-related genetic variants on the sweet-liking phenotype for each ancestry group. The predictive validity of the polygenic scores will be tested using individuals of African and East Asian ancestry from the UK Biobank. We will also compare sweet liking between U.S.-born individuals and immigrants within each ancestry group to test whether differences in environmental sweetness exposure during childhood affect sweet liking in adulthood. DISCUSSION: Expanding genetic research on taste to individuals from ancestry groups traditionally underrepresented in such research is consistent with equity goals in sensory and nutrition science. Findings from this study will help in the development of a more personalized nutrition approach for diverse populations. TRIAL REGISTRATION: This protocol has been preregistered with the Center for Open Science (https://doi.org/10.17605/OSF.IO/WPR9E).


Assuntos
Asiático , Negro ou Afro-Americano , Preferências Alimentares , Paladar , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Paladar/genética , Paladar/fisiologia , Estados Unidos , Asiático/genética , Negro ou Afro-Americano/genética , Projetos de Pesquisa
12.
PLoS One ; 19(4): e0300061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38687739

RESUMO

It is known that the perception of bitterness is mediated by type 2 bitter taste receptors (TAS2Rs). However, recent reports have suggested that the carbonic anhydrase 6 (CA6) gene may also influence bitterness sensing. Genetic variants in these genes could influence dietary intake of brassica vegetables, whose increased consumption has been observed in the literature, though inconsistently, to decrease breast cancer (BC) risk. We hypothesized that the estimated odds ratios (ORs) for the association between BC and taster diplotype (PAV/PAV) and/or genotype A/A, will be in the direction of increased BC risk, potentially due to reduced consumption of brassica vegetables. Using a case-control study of BC in Polish women in Poland (210 cases and 262 controls) and Polish immigrant women to USA (78 cases and 170 controls) we evaluated the association of the taster diplotypes in TAS2R38 gene and genotypes in the CA6 gene and BC risk in these two populations individually and jointly. No significant increase in risk was observed for the TAS2R38 PAV/PAV diplotype (tasters) in each population individually or in the joint population. For the CA6 gene, in the joint population, we observed an increased BC risk for the combined G/A and G/G genotypes (non-tasters) vs A/A (tasters), OR = 1.41 (95% CI 1.04-1.90, p = 0.026) which after adjustment for False Discovery Rate (FDR), was not significant at p≤0.05 level. However, for the joint population and for the combined genotype of the two genes AVI/AVI+G* (non-tasters) vs. PAV/*+A/A (tasters), we observed a significant increase in BC risk, OR = 1.77 (95%CI 1.47-2.74, p = 0.01), for the non-tasters, which remained significant after FDR adjustment. In conclusion for the joint population and the joint effect for the two bitter sensing genes, we observed an increase in BC risk for the bitterness non-tasters, association which is in the opposite direction to our original hypothesis.


Assuntos
Neoplasias da Mama , Anidrases Carbônicas , Predisposição Genética para Doença , Receptores Acoplados a Proteínas G , Humanos , Feminino , Polônia/epidemiologia , Estudos de Casos e Controles , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia , Receptores Acoplados a Proteínas G/genética , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Anidrases Carbônicas/genética , Adulto , Emigrantes e Imigrantes , Paladar/genética , Fatores de Risco , Idoso , Polimorfismo de Nucleotídeo Único , Genótipo
13.
J Nutr Biochem ; 128: 109619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467201

RESUMO

Gustin, a trophic factor for taste bud development, and its polymorphism at rs2274333 influence taste perception of 6-n-propylthiouracil (PROP) and fungiform papillae (FP) density. The PROP taster status affects dietary fat sensing and body composition. However, there is a paucity of research on the gustin genotype with dietary fat perception, PROP tasting ability, and body mass index (BMI). Thus, taste sensitivity to fat and bitterness was evaluated in 178 healthy individuals. The general labeled magnitude scale was used to determine suprathreshold taste intensity ratings, whereas the alternative forced choice approach was used to estimate the taste-sensing ability. The FP density was assessed by applying blue-colored food dye over the anterior region of the tongue. Restriction fragment length polymorphism was used to detect the genetic polymorphism (rs2274333) in the carbonic anhydrase VI (CA-VI) gene. Fisher's chi-square analysis showed that the CA-VI genotype and allelic frequencies significantly correlated (p<0.001) with the PROP taster status and BMI. Healthy individuals with AA genotypes of the CA-VI polymorphism and PROP super-tasters demonstrated stronger gustatory sensitivity for linoleic acid (LA) with greater FP density in comparison to individuals with AG/GG genotypes and other PROP taster groups. Stepwise forward multiple regression analysis indicates that BMI and PROP taster status significantly influence the LA sensing ability. The suprathreshold intensity rating for LA was also significantly impacted by PROP taster status and CA-VI genotypes, with a variation of 73.3%. Overall, our findings show a relationship between the taste papillae environment and the CA-VI genetic mutation at rs2274333, which influenced the gustatory preference for dietary fat and bitter taste.


Assuntos
Anidrases Carbônicas , Gorduras na Dieta , Propiltiouracila , Papilas Gustativas , Percepção Gustatória , Humanos , Feminino , Masculino , Adulto , Percepção Gustatória/genética , Adulto Jovem , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Papilas Gustativas/metabolismo , Polimorfismo de Nucleotídeo Único , Índice de Massa Corporal , Paladar/genética , Genótipo , Frequência do Gene , Análise de Regressão
14.
Sci Rep ; 14(1): 4673, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409357

RESUMO

The TAS2R38 gene is well known for its function in bitter taste sensitivity, but evidence also suggests a role in innate immunity. TAS2R38 may be relevant in coronavirus disease 2019 (COVID-19), but research findings are inconsistent. The objective of this study was to explore whether common TAS2R38 haplotypes are associated with COVID-19 infection and symptomatology in the Canadian Longitudinal Study on Aging (CLSA). Data from the CLSA COVID-19 Questionnaire and Seroprevalence sub-studies were utilized with CLSA genetic data for common TAS2R38 haplotypes related to bitter taste sensitivity. Haplotypes were categorized into three diplotype groups: [P]AV homozygotes, [P]AV/[A]VI heterozygotes, and [A]VI homozygotes. No significant differences were observed between diplotypes and COVID-19 infection frequency. Among self-reported COVID-19 cases (n = 76), and in uncorrected exploratory analyses, heterozygotes were less likely to report experiencing sinus pain compared to [P]AV homozygotes. Among seroprevalence-confirmed cases (n = 177), [A]VI homozygotes were less likely to report experiencing a sore/scratchy throat compared to [P]AV homozygotes. However, both observations were non-significant upon correction for multiple testing. In this study, TAS2R38 haplotypes were not significantly associated with COVID-19 infection or symptomatology. Nevertheless, in light of some exploratory patterns and conflicting evidence, additional research is warranted to evaluate links between TAS2R38 and innate immunity.


Assuntos
COVID-19 , Receptores Acoplados a Proteínas G , Humanos , Envelhecimento/genética , Canadá/epidemiologia , COVID-19/epidemiologia , COVID-19/genética , Estudos Transversais , Haplótipos , Estudos Longitudinais , Receptores Acoplados a Proteínas G/genética , Estudos Soroepidemiológicos , Paladar/genética
15.
Chem Senses ; 492024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183495

RESUMO

The peripheral taste system is more complex than previously thought. The novel taste-signaling proteins TRPM4 and PLCß3 appear to function in normal taste responding as part of Type II taste cell signaling or as part of a broadly responsive (BR) taste cell that can respond to some or all classes of tastants. This work begins to disentangle the roles of intracellular components found in Type II taste cells (TRPM5, TRPM4, and IP3R3) or the BR taste cells (PLCß3 and TRPM4) in driving behavioral responses to various saccharides and other sweeteners in brief-access taste tests. We found that TRPM4, TRPM5, TRPM4/5, and IP3R3 knockout (KO) mice show blunted or abolished responding to all stimuli compared with wild-type. IP3R3 KO mice did, however, lick more for glucose than fructose following extensive experience with the 2 sugars. PLCß3 KO mice were largely unresponsive to all stimuli except they showed normal concentration-dependent responding to glucose. The results show that key intracellular signaling proteins associated with Type II and BR taste cells are mutually required for taste-driven responses to a wide range of sweet and carbohydrate stimuli, except glucose. This confirms and extends a previous finding demonstrating that Type II and BR cells are both necessary for taste-driven licking to sucrose. Glucose appears to engage unique intracellular taste-signaling mechanisms, which remain to be fully elucidated.


Assuntos
Glucose , Fosfolipase C beta , Canais de Cátion TRPM , Paladar , Animais , Camundongos , Carboidratos , Glucose/farmacologia , Glucose/metabolismo , Camundongos Knockout , Edulcorantes/farmacologia , Paladar/genética , Paladar/fisiologia , Percepção Gustatória , Canais de Cátion TRPM/genética , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo
16.
Genes (Basel) ; 15(1)2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38254970

RESUMO

Rice is an important crop in the word, and fat is one of the main important nutrient components of rice. The lipid content and fatty acid composition of grains significantly influences the quality of rice. In this study, 94 homozygous recombination inbred lines (RILs) were developed and the crude fat content of them displayed a normal distribution ranging from 0.44% to 2.62%. Based on their taste quality, a positive association between fat content and eating quality was revealed. Then, two lines (FH and FL) were selected with similar agronomic characteristics and different lipid content and taste quality for RNA sequencing analysis, and a total of 619 differentiable expressed genes were detected, primarily enriched in metabolic pathways such as starch and sucrose metabolism, fatty acid metabolism, and amino acid metabolism. The expression of two genes related to fatty acid synthesis and elongation was significantly up-regulated, while the expression of three genes related to fatty acid degradation was significantly down-regulated in FH grains. By using liquid chromatography, the relative levels of palmitic acid and oleic acid were discovered significantly higher in FH grains. Additionally, the comparative genomic analysis was conducted to visualize genomic differences of five genes. Ultimately, two genes (Os07g0417200 and Os12g0102100) were selected to be the key gene to affect the lipid metabolism, especially for the synthesis of unsaturated fatty acids, significantly changing the eating quality of rice. These results provide a theoretical basis for improving the taste quality of rice.


Assuntos
Oryza , Oryza/genética , Paladar/genética , Perfilação da Expressão Gênica , Expressão Gênica , Ácidos Graxos/genética
17.
J Hazard Mater ; 466: 133497, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278077

RESUMO

The discernment and aversion of noxious gustatory stimuli profoundly influence homeostasis maintenance and survival of fauna. Cantharidin, a purported aphrodisiac, is a monoterpenoid compound secreted by many species of blister beetle, particularly by the Spanish fly, Lytta vesicatoria. Although the various advantageous functions of cantharidin have been described, its taste analysis and toxic properties in animalshave been rarely explored. Our study using Drosophila melanogaster examines the taste properties of cantharidin along with its potential hazardous effect in the internal organs of animals. Here, we find that cantharidin activates bitter taste receptors. Our findings show that specific ionotropic receptors (IR7g, IR51b, and IR94f) in labellar bitter-sensing neurons, along with co-receptors IR25a and IR76b, are responsible for detecting cantharidin. By introducing the IR7g and IR51b in sweet and bitter neurons, naturally expressing IR76b and IR25a, we show that these genes are sufficient for cantharidin perception. Moreover, we witness the deleterious ramifications of cantharidin on survival and visceral integrities, shedding light on its hazardous effect.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Cantaridina/toxicidade , Paladar/genética , Percepção Gustatória/fisiologia
18.
Physiol Behav ; 276: 114473, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262572

RESUMO

Alcohol use disorder in humans is highly heritable, and as a term is synonymous with alcoholism, alcohol dependence, and alcohol addiction. Defined by the NIAAA as a medical condition characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences, the genetic basis of alcohol dependence is much studied. However, an intriguing component to alcohol acceptance exists outside of genetics or social factors. In fact, mice of identical genetic backgrounds without any prior experience of tasting ethanol display widely varying preferences to it, far beyond those seen for typical taste solutions. Here, we hypothesized that a preference for ethanol, which tastes both bitter and sweet to humans, would be influenced by taste function. Using a mouse model of taste behavior, we tested preferences for bitter and sweet in mice that, without training or previous experience, either preferred or avoided ethanol solutions in consumption trials. Data showed clear sex differences, in which male mice that preferred ethanol also preferred a bitter quinine solution, whereas female mice that preferred ethanol also preferred a sweet sucralose solution. Male mice preferring ethanol also exhibited lower expression levels of mRNA for genes encoding the bitter taste receptors T2R26 and T2R37, and the bitter transducing G-protein subunit GNAT3, suggesting that the higher ethanol preference observed in the male mice may be due to bitter signaling, including that arising from ethanol, being weaker in this group. Results further support links between ethanol consumption and taste response, and may be relevant to substance abuse issues in human populations.


Assuntos
Alcoolismo , Paladar , Feminino , Masculino , Humanos , Paladar/genética , Alcoolismo/genética , Percepção Gustatória/genética , Etanol/farmacologia , Consumo de Bebidas Alcoólicas/genética , Preferências Alimentares/fisiologia
19.
J Cell Physiol ; 239(2): e31179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219077

RESUMO

Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.


Assuntos
Papilas Gustativas , Animais , Humanos , Camundongos , Genitália , Receptores Acoplados a Proteínas G/metabolismo , Sêmen , Paladar/genética , Papilas Gustativas/metabolismo
20.
Nat Ecol Evol ; 8(1): 111-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093021

RESUMO

Taste is a vital chemical sense for feeding behaviour. In mammals, the umami and sweet taste receptors comprise three members of the taste receptor type 1 (T1R/TAS1R) family: T1R1, T1R2 and T1R3. Because their functional homologues exist in teleosts, only three TAS1R genes generated by gene duplication are believed to have been inherited from the common ancestor of bony vertebrates. Here, we report five previously uncharacterized TAS1R members in vertebrates, TAS1R4, TAS1R5, TAS1R6, TAS1R7 and TAS1R8, based on genome-wide survey of diverse taxa. We show that mammalian and teleost fish TAS1R2 and TAS1R3 genes are paralogues. Our phylogenetic analysis suggests that the bony vertebrate ancestor had nine TAS1Rs resulting from multiple gene duplications. Some TAS1Rs were lost independently in descendent lineages resulting in retention of only three TAS1Rs in mammals and teleosts. Combining functional assays and expression analysis of non-teleost fishes we show that the novel T1Rs form heterodimers in taste-receptor cells and recognize a broad range of ligands such as essential amino acids, including branched-chain amino acids, which have not been previously considered as T1R ligands. This study reveals diversity of taste sensations in both modern vertebrates and their ancestors, which might have enabled vertebrates to adapt to diverse habitats on Earth.


Assuntos
Percepção Gustatória , Paladar , Animais , Paladar/genética , Filogenia , Vertebrados/genética , Peixes/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...