Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.336
Filtrar
1.
Front Immunol ; 15: 1410150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947331

RESUMO

The recent trend of global warming poses a significant threat to ecosystems worldwide. This global climate change has also impacted the pollution levels in aquatic ecosystems, subsequently affecting human health. To address these issues, an experiment was conducted to investigate the mitigating effects of iron nanoparticles (Fe-NPs) on arsenic and ammonia toxicity as well as high temperature stress (As+NH3+T). Fe-NPs were biologically synthesized using fish waste and incorporated into feed formulations at 10, 15, and 20 mg kg-1 diet. A total of 12 treatments were designed in triplicate following a completely randomized design involving 540 fish. Fe-NPs at 15 mg kg-1 diet notably reduced the cortisol levels in fish exposed to multiple stressors. The gene expressions of HSP 70, DNA damage-inducible protein (DDIP), and DNA damage were upregulated by stressors (As+NH3+T) and downregulated by Fe-NPs. Apoptotic genes (Cas 3a and 3b) and detoxifying genes (CYP 450), metallothionein (MT), and inducible nitric oxide synthase (iNOS) were downregulated by Fe-NPs at 15 mg kg-1 diet in fish subjected to As+NH3+T stress. Immune-related genes such as tumor necrosis factor (TNFα), immunoglobulin (Ig), and interleukin (IL) were upregulated by Fe-NPs, indicating enhanced immunity in fish under As+NH3+T stress. Conversely, Toll-like receptor (TLR) expression was notably downregulated by Fe-NPs at 15 mg kg-1 diet in fish under As+NH3+T stress. Immunological attributes such as nitro blue tetrazolium chloride, total protein, albumin, globulin, A:G ratio, and myeloperoxidase (MPO) were improved by dietary Fe-NPs at 15 mg kg-1 diet in fish, regardless of stressors. The antioxidant genes (CAT, SOD, and GPx) were also strengthened by Fe-NPs in fish. Genes associated with growth performance, such as growth hormone regulator (GHR1 and GHRß), growth hormone (GH), and insulin-like growth factor (IGF 1X and IGF 2X), were upregulated, enhancing fish growth under stress, while SMT and MYST were downregulated by Fe-NPs in the diet. Various growth performance indicators were improved by dietary Fe-NPs at 15 mg kg-1 diet. Notably, Fe-NPs also enhanced arsenic detoxification and reduced the cumulative mortality after a bacterial infection. In conclusion, this study highlights that dietary Fe-NPs can effectively mitigate arsenic and ammonia toxicity as well as high temperature stress by modulating gene expression in fish.


Assuntos
Peixes , Regulação da Expressão Gênica , Ferro , Estresse Fisiológico , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Peixes/imunologia , Estresse Fisiológico/imunologia , Estresse Fisiológico/efeitos dos fármacos , Nanopartículas Metálicas , Arsênio/toxicidade
2.
Vet Res ; 55(1): 88, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010235

RESUMO

Each year, due to climate change, an increasing number of new pathogens are being discovered and studied, leading to an increase in the number of known diseases affecting various fish species in different regions of the world. Viruses from the family Iridoviridae, which consist of the genera Megalocytivirus, Lymphocystivirus, and Ranavirus, cause epizootic outbreaks in farmed and wild, marine, and freshwater fish species (including ornamental fish). Diseases caused by fish viruses of the family Iridoviridae have a significant economic impact, especially in the aquaculture sector. Consequently, vaccines have been developed in recent decades, and their administration methods have improved. To date, various types of vaccines are available to control and prevent Iridoviridae infections in fish populations. Notably, two vaccines, specifically targeting Red Sea bream iridoviral disease and iridoviruses (formalin-killed vaccine and AQUAVAC® IridoV, respectively), are commercially available. In addition to exploring these themes, this review examines the immune responses in fish following viral infections or vaccination procedures. In general, the evasion mechanisms observed in iridovirus infections are characterised by a systemic absence of inflammatory responses and a reduction in the expression of genes associated with the adaptive immune response. Finally, this review also explores prophylactic procedure trends in fish vaccination strategies, focusing on future advances in the field.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Peixes , Iridoviridae , Vacinação , Vacinas Virais , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/prevenção & controle , Iridoviridae/fisiologia , Vacinas Virais/imunologia , Peixes/virologia , Peixes/imunologia , Vacinação/veterinária
3.
Food Chem ; 455: 139882, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824729

RESUMO

A common epitope (AGSFDHKKFFKACGLSGKST) of parvalbumin from 16 fish species was excavated using bioinformatics tools combined with the characterization of fish parvalbumin binding profile of anti-single epitope antibody in this study. A competitive enzyme-linked immunosorbent assay (ELISA) based on the common epitope was established with a limit of detection of 10.15 ng/mL and a limit of quantification of 49.29 ng/mL. The developed ELISA exhibited a narrow range (71% to 107%) of related cross-reactivity of 15 fish parvalbumin. Besides, the recovery, the coefficient of variations for the intra-assay and the inter-assay were 84.3% to 108.2%, 7.4% to 13.9% and 8.5% to 15.6%. Our findings provide a novel idea for the development of a broad detection method for fish allergens and a practical tool for the detection of parvalbumin of economic fish species in food samples.


Assuntos
Ensaio de Imunoadsorção Enzimática , Epitopos , Proteínas de Peixes , Peixes , Parvalbuminas , Animais , Parvalbuminas/imunologia , Parvalbuminas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Peixes/imunologia , Epitopos/imunologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Alérgenos/imunologia , Alérgenos/análise
5.
J Agric Food Chem ; 72(26): 14922-14940, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885638

RESUMO

As a key component of cell-cultured fish, fish skin gelatin (FSG)-based cell scaffold provides support structures for cell growth, proliferation, and differentiation. However, there are potential allergenicity risks contained in FSG-based scaffolds. In this study, 3D edible scaffolds were prepared by phase separation method and showed a contact angle of less than 90°, which indicated that the scaffolds were favorable for cell adhesion. Besides, the swelling ratio was greater than 200%, implying a great potential to support cell growth. The sequence homology analysis indicated that FSG was prone to cross-reaction with collagen analogues. Additionally, a food allergic model was constructed and represented that mice gavaged with cod FSG exhibited higher levels of specific antibodies, mast cell degranulation, vascular permeability, and intestinal barrier impairment than those gavaged with pangasius and tilapias FSG. Its higher allergenicity might be attributed to a higher number of digestion-resistant linear epitopes. Moreover, the higher hydrolysis degree linked to the exposure of linear epitopes to promote the combination with IgE, which was also responsible for maintaining the higher allergenicity of cod FSG. This study clarifies allergenic risks in cell-cultured fish and further study will focus on the allergenicity reduction of FSG-based cell scaffolds.


Assuntos
Alérgenos , Digestão , Epitopos , Proteínas de Peixes , Hipersensibilidade Alimentar , Gelatina , Pele , Alicerces Teciduais , Animais , Gelatina/química , Gelatina/imunologia , Epitopos/imunologia , Epitopos/química , Camundongos , Hipersensibilidade Alimentar/imunologia , Alérgenos/imunologia , Alérgenos/química , Alicerces Teciduais/química , Pele/imunologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Humanos , Imunoglobulina E/imunologia , Peixes/imunologia , Camundongos Endogâmicos BALB C , Mastócitos/imunologia , Carne/análise , Gadiformes/imunologia , Carne in vitro
6.
Fish Shellfish Immunol ; 150: 109636, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762095

RESUMO

As lower vertebrates, fish have both innate and adaptive immune systems, but the role of the adaptive immune system is limited, and the innate immune system plays an important role in the resistance to pathogen infection. C-type lectins (CLRs) are one of the major pattern recognition receptors (PRRs) of the innate immune system. CLRs can combine with pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to trigger NF-κB signaling pathway and exert immune efficacy. In this study, Ssclec12b and Ssclec4e of the C-type lectins, were found to be significantly up-regulated in the transcripts of Sebastes schlegelii macrophages stimulated by bacteria. The identification, expression and function of these lectins were studied. In addition, the recombinant proteins of the above two CLRs were obtained by prokaryotic expression. We found that rSsCLEC12B and rSsCLEC4E could bind to a variety of bacteria in a Ca2+-dependent manner, and promoted the agglutination of bacteria and blood cells. rSsCLEC12B and rSsCLEC4E assisted macrophages to recognize PAMPs and activate the NF-κB signaling pathway, thereby promoting the expression of inflammatory factors (TNF-α, IL-1ß, IL-6, IL-8) and regulating the early immune inflammation of macrophages. These results suggested that SsCLEC12B and SsCLEC4E could serve as PRRs in S. schlegelii macrophages to recognize pathogens and participate in the host antimicrobial immune process, and provided a valuable reference for the study of CLRs involved in fish innate immunity.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Lectinas Tipo C , Macrófagos , Perciformes , Receptores de Reconhecimento de Padrão , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Perciformes/imunologia , Perciformes/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Peixes/imunologia , Peixes/genética
7.
Int J Biol Macromol ; 269(Pt 1): 132100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710252

RESUMO

Inflammation is initiated as a protective response of the organism to remove invading bacterial and initiate the healing process. Prolonged inflammation and excessive production of inflammatory cytokines lead to inflammatory disorders or autoimmune diseases. Thus, different layers of negative regulators are needed to achieve balances between protective immunity and inflammatory pathology. Accumulating evidences show that miRNAs act as significant and multifunctional regulators involved in regulating networks of host-pathogen interactions. However, the functions and mechanisms of miRNAs in directly targeting and regulating inflammatory cytokines remains largely unknown in lower vertebrates. In this study, we report a novel miRNA, Soc-miR-118, identified from Sciaenops ocellatus, which plays a negative role in antibacterial immunity by regulating Interleukin-6 (IL-6). Specifically, we found that Soc-miR-118 directly targets IL-6 and suppresses the production of inflammatory cytokines through the NF-κB signaling pathway, thereby avoiding excessive inflammatory response. Particularly, the mechanism by which Soc-miR-118 regulates IL-6 expression also exist in other fish, suggesting that the miRNA in fish has evolutionarily conserved regulatory systems. The collective results that Soc-miR-118 acts as a negative regulator involved in host antibacterial immunity through directly regulating inflammatory cytokines, will greatly enrich the intricate networks of host-pathogen interaction in lower vertebrates.


Assuntos
Inflamação , Interleucina-6 , MicroRNAs , NF-kappa B , Animais , MicroRNAs/genética , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Inflamação/genética , Transdução de Sinais , Regulação da Expressão Gênica , Peixes/genética , Peixes/imunologia , Peixes/microbiologia
8.
Fish Shellfish Immunol ; 149: 109604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710343

RESUMO

MicroRNAs (miRNAs) are a crucial type of non-coding RNAs involved in post-transcriptional regulation. The playing essential regulatory roles in the NF-κB signaling pathway and modulate the host immune response to diverse pathogens by targeting IκBα. However, the regulatory mechanism of miRNAs in relation with IκBα in Sebastes schlegelii remains unclear. In our study, we identified two copies of IkBα gene in black rockfish (Sebastes schlegelii), namely IkBα1 and IkBα2. Moreover, we have discovered that miRNA-530 can activate the NF-κB signaling pathway by inhibiting the expression of IκBα, thereby inducing the inflammatory response. This project comprehensively investigated the interactive regulatory roles of miRNA-530 in the NF-κB signaling pathway at both cellular and in vivo levels, while also elucidating the regulatory relationships between miRNA-530 and IκBα. In conclusion, our research confirmed that miRNA-530 can target the 3'UTR region of IκBα, resulting in a decrease in the expression of IκBα at the post-transcriptional level and inhibiting its translation. The findings contribute to the understanding of the regulatory network of non-coding RNA in teleosts and its subsequent regulation of the NF-κB signaling pathway by miRNAs.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , Inibidor de NF-kappaB alfa , NF-kappa B , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Regulação da Expressão Gênica/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Peixes/genética , Peixes/imunologia , Perciformes/genética , Perciformes/imunologia
9.
Fish Shellfish Immunol ; 149: 109601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701992

RESUMO

Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.


Assuntos
Processamento Alternativo , Peixes , Animais , Peixes/imunologia , Peixes/genética , Imunidade Inata/genética
10.
Fish Shellfish Immunol ; 149: 109613, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710341

RESUMO

Aporocotylids (Trematoda: Digenea), also known as fish blood flukes infect the circulatory system of fish leading to serious health problems and mortality. Aporocotylids are a particular concern for farmed fish as infection intensity can increase within the farming environment and lead to mortalities. In the context of managing these infections, one of the most crucial aspects to consider is the host response of the infected fish against these blood flukes. Understanding the response is essential to improving current treatment strategies that are largely based on the use of anthelmintic praziquantel to manage infections in aquaculture. This review focuses on the current knowledge of farmed fish host responses against the different life stages of aporocotylids. New treatment strategies that are able to provide protection against reinfections should be a long-term goal and is not possible without understanding the fish response to infection and the interactions between host and parasite.


Assuntos
Aquicultura , Doenças dos Peixes , Peixes , Trematódeos , Infecções por Trematódeos , Animais , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/imunologia , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/tratamento farmacológico , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Trematódeos/fisiologia , Peixes/imunologia , Peixes/parasitologia , Interações Hospedeiro-Parasita , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/farmacologia
11.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732017

RESUMO

Intelectins belong to a family of lectins with specific and transitory carbohydrate interaction capabilities. These interactions are related to the activity of agglutinating pathogens, as intelectins play a significant role in immunity. Despite the prominent immune defense function of intelectins, limited information about its structural characteristics and carbohydrate interaction properties is available. This study investigated an intelectin transcript identified in RNA-seq data obtained from the South American lungfish (Lepidosiren paradoxa), namely LpITLN2-B. The structural analyses predicted LpITLN2-B to be a homo-trimeric globular protein with the fibrinogen-like functional domain (FReD), exhibiting a molecular mass of 57 kDa. The quaternary structure is subdivided into three monomers, A, B, and C, and each domain comprises 11 ß-sheets: an anti-parallel ß-sheet, a ß-hairpin, and a disordered ß-sheet structure. Molecular docking demonstrates a significant interaction with disaccharides rather than monosaccharides. The preferential interaction with disaccharides highlights the potential interaction with pathogen molecules, such as LPS and Poly(I:C). The hemagglutination assay inhibited lectins activity, especially maltose and sucrose, highlighting lectin activity in L. paradoxa samples. Overall, our results show the potential relevance of LpITLN2-B in L. paradoxa immune defense against pathogens.


Assuntos
Proteínas de Peixes , Peixes , Imunidade Inata , Lectinas , Animais , Lectinas/química , Lectinas/metabolismo , Lectinas/imunologia , Lectinas/genética , Peixes/imunologia , Peixes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/química , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia
12.
Fish Shellfish Immunol ; 150: 109602, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729252

RESUMO

Greater amberjack (Seriola dumerili) is a fish species that has significant economic and cultural value. It has a large size and grows rapidly. However, the intolerance to hypoxia poses a major obstacle to the growth of its aquaculture industry. This study focuses on the gills and spleen, two organs closely associated with the response to acute hypoxic stress. By simulating the acute hypoxic environment and using Illumina RNA-Seq technology, we explored the gills and spleen transcriptome changes in the acute hypoxia intolerant and tolerant groups of greater amberjack. It was discovered that gill tissues in the tolerant group may maintain a stable intracellular energy supply by promoting glycolysis and ß-oxidation compared to the intolerant group. Additionally, it promotes angiogenesis, enhances the ability to absorb dissolved oxygen, and accelerates oxygen transport to the mitochondria, adapting to the hypoxic environment. Anti-apoptotic genes were up-regulated in gill tissues in the tolerant group compared to the intolerant group, thereby minimizing the damage of acute hypoxia. On the other hand, the spleen inhibited the TCA and energy-consuming lipid synthesis pathways to supply energy under acute hypoxic stress. Pro-angiogenic genes were down-regulated in the spleen of individuals in the tolerant group compared to the intolerant group, which may be related to organ function. The suppressed reactive oxygen species (ROS) production and the impaired immune response function of the spleen were also found. The study explored the acute hypoxic stress response in greater amberjack and the molecular mechanisms underlying its tolerance to acute hypoxia.


Assuntos
Brânquias , Baço , Estresse Fisiológico , Animais , Baço/metabolismo , Baço/imunologia , Brânquias/metabolismo , Brânquias/imunologia , Hipóxia/genética , Hipóxia/veterinária , Regulação da Expressão Gênica/imunologia , Transcriptoma , Perciformes/genética , Perciformes/imunologia , Expressão Gênica , Peixes/genética , Peixes/imunologia
13.
Fish Shellfish Immunol ; 150: 109619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735599

RESUMO

Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.


Assuntos
Peixes , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixes/imunologia , Imunidade Inata/efeitos dos fármacos
14.
Fish Shellfish Immunol ; 150: 109625, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740231

RESUMO

The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.


Assuntos
Ração Animal , Dieta , Peixes , Imunidade nas Mucosas , Animais , Peixes/imunologia , Ração Animal/análise , Dieta/veterinária , Insetos/imunologia
15.
Fish Shellfish Immunol ; 150: 109643, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763177

RESUMO

The lymphocystis disease (LCD), caused by Lymphocystis disease virus (LCDV), is a benign and self-limiting disease described in a many freshwater and marine fish species. Hypertrophic fibroblasts and extensive aggregation of inflammatory cells are characteristics of LCD. In the present study, small animal imaging and ultrastructural investigations were carried out on the lymphocystis nodules of black rockfish (Sebastes schlegelii) naturally infected with lymphocystis iridovirus, to assess pathology, and the exudate with particular attention to the formation of extracellular traps (ETs) in vivo. Ex vivo were examined by nodules sections and primary cells stimulation. By histopathological analysis, the nodules contained infiltrated inflammatory cells and extensive basophilic fibrillar filaments at the periphery of the hypertrophied fibroblasts. ETs were assessed in nodules samples using indirect immunofluorescence to detect DNA and myeloperoxidase. Moreover, LCDV was able to infect peritoneal cells of black rockfish in vitro and induce the formation of ETs within 4 h. In summary, this study proved that ETs are involved in the response to LCDV infection and may be involved in formation of lymphoid nodules. Taken together, the findings provide a new perspective to determine the impact factors on the growth of nodules.


Assuntos
Infecções por Vírus de DNA , Armadilhas Extracelulares , Doenças dos Peixes , Iridoviridae , Perciformes , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Armadilhas Extracelulares/imunologia , Iridoviridae/fisiologia , Perciformes/imunologia , Pele/virologia , Pele/patologia , Peixes/imunologia , Peixes/virologia
16.
BMC Genomics ; 25(1): 459, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730342

RESUMO

BACKGROUND: Genome-wide comparisons of populations are widely used to explore the patterns of nucleotide diversity and sequence divergence to provide knowledge on how natural selection and genetic drift affect the genome. In this study we have compared whole-genome sequencing data from Atlantic and Pacific herring, two sister species that diverged about 2 million years ago, to explore the pattern of genetic differentiation between the two species. RESULTS: The genome comparison of the two species revealed high genome-wide differentiation but with islands of remarkably low genetic differentiation, as measured by an FST analysis. However, the low FST observed in these islands is not caused by low interspecies sequence divergence (dxy) but rather by exceptionally high estimated intraspecies nucleotide diversity (π). These regions of low differentiation and elevated nucleotide diversity, termed high-diversity regions in this study, are not enriched for repeats but are highly enriched for immune-related genes. This enrichment includes genes from both the adaptive immune system, such as immunoglobulin, T-cell receptor and major histocompatibility complex genes, as well as a substantial number of genes with a role in the innate immune system, e.g. novel immune-type receptor, tripartite motif and tumor necrosis factor receptor genes. Analysis of long-read based assemblies from two Atlantic herring individuals revealed extensive copy number variation in these genomic regions, indicating that the elevated intraspecies nucleotide diversities were partially due to the cross-mapping of short reads. CONCLUSIONS: This study demonstrates that copy number variation is a characteristic feature of immune trait loci in herring. Another important implication is that these loci are blind spots in classical genome-wide screens for genetic differentiation using short-read data, not only in herring, likely also in other species harboring qualitatively similar variation at immune trait loci. These loci stood out in this study because of the relatively high genome-wide baseline for FST values between Atlantic and Pacific herring.


Assuntos
Variações do Número de Cópias de DNA , Peixes , Animais , Peixes/genética , Peixes/imunologia , Variação Genética , Oceano Atlântico , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
17.
Fish Shellfish Immunol ; 149: 109583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657879

RESUMO

Fish rely on mucosal surfaces as their first defence barrier against pathogens. Maintaining mucosal homeostasis is therefore crucial for their overall well-being, and it is likely that secreted immunoglobulins (sIg) play a pivotal role in sustaining this balance. In mammals, the poly-Ig receptor (pIgR) is an essential component responsible for transporting polymeric Igs across mucosal epithelia. In teleost fish, a counterpart of pIgR has been identified and characterized, exhibiting structural differences and broader mRNA expression patterns compared to mammals. Despite supporting evidence for the binding of Igs to recombinant pIgR proteins, the absence of a joining chain (J-chain) in teleosts challenges the conventional understanding of Ig transport mechanisms. The transport of IgM to the intestine via the hepatobiliary route is observed in vertebrates and has been proposed in a few teleosts. Investigations on the stomachless fish, ballan wrasse, revealed a significant role of the hepatobiliary route and interesting possibilities for alternative IgM transport routes that might include pancreatic tissue. These findings highlight the importance of gaining a thorough understanding of the mechanisms behind Ig transport to the gut in various teleosts. This review aims to gather existing information on pIgR-mediated transport across epithelial cells and immunoglobulin transport pathways to the gut lumen in teleost fish. It provides comparative insights into the hepatobiliary transport of Igs to the gut, emphasizing the current understanding in teleost fish while exploring potential alternative pathways for Ig transport to the gut lumen. Despite significant progress in understanding various aspects, there is still much to uncover, especially concerning the diversity of mechanisms across different teleost species.


Assuntos
Peixes , Imunoglobulina M , Animais , Imunoglobulina M/imunologia , Peixes/imunologia , Peixes/genética , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/imunologia , Receptores de Imunoglobulina Polimérica/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Trato Gastrointestinal/imunologia
18.
Fish Shellfish Immunol ; 149: 109566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636735

RESUMO

Fish rely on innate immune system for immunity, and nucleotide-binding oligomerization domain-like receptors (NLRs) are a vital group of receptor for recognition. In the present study, NOD1 gene was cloned and characterized from golden pompano Trachinotus ovatus, a commercially important aquaculture fish species. The ORF of T. ovatus NOD1 was 2820 bp long, encoding 939 amino acid residues with a highly conserved domains containing CARD-NACHT-LRRs. Phylogenetic analysis revealed that the T. ovatus NOD1 clustered with those of fish and separated from those of birds and mammals. T. ovatus NOD1 has wide tissue distribution with the highest expression in gills. Bacterial challenges (Streptococcus agalactiae and Vibrio alginolyticus) significantly up-regulated the expression of NOD1 with different response time. The results of T. ovatus NOD1 ligand recognition and signaling pathway analysis revealed that T. ovatus NOD1 could recognize iE-DAP at the concentration of ≧ 100 ng/mL and able to activate NF-κB signaling pathway. This study confirmed that NOD1 play a crucial role in the innate immunity of T. ovatus. The findings of this study improve our understanding on the immune function of NOD1 in teleost, especially T. ovatus.


Assuntos
Sequência de Aminoácidos , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Proteína Adaptadora de Sinalização NOD1 , Filogenia , Alinhamento de Sequência , Vibrio alginolyticus , Animais , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD1/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Imunidade Inata/genética , Doenças dos Peixes/imunologia , Alinhamento de Sequência/veterinária , Vibrio alginolyticus/fisiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Vibrioses/imunologia , Vibrioses/veterinária , Ácido Diaminopimélico/química , Ácido Diaminopimélico/análogos & derivados , Perciformes/imunologia , Perciformes/genética , Peixes/imunologia , Peixes/genética
19.
Fish Shellfish Immunol ; 150: 109554, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641217

RESUMO

Nocardia seriolae pathogen causes chronic granulomatous disease, reportedly affecting over 40 species of marine and freshwater cultured fish. Hence, research is required to address and eliminate this significant threat to the aquaculture industry. In this respect, a reliable and reproducible infection model needs to be established to better understand the biology of this pathogen and its interactions with the host during infection, as well as to develop new vaccines or other effective treatment methods. In this study, we examined the pathogenicity of the pathogen and the immune response of snakehead (Channa argus) juvenile to N. seriolae using a range of methods and analyses, including pathogen isolation and identification, histopathology, Kaplan-Meier survival curve analysis, and determination of the median lethal dose (LD50) and cytokine expression. We have preliminarily established a N. seriolae - C. argus model. According to our morphological and phylogenetic analysis data, the isolated strain was identified as N. seriolae and named NSE01. Eighteen days post-infection of healthy juvenile C. argus with N. seriolae NSE01, the mortality rate in all four experimental groups (intraperitoneally injected with 1 × 105 CFU/mL - 1 × 108 CFU/mL of bacterial suspension) (n = 120) was 100 %. The LD50 of N. seriolae NSE01 for juvenile C. argus was determined to be 1.13 × 106 CFU/fish. Infected juvenile C. argus had significant pathological changes, including visceral tissue swelling, hemorrhage, and the presence of numerous nodules of varying sizes in multiple tissues. Further histopathological examination revealed typical systemic granuloma formation. Additionally, following infection with N. seriolae NSE01, the gene expression of important cytokines, such as Toll-like receptor genes TLR2, TLR13, interleukin-1 receptor genes IL1R1, IL1R2, and interferon regulatory factor IRF2 were significantly upregulated in different tissues, indicating their potential involvement in the host immune response and regulation against N. seriolae. In conclusion, juvenile C. argus can serve as a suitable model for N. seriolae infection. The establishment of this animal model will facilitate the study of the pathogenesis of nocardiosis and the development of vaccines.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Animais , Nocardia/imunologia , Nocardiose/veterinária , Nocardiose/imunologia , Nocardiose/microbiologia , Nocardiose/mortalidade , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Filogenia , Peixes/imunologia , Imunidade Inata , Perciformes/imunologia
20.
Fish Shellfish Immunol ; 149: 109527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561068

RESUMO

Skin mucus analysis has recently been used as a non-invasive method to evaluate for fish welfare. The present research study was conducted to examine the skin mucosal immunity and skin microbiota profiles of sturgeons infected with Citrobacter freundii. Our histology results showed that the thickness of the epidermal layer of skin remained thinner, and the number of mucous cells was significantly decreased in sturgeons after infection (p < 0.05). Total protein, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and creatine kinase levels in the mucus showed biphasic pattern (decrease and then increase). Lactate dehydrogenase, lysozyme, and acid phosphatase activities in the mucus showed an increasing trend after infection. Furthermore, 16S rRNA sequencing also revealed that C. freundii infection also affected the diversity and community structure of the skin mucus microbiota. An increase in microbial diversity (p > 0.05) and a decrease in microbial abundance (p < 0.05) after infection were noted. The predominant bacterial phyla in the skin mucus were Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Specifically, the relative abundance of Fusobacteria increased after infection. The predominant bacterial genera in the skin mucus were Cetobacterium, Pelomonas, Bradyrhizobium, Flavobacterium, and Pseudomonas. The relative abundance of Cetobacterium, Pseudomonas, and Flavobacterium increased after infection. Our current research findings will provide new insights into the theoretical basis for future research studies exploring the mechanism of sturgeon infection with C. freundii.


Assuntos
Citrobacter freundii , Infecções por Enterobacteriaceae , Doenças dos Peixes , Peixes , Imunidade nas Mucosas , Microbiota , Pele , Animais , Citrobacter freundii/imunologia , Microbiota/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Pele/imunologia , Pele/microbiologia , Peixes/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Muco/imunologia , Muco/microbiologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...