Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.154
Filtrar
1.
Methods Mol Biol ; 2841: 85-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115767

RESUMO

The plant cell wall is rich in polysaccharides with high heterogeneity. Investigating the composition and structure of cell wall polysaccharides is crucial for understanding the functionalities of plant cell walls. Carbohydrate electrophoresis is a sensitive and rapid method to analyze polysaccharides qualitatively and quantitatively. The process includes digesting the polysaccharides with appropriate cleavage enzymes, labeling the reducing ends of the released oligosaccharides with a highly charged fluorophore, and separating the labeled oligosaccharides in a polyacrylamide gel via high-voltage electrophoresis. The generated fluorescence can be calculated as compared to that of oligosaccharide standards. Therefore, this is a convenient method for polysaccharide characterization that can be performed in most laboratories. Here, we introduce the detailed operational steps and precautions, which are helpful for researchers to quickly obtain the structural information of polysaccharides.


Assuntos
Parede Celular , Polissacarídeos , Parede Celular/química , Polissacarídeos/análise , Polissacarídeos/química , Oligossacarídeos/análise , Oligossacarídeos/química , Eletroforese em Gel de Poliacrilamida/métodos , Eletroforese/métodos
2.
Methods Mol Biol ; 2841: 95-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115768

RESUMO

Lignin is a tough biopolymer that gives plants strength and protection. It is also a major obstacle for converting plant biomass into biofuels because it prevents enzymes from accessing the sugar-rich fibers. To optimize biofuel production, we need to measure the lignin content in plant tissues accurately and efficiently. In this protocol, we describe a simple and reliable method to measure the total lignin content in plant tissues. The method uses acetyl bromide, a chemical that dissolves lignin into soluble derivatives and makes it possible to detect them by their absorbance at 280 nm. The method consists of two steps: first, we obtained destarched cell wall material from the plant samples, and second, we treat the cell wall material with acetyl bromide and measure the absorbance of the lignin solution. This method can capture all types of lignin and works well with different plant tissues.


Assuntos
Biomassa , Parede Celular , Lignina , Plantas , Lignina/análise , Lignina/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Plantas/química , Plantas/metabolismo , Acetileno/química , Acetileno/análise , Biocombustíveis/análise , Acetatos
3.
Glycobiology ; 34(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39088584

RESUMO

The limited availability of efficient treatments for Candida infections and the increased emergence of antifungal-resistant strains stimulates the search for new antifungal agents. We have previously isolated a sunflower mannose-binding lectin (Helja) with antifungal activity against Candida albicans, capable of binding mannose-bearing oligosaccharides exposed on the cell surface. This work aimed to investigate the biological and biophysical basis of Helja's binding to C. albicans cell wall mannans and its influence on the fungicidal activity of the lectin. We evaluated the interaction of Helja with the cell wall mannans extracted from the isogenic parental strain (WT) and a glycosylation-defective C. albicans with altered cell wall phosphomannosylation (mnn4∆ null mutants) and investigated its antifungal effect. Helja exhibited stronger antifungal activity on the mutant strain, showing greater inhibition of fungal growth, loss of cell viability, morphological alteration, and formation of clusters with agglutinated cells. This differential biological activity of Helja was correlated with the biophysical parameters determined by solid phase assays and isothermal titration calorimetry, which demonstrated that the lectin established stronger interactions with the cell wall mannans of the mnn4∆ null mutant than with the WT strain. In conclusion, our results provide new evidence on the nature of the Helja molecular interactions with cell wall components, i.e. phosphomannan, and its impact on the antifungal activity. This study highlights the relevance of plant lectins in the design of effective antifungal therapies.


Assuntos
Antifúngicos , Candida albicans , Parede Celular , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Helianthus/química , Mananas/química , Mananas/farmacologia , Mananas/metabolismo , Testes de Sensibilidade Microbiana
4.
Sci Rep ; 14(1): 18073, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103410

RESUMO

The escalating antibiotic resistance in mycobacterial species poses a significant threat globally, necessitating an urgent need to find alternative solutions. Bacteriophage-derived endolysins, which facilitate phage progeny release by attacking bacterial cell walls, present promising antibacterial candidates due to their rapid lytic action, high specificity and low risk of resistance development. In mycobacteria, owing to the complex, hydrophobic cell wall, mycobacteriophages usually synthesize two endolysins: LysinA, which hydrolyzes peptidoglycan; LysinB, which delinks mycolic acid-containing outer membrane and arabinogalactan, releasing free mycolic acid. In this study, we conducted domain analysis and functional characterization of a novel LysinB from RitSun, an F2 sub-cluster mycobacteriophage from our phage collection. Several key properties of RitSun LysinB make it an important antimycobacterial agent: its ability to lyse Mycobacterium smegmatis from without, a higher than previously reported specific activity of 1.36 U/mg and its inhibitory effect on biofilm formation. Given the impermeable nature of the mycobacterial cell envelope, dissecting RitSun LysinB at the molecular level to identify its cell wall-destabilizing sequence could be utilized to engineer other native lysins as fusion proteins, broadening their activity spectrum.


Assuntos
Endopeptidases , Micobacteriófagos , Mycobacterium smegmatis , Mycobacterium smegmatis/virologia , Mycobacterium smegmatis/efeitos dos fármacos , Endopeptidases/metabolismo , Endopeptidases/química , Endopeptidases/farmacologia , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Parede Celular/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Peptidoglicano/metabolismo , Peptidoglicano/química , Galactanos
5.
PeerJ ; 12: e17715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119104

RESUMO

Postharvest rot caused by various fungal pathogens is a damaging disease affecting kiwifruit production and quality, resulting in significant annual economic losses. This study focused on isolating the strain P3-1W, identified as Diaporthe eres, as the causal agent of 'Hongyang' postharvest rot disease in China. The investigation highlighted cell wall degrading enzymes (CWDEs) as crucial pathogenic factors. Specially, the enzymatic activities of cellulase, ß-galactosidase, polygalacturonase, and pectin methylesterases peaked significantly on the second day after infection of D. eres P3-1W. To gain a comprehensive understanding of these CWDEs, the genome of this strain was sequenced using PacBio and Illumina sequencing technologies. The analysis revealed that the genome of D. eres P3-1W spans 58,489,835 bp, with an N50 of 5,939,879 bp and a GC content of 50.7%. A total of 15,407 total protein-coding genes (PCGs) were predicted and functionally annotated. Notably, 857 carbohydrate-active enzymes (CAZymes) were identified in D. eres P3-1W, with 521 CWDEs consisting of 374 glycoside hydrolases (GHs), 108 carbohydrate esterase (CEs) and 91 polysaccharide lyases (PLs). Additionally, 221 auxiliary activities (AAs), 91 glycosyltransferases (GTs), and 108 carbohydrate binding modules (CBMs) were detected. These findings offer valuable insights into the CAZymes of D. eres P3-1W.


Assuntos
Actinidia , Ascomicetos , Genoma Fúngico , Doenças das Plantas , Actinidia/microbiologia , Doenças das Plantas/microbiologia , China , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/enzimologia , Genoma Fúngico/genética , Poligalacturonase/genética , Poligalacturonase/metabolismo , Frutas/microbiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Celulase/genética , Celulase/metabolismo , Parede Celular/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
6.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115544

RESUMO

Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.


Assuntos
Alanina Racemase , Isomerases de Aminoácido , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Alanina Racemase/genética , Alanina Racemase/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Parede Celular/metabolismo , Parede Celular/genética
7.
Nat Commun ; 15(1): 6818, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122699

RESUMO

More than two million people worldwide are affected by life-threatening, invasive fungal infections annually. Candida species are the most common cause of nosocomial, invasive fungal infections and are associated with mortality rates above 40%. Despite the increasing incidence of drug-resistance, the development of novel antifungal formulations has been limited. Here we investigate the antifungal mode of action and therapeutic potential of positively charged, synthetic peptide mimics to combat Candida albicans infections. Our data indicates that these synthetic polymers cause endoplasmic reticulum stress and affect protein glycosylation, a mode of action distinct from currently approved antifungal drugs. The most promising polymer composition damaged the mannan layer of the cell wall, with additional membrane-disrupting activity. The synergistic combination of the polymer with caspofungin prevented infection of human epithelial cells in vitro, improved fungal clearance by human macrophages, and significantly increased host survival in a Galleria mellonella model of systemic candidiasis. Additionally, prolonged exposure of C. albicans to the synergistic combination of polymer and caspofungin did not lead to the evolution of tolerant strains in vitro. Together, this work highlights the enormous potential of these synthetic peptide mimics to be used as novel antifungal formulations as well as adjunctive antifungal therapy.


Assuntos
Antifúngicos , Candida albicans , Candidíase , Caspofungina , Sinergismo Farmacológico , Peptídeos , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Humanos , Caspofungina/farmacologia , Animais , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Peptídeos/farmacologia , Peptídeos/química , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mananas/farmacologia , Mananas/química , Mariposas/microbiologia , Mariposas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Polímeros/farmacologia , Polímeros/química
8.
Proc Natl Acad Sci U S A ; 121(34): e2408540121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150786

RESUMO

Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created by L,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogen Clostridioides difficile, about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability in C. difficile. We also show that C. difficile has five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non-C. difficile VanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability in C. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs in C. difficile makes them potential targets for antibiotics that kill C. difficile selectively.


Assuntos
Proteínas de Bactérias , Parede Celular , Clostridioides difficile , Peptidoglicano , Clostridioides difficile/enzimologia , Clostridioides difficile/metabolismo , Peptidoglicano/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano Glicosiltransferase/química , Peptidoglicano Glicosiltransferase/genética
9.
Animal ; 18(8): 101256, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106555

RESUMO

There is a balance between DM yield and feed value when choosing types of grasses on a farm depending on the acreages of farmland and types of ruminants to be fed. Therefore, optimisation of the harvest strategy for grass silage is important for profitable dairy farming. Tall fescue has high DM yield and can replace traditional grasses, such as timothy, in Northern Europe in a changing climate as it has been shown to be more drought tolerant. As differences in climate responses previously have been related to differences in cell wall structure between grass species and, consequently, in digestibility, it is highly relevant to compare these species at similar maturity stages and to investigate if a very early harvest date will diminish potential differences between the species. This study evaluated the effects of harvest date and forage species on the concentration of hydroxycinnamic acids in silages and its relationship to feed efficiency of dairy cows. Tall fescue and timothy were harvested at very early date on May 25 or at early date on May 31 in the spring growth cycle. Forty lactating dairy cows were used in a block design. Cows received 1 of 4 treatments: (1) tall fescue harvested at very early date, (2) timothy harvested at very early date, (3) tall fescue harvested at early date, and (4) timothy harvested at early date. Diets were formulated to have the same forage-to-concentrate ratio (49:51 on DM basis). Tall fescue silages showed greater concentrations of DM, ash, and CP than timothy silages. Grasses harvested at early date showed greater concentrations of NDF, ADL, and cell wall than grasses harvested at very early date. Tall fescue silages showed greater concentration of p-coumaric acid and lower in vitro organic matter digestibility (IVOMD) compared to timothy silages. Milk production and composition were not affected by treatments but cows fed tall fescue-based diets showed lower milk protein yield and greater milk urea nitrogen than when timothy-based diets were fed. Furthermore, cows receiving timothy-based diets showed greater feed efficiency compared to cows receiving tall fescue-based diets. Thus, the lower concentration of p-coumaric acid and the higher IVOMD was associated with greater feed efficiency of cows fed timothy-based diets compared to tall fescue-based diets.


Assuntos
Ração Animal , Parede Celular , Dieta , Silagem , Animais , Bovinos/fisiologia , Feminino , Silagem/análise , Ração Animal/análise , Dieta/veterinária , Phleum , Indústria de Laticínios/métodos , Lactação , Leite/química , Leite/metabolismo , Festuca , Poaceae , Fenômenos Fisiológicos da Nutrição Animal , Digestão/fisiologia
10.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125770

RESUMO

Enhancing stalk strength is a crucial strategy to reduce lodging. We identified a maize inbred line, QY1, with superior stalk mechanical strength. Comprehensive analyses of the microstructure, cell wall composition, and transcriptome of QY1 were performed to elucidate the underlying factors contributing to its increased strength. Notably, both the vascular bundle area and the thickness of the sclerenchyma cell walls in QY1 were significantly increased. Furthermore, analyses of cell wall components revealed a significant increase in cellulose content and a notable reduction in lignin content. RNA sequencing (RNA-seq) revealed changes in the expression of numerous genes involved in cell wall synthesis and modification, especially those encoding pectin methylesterase (PME). Variations in PME activity and the degree of methylesterification were noted. Additionally, glycolytic efficiency in QY1 was significantly enhanced. These findings indicate that QY1 could be a valuable resource for the development of maize varieties with enhanced stalk mechanical strength and for biofuel production.


Assuntos
Hidrolases de Éster Carboxílico , Parede Celular , Regulação da Expressão Gênica de Plantas , Caules de Planta , Zea mays , Zea mays/genética , Zea mays/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Caules de Planta/metabolismo , Caules de Planta/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Celulose/metabolismo , Transcriptoma
11.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125871

RESUMO

Caffeine affords several beneficial effects on human health, acting as an antioxidant, anti-inflammatory agent, and analgesic. Caffeine is widely used in cosmetics, but its antimicrobial activity has been scarcely explored, namely against skin infection agents. Dermatophytes are the most common fungal agents of human infection, mainly of skin infections. This work describes the in vitro effect of caffeine during keratinocyte infection by Trichophyton mentagrophytes, one of the most common dermatophytes. The results show that caffeine was endowed with antidermatophytic activity with a MIC, determined following the EUCAST standards, of 8 mM. Caffeine triggered a modification of the levels of two major components of the fungal cell wall, ß-(1,3)-glucan and chitin. Caffeine also disturbed the ultrastructure of the fungal cells, particularly the cell wall surface and mitochondria, and autophagic-like structures were observed. During dermatophyte-human keratinocyte interactions, caffeine prevented the loss of viability of keratinocytes and delayed spore germination. Overall, this indicates that caffeine can act as a therapeutic and prophylactic agent for dermatophytosis.


Assuntos
Antifúngicos , Arthrodermataceae , Cafeína , Queratinócitos , Cafeína/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/microbiologia , Humanos , Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Parede Celular/efeitos dos fármacos , Tinha/tratamento farmacológico , Tinha/microbiologia , Quitina/farmacologia , Quitina/química
12.
Planta ; 260(3): 73, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150569

RESUMO

MAIN CONCLUSION: The ultrastructural design and biochemical organization of the significantly thickened outer tissues of the gametophytic stem of Hypnodendron menziesii optimizes load bearing of the stem. Hypnodendron menziesii is a bryoid umbrella moss growing in high humid conditions on the forest floors of New Zealand. The erect gametophyte bears up to eight whorls of branches in succession, spreading across the stem that bears the heavy weight of branches with highly hydrated leaves. Our investigation using a combination of light microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and TEM-immunolabeling techniques provided novel information on the structural design and biochemical organization of greatly thickened cell walls of epidermal, hypodermal, and outermost cortical tissues, comparing underlying thin-walled cortical tissues in the gametophytic stem. Probing into the ultrastructure of the cell wall architecture of these target tissues by TEM and SEM revealed the cell walls to display a multilamellar organization, in addition to demonstrating the presence of an electron-dense substance in the cell wall, presumably flavonoids. The pattern of distribution and concentration of rhamnogalacturonan, homogalacturonan, and heteromannan, as determined by immunogold labeling, suggests that it is the combination of structural and molecular design of the cell wall that may optimize the mechanical function of the epidermal, hypodermal, and outer cortical tissues. Statistical relationships between the overall thickness of epidermal, hypodermal, and outer cortical cell walls, the lumen area of cells and the percentage area of cell wall occupied in these tissues at different heights of the stem, and thickness of secondary cell wall layers (L1-L4/5) were explored. The results of these analyses unequivocally support the contribution of outer tissues to the mechanical strength of the resilient stem.


Assuntos
Parede Celular , Caules de Planta , Parede Celular/ultraestrutura , Caules de Planta/ultraestrutura , Microscopia Eletrônica de Varredura , Células Germinativas Vegetais/ultraestrutura , Bryopsida/ultraestrutura , Microscopia Eletrônica de Transmissão
13.
J Vis Exp ; (209)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39141533

RESUMO

Wheat plants infested by Russian wheat aphids (RWA) induce a cascade of defense responses, including the hypersensitive responses (HR) and induction of pathogenesis-related (PR) proteins, such as ß-1,3-glucanase and peroxidase (POD). This study aims to characterize the physicochemical properties of cell wall-associated POD and ß-1,3-glucanase and determine their synergism on the cell wall modification during RWASA2-wheat interaction. The susceptible Tugela, moderately resistant Tugela-Dn1, and resistant Tugela-Dn5 cultivars were pregerminated and planted under greenhouse conditions, fertilized 14 days after planting, and irrigated every 3 days. The plants were infested with 20 parthenogenetic individuals of the same RWASA2 clone at the 3-leaf stage, and leaves were harvested at 1 to 14 days post-infestation. The Intercellular wash fluid (IWF) was extracted using vacuum filtration and stored at -20 °C. Leaf residues were crushed into powder and used for cell wall components. POD activity and characterization were determined using 5 mM guaiacol substrate and H2O2, monitoring change in absorbance at 470 nm. ß-1,3-glucanase activity, pH, and temperature optimum conditions were demonstrated by measuring the total reducing sugars in the hydrolysate with DNS reagent using ß-1,3-glucan and ß-1,3-1,4-glucan substrates, measuring the absorbance at 540 nm, and using glucose standard curve. The pH optimum was determined between pH 4 to 9, temperature optimum between 25 and 50 °C, and thermal stability between 30 °C and 70 °C. ß-1,3-glucanase substrate specificity was determined at 25 °C and 40 °C using curdlan and barley ß-1,3-1,4-glucan substrates. Additionally, the ß-1,3-glucanase mode of action was determined using laminaribiose to laminaripentaose. The oligosaccharide hydrolysis product patterns were qualitatively analyzed with thin-layer chromatography (TLC) and quantitatively analyzed with HPLC. The method presented in this study demonstrates a robust approach for infesting wheat with RWA, extracting peroxidase and ß-1,3-glucanase from the cell wall region and their comprehensive biochemical characterization.


Assuntos
Afídeos , Parede Celular , Triticum , Triticum/química , Parede Celular/química , Parede Celular/metabolismo , Animais , Glucana 1,3-beta-Glucosidase/metabolismo , Glucana 1,3-beta-Glucosidase/química , Peroxidase/química , Peroxidase/metabolismo , Doenças das Plantas/parasitologia
14.
Appl Microbiol Biotechnol ; 108(1): 437, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133429

RESUMO

ß-1,6-Glucan plays a crucial role in fungal cell walls by linking the outer layer of mannoproteins and the inner layer of ß-1,3-glucan, contributing significantly to the maintenance of cell wall rigidity. Therefore, the hydrolysis of ß-1,6-glucan by ß-1,6-glucanase directly leads to the disintegration of the fungal cell wall. Here, a novel ß-1,6-glucanase FlGlu30 was identified from the endophytic Flavobacterium sp. NAU1659 and heterologously expressed in Escherichia coli BL21 (DE3). The optimal reaction conditions of purified FlGlu30 were 50℃ and pH 6.0, resulting in a specific activity of 173.1 U/mg using pustulan as the substrate. The hydrolyzed products of FlGlu30 to pustulan were mainly gentianose within 1 h of reaction. With the extension of reaction time, gentianose was gradually hydrolyzed to glucose, indicating that FlGlu30 is an endo-ß-1,6-glucanase. The germination of Magnaporthe oryzae Guy11 spores could not be inhibited by FlGlu30, but the appressorium formation of spores was completely inhibited under the concentration of 250.0 U/mL FlGlu30. The disruptions of cell wall and accumulation of intracellular reactive oxide species (ROS) were observed in FlGlu30-treated M. oryzae Guy11 cells, suggesting the significant importance of ß-1,6-glucan as a potential antifungal target and the potential application of FlGlu30. KEY POINTS: • ß-1,6-Glucan is a key component maintaining the rigid structure of fungal cell wall. • ß-1,6-Glucanase is an antifungal protein with significant potential applications. • FlGlu30 is the first reported ß-1, 6-glucanase derived from Flavobacterium.


Assuntos
Antifúngicos , Parede Celular , Escherichia coli , Flavobacterium , Glicosídeo Hidrolases , Flavobacterium/enzimologia , Flavobacterium/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hidrólise , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Parede Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucanos/metabolismo , Concentração de Íons de Hidrogênio , beta-Glucanas/metabolismo , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Especificidade por Substrato , Polissacarídeos
15.
Pestic Biochem Physiol ; 203: 106015, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084806

RESUMO

Beauveria bassiana is a popular and eco-friendly biopesticide. During its pathogen-pest interaction, both N-acetylglucosamine (GlcNAc) catabolism and anabolism are crucial for nutrient supply and cell-wall construction. The initiation of GlcNAc metabolism relies on the catalysis of GlcNAc kinase, which has been extensively studied in the human pathogen Candida albicans. However, the physiological function of GlcNAc kinase remains poorly understood in entomopathogenic fungi. In the present study, a GlcNAc kinase homolog was identified and designated as BbHxk1 in B. bassiana. Deletion of BbHxk1 resulted in viable but reduced vegetative growth on various carbon sources. ΔBbHxk1 mutants displayed severe defects in cell wall integrity, making them more susceptible to cell wall stress cues. Furthermore, the absence of BbHxk1 resulted in an increase in conidial yield and blastospore production, and a faster rate of germination and filamentation, potentially attributed to higher intracellular ATP levels. BbHxk1 deficiency led to a reduction in the activities of cuticle-degrading enzymes, which might contribute to the attenuated pathogenicity specifically through cuticle penetration rather than hemocoel infection towards Galleria mellonella larvae. Being different from C. albicans Hxk1, which facultatively acts as a catalyzing enzyme and transcriptional regulator, BbHxk1 primarily acts as a catalyzing enzyme and metabolic regulator. The altered metabolomic profiling correlated with the phenotypic defects in ΔBbHxk1 mutants, further implicating a potential metabolism-dependent mechanism of BbHxk1 in mediating physiologies of B. bassiana. These findings not only unveil a novel role for GlcNAc kinase in B. bassiana, but also provide a solid theoretical basis to guide metabolic reprogramming in order to maintain or even enhance the efficiency of fungi for practical applications.


Assuntos
Beauveria , Parede Celular , Fosfotransferases (Aceptor do Grupo Álcool) , Beauveria/patogenicidade , Beauveria/genética , Parede Celular/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Esporos Fúngicos , Mariposas/microbiologia , Agentes de Controle Biológico
16.
mSphere ; 9(7): e0037224, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38980069

RESUMO

Iron acquisition is critical for pathogens to proliferate during invasive infection, and the human fungal pathogen Candida albicans is no exception. The iron regulatory network, established in reference strain SC5314 and derivatives, includes the central player Sef1, a transcription factor that activates iron acquisition genes in response to iron limitation. Here, we explored potential variation in this network among five diverse C. albicans strains through mutant analysis, Nanostring gene expression profiling, and, for two strains, RNA-Seq. Our findings highlight four features that may inform future studies of natural variation and iron acquisition in this species. (i) Conformity: In all strains, major iron acquisition genes are upregulated during iron limitation, and a sef1Δ/Δ mutation impairs that response and growth during iron limitation. (ii) Response variation: Some aspects of the iron limitation response vary among strains, notably the activation of hypha-associated genes. As this gene set is tied to tissue damage and virulence, variation may impact the progression of infection. (iii) Genotype-phenotype variation: The impact of a sef1Δ/Δ mutation on cell wall integrity varies, and for the two strains examined the phenotype correlated with sef1Δ/Δ impact on several cell wall integrity genes. (iv) Phenotype discovery: DNA repair genes were induced modestly by iron limitation in sef1Δ/Δ mutants, with fold changes we would usually ignore. However, the response occurred in both strains tested and was reminiscent of a much stronger response described in Cryptococcus neoformans, a suggestion that it may have biological meaning. In fact, we observed that the iron limitation of a sef1Δ/Δ mutant caused recessive phenotypes to emerge at two heterozygous loci. Overall, our results show that a network that is critical for pathogen proliferation presents variation outside of its core functions.IMPORTANCEA key virulence factor of Candida albicans is the ability to maintain iron homeostasis in the host where iron is scarce. We focused on a central iron regulator, SEF1. We found that iron regulator Sef1 is required for growth, cell wall integrity, and genome integrity during iron limitation. The novel aspect of this work is the characterization of strain variation in a circuit that is required for survival in the host and the connection of iron acquisition to genome integrity in C. albicans.


Assuntos
Candida albicans , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Ferro , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/metabolismo , Ferro/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Virulência , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Parede Celular/metabolismo , Parede Celular/genética , Variação Genética , Genótipo
17.
New Phytol ; 243(5): 1887-1898, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38984686

RESUMO

The role of maternal tissue in embryogenesis remains enigmatic in many complex organisms. Here, we investigate the contribution of maternal tissue to apical-basal patterning in the kelp embryo. Focussing on Undaria pinnatifida, we studied the effects of detachment from the maternal tissue using microsurgery, staining of cell wall modifications, morphometric measurements, flow cytometry, genotyping and a modified kelp fertilisation protocol synchronising kelp embryogenesis. Detached embryos are rounder and often show aberrant morphologies. When a part of the oogonial cell wall remains attached to the zygote, the apical-basal patterning is rescued. Furthermore, the absence of contact with maternal tissue increases parthenogenesis, highlighting the critical role of maternal signals in the initial stages of development. These results show a key role for the connection to the maternal oogonial cell wall in apical-basal patterning in kelps. This observation is reminiscent of another brown alga, Fucus, where the cell wall directs the cell fate. Our findings suggest a conserved mechanism across phylogenetically distant oogamous lineages, where localised secretion of sulphated F2 fucans mediates the establishment of the apical-basal polarity. In this model, the maternal oogonial cell wall mediates basal cell fate determination by providing an extrinsic patterning cue to the future kelp embryo.


Assuntos
Parede Celular , Undaria , Undaria/fisiologia , Parede Celular/metabolismo , Padronização Corporal , Kelp/fisiologia , Partenogênese , Algas Comestíveis
18.
Mol Biol Cell ; 35(9): br17, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39046771

RESUMO

The stereotypical tip growth of filamentous fungi supports their lifestyles and functions. It relies on the polarized remodeling and expansion of a protective elastic cell wall (CW) driven by large cytoplasmic turgor pressure. Remarkably, hyphal filament diameters and cell elongation rates can vary extensively among different fungi. To date, however, how fungal cell mechanics may be adapted to support these morphological diversities while ensuring surface integrity remains unknown. Here, we combined super-resolution imaging and deflation assays to measure local CW thickness, elasticity and turgor in a set of fungal species spread on the evolutionary tree that spans a large range in cell size and growth speeds. While CW elasticity exhibited dispersed values, presumably reflecting differences in CW composition, both thickness and turgor scaled in dose-dependence with cell diameter and growth speeds. Notably, larger cells exhibited thinner lateral CWs, and faster cells thinner apical CWs. Counterintuitively, turgor pressure was also inversely scaled with cell diameter and tip growth speed, challenging the idea that turgor is the primary factor dictating tip elongation rates. We propose that fast-growing cells with rapid CW turnover have evolved strategies based on a less turgid cytoplasm and thin walls to safeguard surface integrity and survival.


Assuntos
Parede Celular , Fungos , Hifas , Parede Celular/metabolismo , Parede Celular/fisiologia , Hifas/crescimento & desenvolvimento , Fungos/fisiologia , Elasticidade , Citoplasma/metabolismo , Fenômenos Biomecânicos
19.
Food Microbiol ; 123: 104588, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038893

RESUMO

Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.


Assuntos
Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Espécies Reativas de Oxigênio , Zea mays , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Zea mays/microbiologia , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Arachis/microbiologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo
20.
Physiol Plant ; 176(4): e14415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962818

RESUMO

The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Lacase , Lignina , Proteínas de Plantas , Parede Celular/metabolismo , Cor , Gossypium/genética , Gossypium/metabolismo , Gossypium/enzimologia , Lacase/metabolismo , Lacase/genética , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...