Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.243
Filtrar
1.
Food Chem ; 462: 140909, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208727

RESUMO

Probiotics serve a very important role in human health. However, probiotics have poor stability during processing, storage, and gastrointestinal digestion. The gellan gum (GG) is less susceptible to enzymatic degradation and resistant to thermal and acidic environments. This study investigated the effect of casein (CS)-GG emulsions to encapsulate Lactiplantibacillus plantarum CICC 6002 (L. plantarum CICC 6002) on its storage stability, thermal stability, and gastrointestinal digestion. L. plantarum CICC 6002 was suspended in palm oil and emulsions were prepared using CS or CS-GG complexes. We found the CS-GG emulsions improved the viability of L. plantarum CICC 6002 after storage, pasteurization, and digestion compared to the CS emulsions. In addition, we investigated the influence of the gellan gum concentration on emulsion stability, and the optimal stability was observed in the emulsion prepared by CS-0.8% GG complex. This study provided a new strategy for the protection of probiotics based on CS-GG delivery system.


Assuntos
Caseínas , Emulsões , Lactobacillus plantarum , Polissacarídeos Bacterianos , Probióticos , Emulsões/química , Probióticos/química , Polissacarídeos Bacterianos/química , Caseínas/química , Humanos , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Pasteurização , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Composição de Medicamentos , Digestão , Armazenamento de Alimentos
2.
Food Chem ; 462: 140973, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208730

RESUMO

High-pressure processing (HPP) of donor human milk (DM) minimally impacts the concentration and bioactivity of some important bioactive proteins including lactoferrin, and bile salt-stimulated lipase (BSSL) compared to Holder pasteurization (HoP), yet the impact of HPP and subsequent digestion on the full array of proteins detectable by proteomics remains unclear. We investigated how HPP impacts undigested proteins in DM post-processing and across digestion by proteomic analysis. Each pool of milk (n = 3) remained raw, or was treated by HPP (500 MPa, 10 min) or HoP (62.5 °C, 30 min), and underwent dynamic in vitro digestion simulating the preterm infant. In the meal, major proteins were minimally changed post-processing. HPP-treated milk proteins better resisted proximal digestion (except for immunoglobulins, jejunum 180 min) and the extent of undigested proteins after gastric digestion of major proteins in HPP-treated milk was more similar to raw (e.g., BSSL, lactoferrin, macrophage-receptor-1, CD14, complement-c3/c4, xanthine dehydrogenase) than HoP.


Assuntos
Digestão , Recém-Nascido Prematuro , Proteínas do Leite , Leite Humano , Pasteurização , Proteômica , Humanos , Leite Humano/química , Leite Humano/metabolismo , Proteínas do Leite/metabolismo , Proteínas do Leite/química , Proteínas do Leite/análise , Pressão , Recém-Nascido , Lactoferrina/análise , Lactoferrina/metabolismo , Manipulação de Alimentos , Feminino , Lactente , Modelos Biológicos
3.
Food Res Int ; 195: 114990, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277252

RESUMO

The change in milk fat during storage greatly influences its flavor. This study investigates the effect of fatty acid composition on milk flavor by analyzing volatile compounds in pasteurized whole milk (PWM) and pasteurized skim milk (PSM) during storage at 4 °C. 33 types of volatile compounds were detected and the content of ketones was highest, followed by esters and aldehydes. Based on variable importance in projection and relative odor activity value, 2-hexenal dimer, acetic acid ethyl ester dimer, acetic acid ethyl ester, and butanal were identified as the key differential volatile compounds. These compounds were found in higher concentrations in PWM than in PSM, indicating a close relationship with the changes in the fatty acid composition of milk fat. Among 11 fatty acids detected in PWM, the content of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) decreased by 0.69 % and 49.1 %, respectively, while the content of monounsaturated fatty acids increased by 46.8 % during 15 days storage, which suggests that the oxidation of SFA and PUFA contributed more to the volatile compound formation. Correlation analysis between fatty acid composition and volatile compounds found that fatty acid C18:2 and C16:0 were strongly associated for 2-hexenal, acetic acid ethyl ester, and butanal. These fatty acids were mainly derived from neutral lipids or phospholipids. These findings provide a new perspective for the formation pathway of milk flavor.


Assuntos
Ácidos Graxos , Armazenamento de Alimentos , Leite , Odorantes , Pasteurização , Compostos Orgânicos Voláteis , Animais , Leite/química , Compostos Orgânicos Voláteis/análise , Armazenamento de Alimentos/métodos , Ácidos Graxos/análise , Odorantes/análise , Temperatura Baixa , Paladar
4.
Food Res Int ; 194: 114841, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232502

RESUMO

The present study investigated the impact of filtration, creaming and pasteurization on the authentication of the botanical origin of honey using the dilute-and-shoot method in liquid chromatography coupled to mass spectrometry (LC-MS). The analytical method performances were satisfactory (analyte recoveries ranging from 95 % to 103 % and inter-day precision below 12 %). Three types of raw honeys including blueberry, canola and clover were processed under controlled conditions. Filtration, creaming and pasteurization had no impact on honey botanical classification based on the LC-MS fingerprint, and the key molecular fingerprints were retained after processing. However, results revealed that testing the impact of processing is essential when selecting honey authenticity markers because some candidates (e.g. adenosine) are not stable or can be removed during honey processing. The results of the present study also highlighted the suitability of the dilute-and-shoot approach to both develop authentication tools for honey and study the impact of processing methods on specific chemicals in honeys.


Assuntos
Filtração , Manipulação de Alimentos , Mel , Pasteurização , Mel/análise , Mel/classificação , Pasteurização/métodos , Cromatografia Líquida/métodos , Manipulação de Alimentos/métodos , Espectrometria de Massas/métodos , Contaminação de Alimentos/análise
5.
Food Res Int ; 194: 114937, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232549

RESUMO

Coconut milk products are susceptible to bacterial damage, necessitating sterilization methods that often compromise nutrient and aroma integrity. This study investigates the effects of different thermal sterilisation methods on coconut milk aroma using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We assessed the impact of pasteurisation (PAS, 70 °C, 25 min), high-temperature sterilisation (HTS, 121.1 °C, 15 min), and ultra-high temperature sterilisation (UHT, 130 °C, 5 s) through clustered heat maps and correlation analyses. Significant differences were observed (p < 0.05), with 37 and 52 substances detected by HS-GC-IMS and HS-SPME-GC-MS, respectively, identifying 12 key aroma compounds. UHT treatment primarily reduced 8 acids, maintaining a compositional structure and sensory profile similar to raw coconut milk. PAS and HTS treatments decreased the sensory intensity of overall coconut milk aroma, creamy, and floral notes, correlating with the presence of 2-heptanol, nonanal, 4-methylvaleric acid, and 2-tridecanone. These methods increased cooked notes, associated with 5-methyl-3-heptanone, 3-butyn-1-ol, hydroxyacetone, and acetoin. Rancidity was linked to acids such as isobutyric acid, isovaleric acid, and heptanoic acid, with high temperatures effectively reducing these compounds. Prolonged temperature changes in PAS and HTS accelerated lipid oxidative degradation and the Maillard reaction, involving free fatty acids in the formation of alcohols, aldehydes, esters, and lactones. These findings provide a theoretical basis for studying coconut milk flavour deterioration.


Assuntos
Cocos , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Odorantes , Pasteurização , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Cocos/química , Odorantes/análise , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Humanos , Manipulação de Alimentos/métodos , Espectrometria de Mobilidade Iônica/métodos , Paladar
6.
Food Res Int ; 192: 114756, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147486

RESUMO

The potential health risk of consuming dairy products made from milk processed in an artisanal manner was investigated due to possible contamination with Ptaquiloside (PTA), a carcinogenic compound found in the food chain of the bracken fern. The study aimed to assess the occurrence and stability of PTA across various processing stages, including pasteurization, cheese production, and yogurt production. Results indicated that pasteurization effectively converted all PTA to Pterosin (PTB), with PTB levels decreasing during refrigerated storage for up to two weeks. The stability and occurrence of initial PTA contamination remained unchanged in yogurt production. Biotoxin concentrations in soft cheeses decreased over time, independent of ionic strength; cheeses with low salt concentrations showed lower retention of the biotoxin within the cheese protein network. These findings offer valuable insights into the stability and occurrence of PTA, facilitating the monitoring and identification of potential adverse health effects.


Assuntos
Contaminação de Alimentos , Leite , Pteridium , Animais , Leite/química , Pteridium/química , Contaminação de Alimentos/análise , Bovinos , Sesquiterpenos/análise , Laticínios/análise , Pasteurização , Indanos/análise , Queijo/análise , Manipulação de Alimentos/métodos
7.
Food Res Int ; 192: 114797, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147492

RESUMO

Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.


Assuntos
Antioxidantes , Manipulação de Alimentos , Frutas , Temperatura Alta , Verduras , Antioxidantes/análise , Frutas/química , Verduras/química , Manipulação de Alimentos/métodos , Pasteurização , Polifenóis/análise , Vapor , Humanos , Esterilização/métodos , Micro-Ondas
8.
Compr Rev Food Sci Food Saf ; 23(5): e13425, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136978

RESUMO

Thermal processing is commonly employed to ensure the quality and extend the shelf-life of fruits and vegetables. Radio frequency (RF) heating has been used as a promising alternative treatment to replace conventional thermal processing methods with advantages of rapid, volumetric, and deep penetration heating characteristics. This article provides comprehensive information regarding RF heating uniformity and applications in processing of fruit and vegetable products, including disinfestation, blanching, drying, and pasteurization. The dielectric properties of fruits and vegetables and their products have also been summarized. In addition, recommendations for future research on RF heating are proposed to enhance practical applications for fruits and vegetables processing in future.


Assuntos
Manipulação de Alimentos , Frutas , Ondas de Rádio , Verduras , Frutas/química , Verduras/química , Manipulação de Alimentos/métodos , Pasteurização/métodos , Temperatura Alta
9.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201356

RESUMO

Milk thermal treatment, such as pasteurization, high-temperature short-time processing, and the emerging ultra-short-time processing (<0.5 s), are crucial for ensuring milk safety and extending its shelf life. Milk is a nutritive food matrix with various macro/micro-nutrients and other constituents that are possibly affected by thermal treatment for reasons associated with processing strength. Therefore, understanding the relationship between heating strength and milk quality is vital for the dairy industry. This review summarizes the impact of thermal treatment strength on milk's nutritional and sensory properties, the synthesizing of the structural integrity and bioavailability of milk proteins, the profile and stability of fatty acids, the retention of macro/micro-nutrients, as well as the overall flavor profile. Additionally, it examines the formation of heat-induced markers, such as Maillard reaction products, lactulose, furosine, and alkaline phosphatase activity, which serve as indicators of heating intensity. Flavor and heating markers are commonly used to assess the quality of pasteurized milk. By examining former studies, we conclude that ultra-short-time-processing-treated milk is comparable to pasteurized milk in terms of specific parameters (such as whey protein behavior, furosine, and ALP contents). This review aims to better summarize how thermal treatments influence the milk matrix, guiding the dairy industry's development and balancing milk products' safety and nutritional value.


Assuntos
Ácidos Graxos , Leite , Animais , Leite/química , Ácidos Graxos/análise , Temperatura Alta , Proteínas do Leite/análise , Proteínas do Leite/química , Pasteurização/métodos , Manipulação de Alimentos/métodos , Paladar , Humanos , Nutrientes/análise , Biomarcadores
11.
Int J Biol Macromol ; 276(Pt 1): 133833, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013513

RESUMO

Pasteurization is an effective sterilization technique for the treatment of liquid egg white (LEW), but the pasteurization temperature is generally limited because increased temperature can lead to aggregation of the proteins and affect their processing properties. In this study, phosphorylation modification was used to increase the thermal stability and pasteurization temperature of LEW, aiming to enhance the pasteurization sterilizing effect. The FT-IR results showed that the phosphate groups were successfully grafted into protein molecules, improving the order degree of protein molecules. In this case, the pasteurization temperature of LEW increased from 58 °C to 61 °C, without accompanying thermal aggregation. The molecular structural results suggested that the enhanced thermal stability was attributed to the decreased average particle size and the increased electrostatic repulsion between protein molecules, which largely reduced the turbidity of LEW during pasteurization treatment. Meanwhile, this process was dominated by noncovalent interactions (hydrophobic interactions and hydrogen bonding). Furthermore, the phosphorylation modification can synchronously improve emulsifying and foaming properties of LEW. Therefore, this work suggested that phosphorylation has great potential to improve thermal stability and pasteurization temperature of LEW, which can be utilized to extend its sterilizing effect and shelf life.


Assuntos
Clara de Ovo , Pasteurização , Temperatura , Fosforilação , Clara de Ovo/química , Tamanho da Partícula , Animais , Interações Hidrofóbicas e Hidrofílicas
12.
Food Res Int ; 191: 114688, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059944

RESUMO

Ultra-high-pressure (UHP1) technology for cold pasteurization is a viable alternative to traditional heat sterilization for preserving food nutrients and flavor compounds during fruit juice processing. In this study, cutting-edge techniques, including high-throughput sequencing technology, intelligent bionic sensory systems, and metabolomics, were used to examine the impact of UHP treatment on microbial community composition, odor, and taste quality of jujube juice. The UHP treatment demonstrated its effect by inducing a reddish-yellow color in the jujube juice, thereby enhancing its brightness, overall color, and stability. The most significant enhancement was observed at 330 MPa. The microorganisms responsible for spoilage and deterioration of jujube juice during storage were categorized into three clusters: bacterial clusters at 0-330 MPa, 360-450 MPa, and 480-630 Mpa. The results showed no distinct distribution patterns for fungi based on the pressure strength. The dominant bacterial genera were Lactobacillus, Nocardia, Achromobacter, Enterobacter, Pseudomonas, Mesorhizobium, and Rhodococcus, whereas the dominant fungal genera were yeast and mold. Notably, Lactobacillus, Achromobacter, Enterobacter, and Pseudomonas were responsible for the significant differences between the 360 MPa to 450 MPa and 480 MPa to 630 MPa clusters in terms of bacterial spoilage, whereas Torulaspora, Lodderomyces, Wickerhamomyces, and Fusarium were the primary fungal spoilage genera. UHP treatment exerted no significant impact on the taste of jujube juice but influenced its sourness. Treatment at 330 MPa had the most pronounced effect on the presence of aromatic compounds and other odorants, which were substantially increased. Further analysis revealed the prevalence of organic acids, such as malic acid, succinic acid, and tartaric acid, in jujube juice and demonstrated a consistent relationship between changes in organic acids and sourness. In addition, nine distinct odorants with VIP values greater than 1 were identified in the jujube juice. Among these, methyl acetate and methyl caproate exhibited substantial increases following the UHP treatment at 330 MPa.


Assuntos
Sucos de Frutas e Vegetais , Sequenciamento de Nucleotídeos em Larga Escala , Metabolômica , Microbiota , Paladar , Ziziphus , Ziziphus/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Metabolômica/métodos , Odorantes/análise , Bactérias/classificação , Bactérias/genética , Pressão , Microbiologia de Alimentos/métodos , Manipulação de Alimentos/métodos , Pasteurização/métodos , Fungos , Humanos
13.
J Virol ; 98(7): e0088124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38958444

RESUMO

In March 2024, clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (HPAIV) was detected in dairy cattle in the US, and it was discovered that the virus could be detected in raw milk. Although affected cow's milk is diverted from human consumption and current pasteurization requirements are expected to reduce or eliminate infectious HPAIV from the milk supply, a study was conducted to characterize whether the virus could be detected by quantitative real-time RT-PCR (qrRT-PCR) in pasteurized retail dairy products and, if detected, to determine whether the virus was viable. From 18 April to 22 April 2024, a total of 297 samples of Grade A pasteurized retail milk products (23 product types) were collected from 17 US states that represented products from 132 processors in 38 states. Viral RNA was detected in 60 samples (20.2%), with qrRT-PCR-based quantity estimates (non-infectious) of up to 5.4log1050% egg infectious doses per mL, with a mean and median of 3.0log10/mL and 2.9log10/mL, respectively. Samples that were positive for type A influenza by qrRT-PCR were confirmed to be clade 2.3.4.4 H5 HPAIV by qrRT-PCR. No infectious virus was detected in any of the qrRT-PCR-positive samples in embryonating chicken eggs. Further studies are needed to monitor the milk supply, but these results provide evidence that the infectious virus did not enter the US pasteurized milk supply before control measures for HPAIV were implemented in dairy cattle.IMPORTANCEHighly pathogenic avian influenza virus (HPAIV) infections in US dairy cattle were first confirmed in March 2024. Because the virus could be detected in raw milk, a study was conducted to determine whether it had entered the retail food supply. Pasteurized dairy products were collected from 17 states in April 2024. Viral RNA was detected in one in five samples, but infectious virus was not detected. This provides a snapshot of HPAIV in milk products early in the event and reinforces that with current safety measures, infectious viruses in milk are unlikely to enter the food supply.


Assuntos
Laticínios , Leite , RNA Viral , Animais , Bovinos , Leite/virologia , Estados Unidos , Laticínios/virologia , RNA Viral/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Pasteurização , Influenza Aviária/virologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real
14.
Int J Food Microbiol ; 422: 110823, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38991433

RESUMO

Essential oils possess significant antimicrobial and antioxidant properties and are increasingly used as natural substitutes for food preservation. Therefore, this study investigated the potential application of rosemary essential oil (REO) and REO nano-emulsion in the dairy plant. The antimicrobial effects of REO and REO nano-emulsion were determined by an agar well diffusion assay after chemical profiling by Gas Chromatography-Mass Spectrometry (GC-MS). The REO nano-emulsion was characterized by a Transmission Electron Microscope (TEM). The REO chemical profile revealed the presence of 42 chemical compounds, including 1, 8-cineole (9.72 %), and α-pinene (5.46 %) as major active components. REO nano-emulsion demonstrated significant antimicrobial activity compared to REO (P < 0.05) with a MIC value of 0.0001 mg/ml against Listeria monocytogenes and Aspergillus flavus and 0.001 mg/ml against Pseudomonas aeruginosa and Bacillus cereus. REO nano-emulsion enhanced the oxidative stability of pasteurized fresh cream, revealing a non-significant difference compared with that inoculated with butylated hydroxy anisol (BHA; synthetic antioxidant) (P˃ 0.05). Fortified cream and Karish cheese with REO nano-emulsion were evaluated organoleptically, and the results showed higher grades of overall acceptability when compared to control samples with a statistically significant difference (P < 0.05). Viability studies were estimated using the previously mentioned microorganisms in fortified fresh cream and Karish cheese with REO nano-emulsion. Results of the fortified cream showed a complete reduction of L. monocytogenes, A. flavus, and B. cereus on days 5, 7, and 10, respectively, and a 96.93 % reduction of P. aeruginosa by the end of the storage period. Regarding Karish cheese viability studies, C. albicans, A. flavus, and P. aeruginosa exhibited complete reduction on days 10, 10, and 15 of storage, respectively. In conclusion, REO nano-emulsion was recommended as a natural, safe, and effective antimicrobial and antioxidant additive in the dairy industry.


Assuntos
Anti-Infecciosos , Antioxidantes , Queijo , Emulsões , Óleos Voláteis , Antioxidantes/farmacologia , Queijo/microbiologia , Queijo/análise , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Pasteurização/métodos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento
15.
Artigo em Inglês | MEDLINE | ID: mdl-39018784

RESUMO

Milk is one of the most widely consumed foods globally. To protect consumer interests, it is essential to establish an analytical method to detect the degree of heating in milk. A novel approach using nano liquid chromatography-orbitrap fusion mass spectrometer was developed for screening and identifing thermally sensitive peptides markers in the milk heating process (below 100 °C). This method integrates untargeted proteomics and chemometric tools to analyze protein quantitation data from differently heat-treated milk. Thirteen potential markers were screened out and identified, and further confirmed using by standard substances. Then, the accurate concentrations of 13 potential markers determined by isotope-dilution ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry were further mining the highly specific and thermally sensitive peptides markers. And Four peptides-INLFDTPLETQYVR, FELLGCELNGCTEPLGLK, QFQFIQVAGR, and GEADALNLDGGYIYTAGK-were selected as marker peptides to differentiate normal pasteurized milk from overheated pasteurized milk. The concentrations of INLFDTPLETQYVR ranges from 150 ± 11 µg/L to 350 ± 23 µg/L, while the concentrations of FELLGCELNGCTEPLGLK ranges from 40 ± 5 µg/L to 92 ± 3 µg/L, can distinguish normal pasteurized milk from overheated pasteurized milk. QFQFIQVAGR indicates overheated pasteurized milk at 230 ± 21 µg/L, and GEADALNLDGGYIYTAGK signifies 750 ± 43 µg/L. This study provides new insights for distinguishing overheated pasteurized milk.


Assuntos
Temperatura Alta , Leite , Pasteurização , Proteômica , Animais , Leite/química , Proteômica/métodos , Proteínas do Leite/análise , Proteínas do Leite/química , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Peptídeos/química , Espectrometria de Massas/métodos , Bovinos
16.
BMC Complement Med Ther ; 24(1): 258, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987744

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal system. So far, no treatment has been identified that can completely cure IBD. Lactobacillus brevis is hypothesized to be beneficial in preventing inflammation. This study aimed to evaluate the potential probiotic effects of live and pasteurized L. brevis IBRC-M10790 on the in vitro cell co-culture model of IBD. METHODS: An in vitro intestinal model was established using a transwell co-culture system of Caco-2 intestinal epithelial cells and RAW264.7 macrophages. Inflammatory conditions were induced in RAW264.7 cells using lipopolysaccharide. The effects of live and pasteurized L. brevis IBRC-M10790 on inflammatory mediators and epithelial barrier markers were investigated. RESULTS: L. brevis IBRC-M10790 was able to significantly decrease the proinflammatory cytokines (IL-6, IL-1ß, and TNF-α) and increase the anti-inflammatory cytokine (IL-10) in the in vitro co-culture system. In addition, L. brevis increased adherens and tight junction (TJ) markers (ZO-1, E-cadherin, and Occludin) in Caco-2 intestinal epithelial cells. Based on the results, pasteurized L. brevis showed a higher protective effect than live L. brevis. CONCLUSIONS: Our findings suggest that live and pasteurized forms of L. brevis possess probiotic properties and can mitigate inflammatory conditions in IBD.


Assuntos
Anti-Inflamatórios , Doenças Inflamatórias Intestinais , Levilactobacillus brevis , Probióticos , Probióticos/farmacologia , Humanos , Células CACO-2 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Animais , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Técnicas de Cocultura , Citocinas/metabolismo , Pasteurização
17.
J Pediatr Gastroenterol Nutr ; 79(2): 362-370, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899575

RESUMO

INTRODUCTION: Pasteurized human donor milk (DM) is frequently used for feeding preterm newborns and extrauterine growth-restricted (EUGR) infants. Most human milk banks performed a pasteurization of DM using the standard method of Holder pasteurization (HoP) which consists of heating milk at 62.5°C for 30 min. High hydrostatic pressure (HHP) processing was proposed to be an innovative nonthermal method to pasteurize DM. However, the effect of different modes of DM pasteurization on body growth, intestinal maturation, and microbiota has never been investigated in vivo during the lactation. OBJECTIVES: We aimed to study these effects in postnatally growth-restricted (PNGR) mice pups daily supplemented with HoP-DM or HHP-DM. METHODS: PNGR was induced by increasing the number of pups per litter (15 pups/mother) at postnatal Day 4 (PND4). From PND8 to PND20, mice pups were supplemented with HoP-DM or HHP-DM. At PND21, the intestinal permeability was measured in vivo, the intestinal mucosal histology, gut microbiota, and short-chain fatty acids (SCFAs) level were analyzed. RESULTS: HHP-DM pups displayed a significantly higher body weight gain than HoP-DM pups during lactation. At PND21, these two types of human milk supplementations did not differentially alter intestinal morphology and permeability, the gene-expression level of several mucosal intestinal markers, gut microbiota, and the caecal SCFAs level. CONCLUSION: Our data suggest that HHP could be an attractive alternative to HoP and that HHP-DM may ensure a better body growth of preterm and/or EUGR infants.


Assuntos
Animais Recém-Nascidos , Pressão Hidrostática , Leite Humano , Pasteurização , Animais , Pasteurização/métodos , Camundongos , Humanos , Feminino , Lactação , Microbioma Gastrointestinal , Transtornos do Crescimento/etiologia , Aumento de Peso , Masculino , Bancos de Leite Humano
18.
Talanta ; 278: 126416, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924989

RESUMO

The non-thermal and thermal effects on aroma of sea buckthorn juice have rarely been investigated. In this study, 57 odor compounds were identified in fresh sea buckthorn juice (FSBJ), high pressure processing sea buckthorn juice (HSBJ), and pasteurized sea buckthorn juice (PSBJ), including 29 esters, 8 aldehydes, 1 ketone, 5 alcohols, 5 acids, 6 terpenoids, and 3 others. Ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl hexanoate, and ethyl 2-hydroxy-3-methylbutanoate with flavor dilution factors ranging from 729 to 59,049 contributed to the fruity odors of FSBJ and HSBJ. Besides, the formation of off-odor compounds including hexanal, nonanal, furfural, 3-methylbutanoic acid, and dimethyl disulfide with odor activity values ≥ 1, imparts fatty, roasted, sweaty, and cooked odor in PSBJ. The variations of vitamin C and reducing sugar are significantly associated with changes in odor-active compounds during pasteurized processing. These findings provide new insights that high pressure processing minimizes the adverse effects of pasteurization.


Assuntos
Sucos de Frutas e Vegetais , Hippophae , Odorantes , Pressão , Hippophae/química , Odorantes/análise , Sucos de Frutas e Vegetais/análise , Pasteurização , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Manipulação de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas
19.
Food Chem ; 456: 139945, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38850604

RESUMO

This study investigated the potential of incorporating cardoon (Cynara cardunculus L.) blades as bioactive and dietary fiber ingredients in vegetable/fruit-based smoothies, within a zero-waste approach. The smoothie formulations were pasteurized by high-pressure (550 MPa for 3 min, HPP) and thermal (90 °C for 30 s, TP) treatments and stored at 4 °C for 50 days. Cardoon-fortified smoothies exhibited higher viscosity, darker color, increased phenolic compound levels, and greater anti-inflammatory and antioxidant activities. Furthermore, the cardoon blade ingredients contributed to a more stable dietary fiber content throughout the smoothies' shelf-life. HPP-processed smoothies did not contain sucrose, suggesting enzymatic activity that resulted in sucrose hydrolysis. All beverage formulations had low or no microbial growth within European limits. In conclusion, the fortification of smoothies with cardoon blades enhanced bioactive properties and quality attributes during their shelf-life, highlighting the potential of this plant material as a potential functional food ingredient in a circular economy context.


Assuntos
Cynara , Pasteurização , Cynara/química , Temperatura Alta , Antioxidantes/química , Alimento Funcional/análise , Manipulação de Alimentos/instrumentação , Frutas/química , Temperatura Baixa , Armazenamento de Alimentos , Bebidas/análise
20.
Adv Nutr ; 15(6): 100229, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38908896

RESUMO

BACKGROUND: Donor human milk (DHM) is an essential source of nutrition among high-risk infants (e.g., premature and low-birth weight). Holder pasteurization, a common step in DHM processing, is known to partially alter the composition of DHM; however, the impact on fat composition is historically inconsistent. OBJECTIVES: This scoping review aimed to broadly review the literature on the impact of Holder pasteurization on the fat content in DHM, with a focus on preanalytical sample mixing. METHODS: A systematic search of original, peer-reviewed research articles was conducted on 11 July, 2022. Articles were included if they compared matched raw (control) and Holder-pasteurized human milk samples and measured total lipids, cholesterol, and individual classes of fatty acids. Article review and selection was conducted by 2 independent reviewers. RESULTS: The search yielded 26 original, peer-reviewed research articles published between 1978 and 2022. Overall methodology varied considerably between studies. When study methods described any mixing for collecting raw milk, 1 (17%) of the 6 of studies reported a small change in total fat concentration following pasteurization (<5%). Alternatively, among studies that did not describe methods for mixing raw milk to ensure a representative sample, 10 (56%) of the 18 reported a significant change (≥± 5%) in total fat concentration, with changes ranging from -28.6% to +19.4%. CONCLUSIONS: This review suggests that inconsistent findings regarding the impact of Holder pasteurization on fat may be related to study methodologies, particularly preanalytical sample mixing. More research considering the role of preanalytical handling procedures and methodologies is necessary to help clarify the impact of Holder pasteurization on human milk composition.


Assuntos
Bancos de Leite Humano , Leite Humano , Pasteurização , Leite Humano/química , Humanos , Pasteurização/métodos , Lipídeos/análise , Gorduras/análise , Ácidos Graxos/análise , Feminino , Manipulação de Alimentos/métodos , Colesterol/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...