Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 883
Filtrar
1.
Chemosphere ; 364: 143045, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121963

RESUMO

Synthetic dyes are the primary cause of water pollution in industrial regions. Azo dyes account for 60-70% of such dyes used in the textile sector due to their numerous beneficial characteristics. Nevertheless, there is a dearth of knowledge regarding the toxicity of Eriochrome Black T (EBT), a widely used azo dye in the textile industry. Therefore, the current study was designed to investigate the effect of EBT exposure on two catfish species, Heteropneustes fossilis and Clarias batrachus. Following 96 h exposure to 1, 10 and 20 mgL-1 of EBT, the MDA content and activities of SOD, CAT and GR exhibited a rising trend. However, as the concentration of EBT increased in both species, GPx showed decreased activity. EBT exposure also altered gut morphometry as well as the three main digestive enzymes activity (increase in lipase and trypsin activity, while decrease in amylase activity). In addition, the exposure of EBT had a significant impact on the gut microbiota of both species. C. batrachus demonstrated the suppression or absence of beneficial gut commensals (Bacillus and Cetobacterium), whereas H. fossilis revealed the proliferation and appearance of beneficial commensal microbes (Bacillus, Bacteroides, Prevotella, and Megashaera). Furthermore, the expansion or absence of these microbial communities indicated that the gut microbiota of both species was involved in dye digestion, immunity and detoxification. Overall, the percent change calculation of all the selected biomarkers, together with gut microbiota analysis, indicates that C. batrachus was more vulnerable to EBT exposure than H. fossilis. The present investigation effectively demonstrated the toxic impact of EBT on fish health by employing oxidative stress markers, digestive enzymes, and the fish gut microbiota as a promising tool for screening the impact of dye exposure on digestive physiology in toxicological research.


Assuntos
Compostos Azo , Biomarcadores , Peixes-Gato , Microbioma Gastrointestinal , Estresse Oxidativo , Animais , Peixes-Gato/fisiologia , Peixes-Gato/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/metabolismo , Compostos Azo/toxicidade , Compostos Azo/metabolismo , Poluentes Químicos da Água/toxicidade , Corantes/toxicidade
2.
Ecotoxicol Environ Saf ; 284: 116930, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39205351

RESUMO

The rapid temperature changes caused by global warming significantly challenge fish survival by affecting various biological processes. Fish generally mitigate stress through physiological plasticity, but when temperature changes exceed their tolerance limits, even adaptable species like Siluriformes can experience internal disruptions. This study investigates the effects of extreme thermal climate on Hong Kong catfish (Clarias fuscus), native to tropical and subtropical regions. C. fuscus were exposed to normal temperature (NT, 26 ℃) or high temperature (HT, 34 ℃) condition for 90 days. Subsequently, histological, biochemical, and transcriptomic changes in gill tissue were observed after exposure to acute high temperatures (34 ℃) and subsequent temperature recovery (26 ℃). Histological analysis revealed that C. fuscus in the HT group exhibited less impact from sudden temperature shifts compared to the NT group, as they adapted by reducing the interlamellar cell mass (ILCM) and lamellae thickness (LT) of gill tissue, thereby mitigating the aftermath of acute heat shock. Biochemical analysis showed that catalase (CAT) activity in the high temperature group continued to increase, while malondialdehyde (MDA) levels decreased, suggesting establishment of a new oxidative balance and enhanced environmental adaptability. Transcriptome analysis identified 520 and 463 differentially expressed genes in the NT and HT groups, respectively, in response to acute temperature changes. Enrichment analysis highlighted that in response to acute temperature changes, the NT group inhibited apoptosis and ferroptosis by regulating the activity of alox12, gclc, and hmox1a, thereby attenuating the adverse effects of heat stress. Conversely, the HT group increased the activity of pfkma and pkma to provide sufficient energy for tissue repair. The higher degree of heat shock protein (Hsp) response in NT group also indicated more severe heat stress injury. These findings demonstrate alterations in gill tissue structure, regulation of oxidative balance, and the response of immune metabolic pathways to acute temperature fluctuations in C. fuscus following thermal exposure, suggesting potential avenues for further exploration into the thermal tolerance plasticity of fish adapting to global warming.


Assuntos
Antioxidantes , Peixes-Gato , Brânquias , Animais , Peixes-Gato/fisiologia , Brânquias/metabolismo , Antioxidantes/metabolismo , Termotolerância , Hong Kong , Temperatura Alta/efeitos adversos , Aclimatação , Resposta ao Choque Térmico , Redes e Vias Metabólicas , Estresse Oxidativo , Transcriptoma
3.
J Therm Biol ; 124: 103951, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39182420

RESUMO

Blue catfish Ictalurus furcatus has been widely introduced throughout the United States to enhance recreational fisheries. Its success in both its native and non-native range, especially in the context of climate change, will be influenced by its thermal performance. We conducted a laboratory experiment to investigate the responses of wild-captured, subadult blue catfish to temperatures ranging from 7 °C to 38 °C. Blue catfish had relatively low standard metabolic rates, indicating low energetic demands, and hence an ability to survive well even during low-food conditions. Metabolic scope and food consumption rate increased with temperature, with metabolic scope peaking at 29.1 °C, and consumption rate peaking at 32 °C. Body condition remained high up to 32 °C, but decreased drastically thereafter, suggesting limitations in maintaining metabolism through food consumption at temperatures >32 °C; blue catfish cannot survive in such habitats indefinitely. Yet, many fish were able to survive temperatures as high as 38 °C for 5 days, suggesting that acute and occasionally chronic heat waves will not limit this species. Using these results, we also predicted the performance of blue catfish under prevailing conditions and under climate warming at seven locations throughout their current range in the U.S. We found that some blue catfish populations in southern and southeastern areas will likely experience temperatures above the optimal temperature for extended periods due to climate change, thus limiting potential habitat availability for this species. But, many non-native populations, especially those in northern areas such as Idaho, North Dakota, and northern California, may benefit from the expected warmer temperatures during spring and fall.


Assuntos
Mudança Climática , Animais , Ictaluridae/fisiologia , Temperatura , Espécies Introduzidas , Peixes-Gato/fisiologia
4.
Cryo Letters ; 45(5): 320-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126334

RESUMO

BACKGROUND: Walking catfish, Clarias batrachus is one of the native and most popular freshwater catfish species in Indonesia. However, cultivation faces challenges, particularly due to the scarcity of larvae resulting from underdeveloped breeding technologies. Cryopreservation is a method of storing sperm to maintain viability for a long period and support the breeding technology of the fish. Cryoprotectant, in this context, plays an important role in determining the success of sperm cryopreservation. OBJECTIVE: To determine the best type and concentration of cryoprotectant for cryopreservation of walking catfish sperm. MATERIALS AND METHODS: A total of five different types of cryoprotectants, namely DMSO, glycerol, ethyl glycol, ethanol, and methanol, were tested at four concentration levels namely 0%, 5%, 10%, 15%, and 20%, each with four replications. RESULTS: The type and concentration of cryoprotectant had a significant effect on sperm motility and viability (P < 0.05). The best outcomes were obtained with 5% DMSO and ethyl glycol, 10% glycerol and methanol, as well as 15% ethanol. CONCLUSION: The highest motility and viability values were obtained with 5% DMSO, resulting in its recommendation for cryopreservation of walking catfish sperm. Doi.org/10.54680/fr24510110612.


Assuntos
Peixes-Gato , Criopreservação , Crioprotetores , Dimetil Sulfóxido , Glicerol , Metanol , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Crioprotetores/farmacologia , Criopreservação/métodos , Criopreservação/veterinária , Masculino , Peixes-Gato/fisiologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Espermatozoides/citologia , Glicerol/farmacologia , Dimetil Sulfóxido/farmacologia , Metanol/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Etanol/farmacologia , Etilenoglicol/farmacologia
5.
Sci Rep ; 14(1): 17531, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080432

RESUMO

Parasites can change the behaviour of their hosts, but little attention has been given to the relationship between parasite effects on host behaviour and colouration. The correlation between disrupted melanin production and alterations in various physiological and behavioural traits, e.g., aggression, shoaling behaviour, stress responsiveness and sensitivity to brood parasitism, has been reported in albino fish. We hypothesized that parasitism would affect the behaviour of albino and pigmented conspecifics differently. In laboratory conditions, we infested a group of pigmented and a group of albino individuals of European catfish Silurus glanis with glochidia of two Uninoidea species, namely, the native species Anodonta anatina and the invasive species Sinanodonta woodiana, and investigated the effect of parasitization on the boldness and sheltering behaviour of the hosts. The behaviour of albino individuals differed from that of pigmented conspecifics both before and after parasitization. Parasitization with glochidia did not affect sheltering behaviour, but it increased boldness in pigmented individuals, whereas albino individuals did not exhibit any changes in behaviour. Sheltering results were consistent in both binomial and continuous variable analyses, whereas boldness was significant only in the binomial analyses. Our results demonstrate the reduced susceptibility of the albino phenotype to glochidia infestation, together with questions of the choice of analyses.


Assuntos
Comportamento Animal , Peixes-Gato , Interações Hospedeiro-Parasita , Pigmentação , Animais , Peixes-Gato/fisiologia , Peixes-Gato/parasitologia , Comportamento Animal/fisiologia , Pigmentação/fisiologia , Agressão/fisiologia , Doenças dos Peixes/parasitologia
6.
Environ Sci Pollut Res Int ; 31(29): 42212-42229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862804

RESUMO

The present study investigated the effects of zinc on the hypothalamo-pituitary-gonadal-liver (HPGL) axis of the bagrid catfish Mystus vittatus. Female fish (pre-ovulatory and ovulatory phases) were exposed to zinc sulphate at 1/10th of LC50 (5.62 mg/L) for 60 days and sacrificed at every 15-day interval to collect tissues. Zinc concentration in all tissues was significantly higher in the metal-exposed group at all exposure durations compared to control for both phases. Metallothionein (MT) levels increased in the brain, liver and ovary of fish from both phases with exposure duration. Reactive oxygen species (ROS) generation in the brain, liver and ovary tissues increased with exposure duration at both reproductive phases while serum cortisol levels in ovulatory fish increased significantly compared to pre-ovulatory. Condition factor, gonadosomatic index and hepatosomatic index decreased in Zn-exposed fish. Brain GnRH and kisspeptin levels decreased significantly in the Zn-exposed group for both phases. GnIH was significantly higher in Zn-exposed fish. Serum FSH levels in pre-ovulatory and LH levels in ovulatory fish decreased gradually with an increase in the duration of exposure. Zn exposure reduced vitellogenin (Vtg) and estradiol (E2) in the liver and ovary with an increase in duration from both phases. Ovary maturation-inducing hormone (MIH) levels showed a decrease with exposure duration in ovulatory fish. Moreover, Zn-exposed ovulatory fish showed a degenerated oocyte nucleus due to the disintegration of the nuclear membrane. It might be inferred that Zn altered the HPGL regulatory system of M. vittatus reproduction at both the pre-ovulatory and ovulatory phases.


Assuntos
Peixes-Gato , Sistema Hipotálamo-Hipofisário , Fígado , Reprodução , Zinco , Animais , Feminino , Reprodução/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peixes-Gato/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Ovário/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
7.
Sci Rep ; 14(1): 14878, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937517

RESUMO

Water quality in land-based fish production can be controlled through either instantaneous water exchange or costly wastewater treatment followed by recirculation. Agricultural-aquaculture integration is an excellent alternative technique for reducing nutrient discharge levels, boosting profitability, and converting fish culture wastewater into valuable products. The current study employed a solar energy system to power two separate IMTA-aquaponics systems (Nutrient Film Technique, NFT, and Floating Raft Systems, FRS) for the cultivation of Nile tilapia, African catfish, thin-lipped grey mullet, freshwater crayfish, freshwater mussels, and a variety of vegetables. Tilapia and catfish were fed exclusively on diets under the IMTA system. All wastewater from tilapia and catfish ponds, both dissolved and solid, flows sequentially to ponds containing other cultivated species. The water then flows through the IMTA system's terminal point to the NFT and FRS systems before returning to the tilapia and catfish ponds, allowing complete control of the nutrient flow throughout this entire circular system. Two 147-day production cycles were concluded. The results from the second production cycle are reported. Total biomass gain for aquatic species in the IMTA system was 736.46 kg, compared to 145.49 kg in the tilapia and 271.01 kg in the catfish monoculture systems. The current IMTA system had a cumulative feed conversion ratio (FCR) of 0.90, while the FCRs for tilapia and catfish were 1.28 and 1.42, respectively. Nile tilapia and catfish consumed 571.90 kg of feed containing 25.70 kg of nitrogen (N) and 9.70 kg of phosphorus (P), reflecting, and gaining 11.41 and 3.93 kg of dietary N and P, representing 44.40 and 40.46% dietary N and P retention, respectively. In the IMTA system, the addition of mullet and prawn as detrivores aquatic animals improves dietary N and P utilization efficiency to 59.06 and 51.19%, respectively, while the addition of mussels as herbivore animals improves dietary N and P utilization efficiency to 65.61 and 54.67%, respectively. Finally, using FRS and NFT as hydroponic systems increased dietary N and P efficiency to 83.51% N and 96.82% P, respectively. This study shows that the IMTA-Aquaponic system, as a bio-integrated food production system, can convert the majority of fish-fed residues into valuable products suitable for desert, rural, and urban areas in impoverished and developing countries.


Assuntos
Aquicultura , Água Doce , Hidroponia , Aquicultura/métodos , Animais , Hidroponia/métodos , Ração Animal/análise , Nutrientes/metabolismo , Peixes-Gato/metabolismo , Peixes-Gato/fisiologia , Águas Residuárias , Tilápia/metabolismo , Tilápia/crescimento & desenvolvimento , Tilápia/fisiologia , Ciclídeos/metabolismo , Ciclídeos/fisiologia , Ciclídeos/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo , Fósforo/análise
8.
Environ Pollut ; 353: 124166, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754694

RESUMO

Potentially toxic cyanobacterial blooms (cyanoHABs) have become a problem in public water supply reservoirs. Temperature rise caused by climate change can increase the frequency and intensity of blooms, which may influence the cyanotoxins concentration in the environment. This study aimed to evaluate the effect of the temperature on the responses of a Neotropical catfish exposed to a neurotoxin-rich cyanobacterial crude extract (Raphidiopsis raciborskii T3). Juveniles of Rhamdia quelen were exposed to four treatments, based on study data: control at 25 °C (C25), control at 30 °C (C30), crude extract equivalent to 105 cells.mL-l of R. raciborskii at 25 °C (CE25) and 30 °C (CE30). After 96 h of exposure, the fish were anesthetized and blood was taken. After euthanasia, the gill, posterior kidney, brain, muscle, liver and gonad were sampled for hematological, biochemical, genotoxic and histopathological biomarker analysis. Liver was sampled for proteomic analysis for identification of proteins related to energy production. Water samples were collected at the beginning and the end of the experiment for neurotoxins quantification. Different parameters in both males and females were altered at CE25, evidencing the effects of neurotoxins in freshwater fish. At CE30, a water warming scenario, more effects were observed in females than at 25 °C, such as activation of saxitoxin metabolism pathway and genotoxicity. More damage to macromolecules was observed in females at the higher temperature, demonstrating that the increase in temperature can aggravate the toxicity of neurotoxins produced by R. raciborskii T3.


Assuntos
Peixes-Gato , Cianobactérias , Animais , Peixes-Gato/fisiologia , Temperatura , Microcistinas/toxicidade , Feminino , Masculino , Toxinas de Cianobactérias , Mudança Climática , Neurotoxinas/toxicidade , Toxinas Bacterianas/toxicidade , Toxinas Marinhas/toxicidade
9.
Environ Pollut ; 352: 124104, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703978

RESUMO

Endocrine disruptors are synthetic or natural chemicals that can agonize/antagonize hormone receptors or can interfere with the production and secretion of hormones, leading to altered tissue histology and physiology. Pyrogallol is a contaminant widely distributed in aquatic environments that presents health risks to both humans and animals. However, the potential for endocrine disruption by pyrogallol, particularly in fish, are lacking. The purpose of this study was to shed light on how pyrogallol may affect hormone signalling, histopathology, and reproductive outcomes in African catfish Clarias gariepinus. To investigate this, African catfish were exposed to one sublethal concentration of pyrogallol at either 0, 1, 5 or 10 mg/L for 15 days. We then assessed the effects of pyrogallol on the thyroid gland as well as the reproductive system by measuring sex hormone, seminal quality, gonadal histopathology, and histochemistry. Thyroid stimulating hormone and thyroxine showed notable decreases in catfish, and triiodothyronine was decreased with 10 mg/L pyrogallol. Unlike luteinizing hormone, follicle-stimulating hormone was significantly reduced in fish following exposure to pyrogallol relative to controls. Testosterone was also decreased in fish following pyrogallol exposure, whereas 17ß-estradiol increased in catfish exposed to pyrogallol. Additionally, in response to pyrogallol toxicity, sperm quality indices, including count, spermatocrit, motility, and sperm viability were adversely affected in a concentration-dependent manner. Pyrogallol exposure also induced several changes in the gonad following exposure to 1, 5, or 10 mg/L. Deformed tubular structures, vacuolation, thickening of the basement membrane, hypertrophy of the seminiferous tubules, intense melanomacrophage localization, spermatozoa loss, and necrosis were all observed in the testes. In the ovary, atretic follicles, deteriorated mature oocytes, degenerated yolk globules, and an increase in perinucleolar oocytes were observed in catfish exposed to pyrogallol. These findings suggest that pyrogallol may act as endocrine disrupting substance in aquatic environments. Further research on the mechanisms by which pyrogallol impairs endocrine systems, particularly in fish, is recommended.


Assuntos
Peixes-Gato , Disruptores Endócrinos , Pirogalol , Reprodução , Poluentes Químicos da Água , Animais , Peixes-Gato/fisiologia , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Masculino , Pirogalol/toxicidade , Pirogalol/análogos & derivados , Feminino , Glândula Tireoide/efeitos dos fármacos
10.
Chemosphere ; 356: 141827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583529

RESUMO

Microplastic pollution is drastically increasing in aquatic ecosystems and it is assumed that different sizes of microplastics have diverse impacts on the physiology of aquatic organisms. Therefore, this study was intended to examine the ingestion and size specific effects of polyamide microplastic (PA-MP) on different physiological aspects such as growth, feed utilization, survivability, blood parameters and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). In a 28-day exposure, the fish were fed with different sized PA-MP with a concentration of 500 mg per kg of feed in order to simulate highly microplastic contaminated environment. Three different treatments were set for this experiment i.e. T1, 25-50 µm (smaller microplastic); T2, 300 µm-2 mm (larger microplastic); T3, (mixed) including a control (C); each had three replicates. The highest ingestion was recorded in the gastrointestinal tract (GIT) of fish exposed to smaller PA-MP treatments (T1 followed by T3). The results also showed compromised weight gain (WG; g), specific growth rate (SGR; %/day) and feed conversion ratio (FCR) with the exposure of PA-MP. Besides, survivability significantly reduced among treatments with the ingestion of smaller sized microplastic and found lowest in T1 (65.0 ± 5.0). In addition, the presence of PA-MP in feed negatively affected the concentration of hemoglobin and blood glucose. Similarly, smaller PA-MP caused most erythrocytic cellular and nuclear abnormalities; found highest in T1 that significantly different from other treatments (p < 0.05). Various histopathological deformities were observed in fish fed with PA-MP incorporated feed. The principal component analysis (PCA) showed that the toxicity and stress imparted by smaller PA-MP affected the survivability and blood parameters where larger PA-MP caused mild to severe abnormalities. Based on eigenvector values, the major abnormalities in intestine included occurrence of epithelium columnar degeneration (ECD: 0.402; PC1), hyperplasia of internal mucosa (HISM: 0.411; PC1), beheading of villi (BV: 0.323; PC1), atrophy of mucosa (AM: 0.322; PC1), tiny vacuoles in apical villi (TV: 0.438. PC2), crypt degeneration (CD: 0.375: PC2) and atrophy of goblet cell (AGC: 0.375; PC2). Therefore, it has been speculated that the size based PA-MP ingestion in the GIT interfered with the digestion and absorption as well as caused deformities that reflected negatively in survivability and hemato-biochemical parameters of juvenile striped catfish.


Assuntos
Peixes-Gato , Microplásticos , Poluentes Químicos da Água , Animais , Peixes-Gato/fisiologia , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/patologia
11.
Behav Processes ; 218: 105029, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642719

RESUMO

Competitive interactions between species is widely prevalent within the animal world. In this manuscript, we attempted to understand feeding competitions between the Amazon sailfin catfish, an invasive species introduced globally, and rohu, a keystone species native to several countries within southeast Asia. We used two different size classes of each species, large-size having total length (TL, from snout tip to caudal fin) of 15-20 cm and fingerling having TL<6 cm, and feeding duration was used as a proxy to understand competition. Our results demonstrated that feeding durations of large-size rohu were either similar or significantly (P<0.05) higher in presence of catfish when compared to trials in presence of conspecifics, indicating that large-size rohu is not a weak competitor. However, feeding durations of fingerling rohu was significantly (P<0.05) reduced in presence of both large-size and fingerling catfish, when compared to trials in presence of conspecifics. Moreover, fingerling rohu also displayed freeze (alarm) behavior in presence of the catfish. Interestingly, presence of rohu had no significant (P>0.05) impact on feeding durations of catfish. Overall, the study demonstrated that invasive catfish may behaviorally outcompete fingerling rohu, thus, threatening the sustenance of a species that is native to several freshwaters around the globe.


Assuntos
Peixes-Gato , Comportamento Competitivo , Comportamento Alimentar , Espécies Introduzidas , Animais , Peixes-Gato/fisiologia , Comportamento Competitivo/fisiologia , Comportamento Alimentar/fisiologia , Cyprinidae/fisiologia , Especificidade da Espécie , Comportamento Animal/fisiologia
12.
Aquat Toxicol ; 271: 106929, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663201

RESUMO

Carbamazepine (CBZ) is an anticonvulsant medication used to treat epilepsy and bipolar disorder. Due to its persistence and low removal rate in wastewater treatment plants, it is frequently detected in the environment, raising concerns regarding its potential adverse effects on aquatic organisms and ecosystems. In this study, we aimed to assess the impact of CBZ on the behavior and growth of juvenile yellow catfish Tachysurus fulvidraco, a native and economically important species in China. Fish were exposed to CBZ at three concentrations of 1, 10, or 100 µg/L for 14 days. The fish exposed to 10 and 100 µg/L of CBZ exhibited decreased feeding, and a significant increase in cannibalistic tendencies was observed in fish exposed to 100 µg/L CBZ. Acetylcholinesterase activity was increased in the brain of fish exposed to 100 µg/L CBZ. CBZ also inhibited the growth of yellow catfish. To better elucidate mechanisms of toxicity, transcriptomics was conducted in both the brain and liver. In the brain, gene networks associated with neurotransmitter dysfunction were altered by CBZ, as well as networks associated with mitochondrial dysfunction and metabolism. In the liver, gene networks associated with the immune system were altered by CBZ. The current study improves comprehension of the sub-lethal effects of CBZ and reveals novel insight into molecular and biochemical pathways disrupted by CBZ, identifying putative key events associated with reduced growth and altered behavior. This study emphasizes the necessity for improved comprehension of the effects of pharmaceutical contaminants on fish at environmentally relevant levels.


Assuntos
Carbamazepina , Peixes-Gato , Poluentes Químicos da Água , Animais , Carbamazepina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixes-Gato/fisiologia , Peixes-Gato/genética , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Anticonvulsivantes/toxicidade , Acetilcolinesterase/metabolismo
13.
J Fish Biol ; 104(6): 1764-1774, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450744

RESUMO

Fish is an important source of food and income for a significant portion of the Amazonian population, especially those who live along the rivers and lakes in the region. Pseudoplatystoma punctifer (Castelnau, 1855), known as surubim, is a species of Neotropical catfish widely exploited by fisheries and commercially valuable in the Guaporé River basin, Brazil. However, population dynamics are poorly known in the region. To understand the population structure and reproductive biology aspects of the surubim, monthly experimental fisheries were carried out in the São Miguel River, state of Rondônia, Brazil, between August 2020 and July 2021. The captured fish were weighed, and its gonads were removed and weighed for histological analyses (microscopic description) and classification of the maturation stages (macroscopic description). The collected gonads were fixed in 10% buffered formalin, dehydrated, cut into 4-µm-thick sections, and stained with hematoxylin and eosin. A total of 34 individuals were collected (20 females and 14 males), showing positive allometric growth and condition factor from 0.81 to 1.79 for females and males, respectively. Females were larger in size and weight than males. P. punctifer reaches its first maturation at an average length of 68.30 cm, indicating the importance of respecting the minimum capture size as an alternative to ensure the natural stocks of this fishery resource in the region. The results provide support for the establishment of public policies and actions for conservation, management, and regulation of fishing.


Assuntos
Peixes-Gato , Reprodução , Rios , Animais , Brasil , Peixes-Gato/anatomia & histologia , Peixes-Gato/fisiologia , Masculino , Feminino , Dinâmica Populacional , Gônadas/anatomia & histologia , Maturidade Sexual
14.
Sci Rep ; 14(1): 5806, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461203

RESUMO

Due to the non-degradable and persistent nature of metal ions in the environment, they are released into water bodies, where they accumulate in fish. In order to assess pollution in fish, the enzyme, glucose 6-phosphate dehydrogenase (G6PD), has been employed as a biomarker due to sensitivity to various ions. This study investigates the kinetic properties of the G6PD enzyme in yellow catfish (Pelteobagrus fulvidraco), and analyzes the effects of these metal ions on the G6PD enzyme activity in the ovarian cell line (CCO) of channel catfish (Ictalurus punctatus). IC50 values and inhibition types of G6PD were determined in the metal ions Cu2+, Al3+, Zn2+, and Cd2+. While, the inhibition types of Cu2+ and Al3+ were the competitive inhibition, Zn2+ and Cd2+ were the linear mixed noncompetitive and linear mixed competitive, respectively. In vitro experiments revealed an inverse correlation between G6PD activity and metal ion concentration, mRNA levels and enzyme activity of G6PD increased at the lower metal ion concentration and decreased at the higher concentration. Our findings suggest that metal ions pose a significant threat to G6PD activity even at low concentrations, potentially playing a crucial role in the toxicity mechanism of metal ion pollution. This information contributes to the development of a biomonitoring tool for assessing metal ion contamination in aquatic species.


Assuntos
Cádmio , Peixes-Gato , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Metais/farmacologia , Metais/metabolismo , Glucosefosfato Desidrogenase/genética , Peixes-Gato/fisiologia , Íons/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo
15.
J Fish Biol ; 104(5): 1386-1400, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38343097

RESUMO

Subterranean organisms provide excellent opportunities to investigate morphological evolution, especially of sensory organs and structures and their processing areas in the central nervous system. We describe the gross morphology of the brain and some cephalic sensory organs (olfactory organ, eye, semicircular canals of the inner ear) and the swim bladder (a non-sensory accessory structure) of subterranean species of pencil catfishes of the genus Ituglanis Costa and Bockmann, 1993 (Siluriformes, Trichomycteridae) and compare them with an epigean species of the genus, Ituglanis goya Datovo, Aquino and Langeani, 2016. We compared qualitatively the size of the different brain regions and sense organs of the subterranean species with those of the epigean one, searching for modifications possibly associated with living in the subterranean environment. Our findings suggest that species of Ituglanis exhibit sensory characteristics that are preadaptive for the subterranean life, as only slight modifications were observed in the brains and sense organs of the subterranean species of the genus when compared with the epigean one. Because most subterranean fish species belong to lineages putatively preadapted for subterranean life, our results, discussed in the context of available information on the brain and sense organs of other subterranean species, help identify general trends for the evolution of the brain and sensory organs of subterranean fishes in general.


Assuntos
Evolução Biológica , Encéfalo , Peixes-Gato , Animais , Peixes-Gato/anatomia & histologia , Peixes-Gato/fisiologia , Encéfalo/anatomia & histologia , Órgãos dos Sentidos/anatomia & histologia , Órgãos dos Sentidos/fisiologia , Adaptação Fisiológica , Sacos Aéreos/anatomia & histologia
16.
Fish Physiol Biochem ; 50(3): 911-925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38300371

RESUMO

Clarias gariepinus is an important freshwater fish with high economic value and breeding potential in China. It is a fast-growing and adaptable catfish, but the main problems facing the current market are its low price and poor taste, although starvation is a good solution to these problems. In this study, the effects of starvation on the physiology, biochemistry, and muscle quality of C. gariepinus were investigated. The results showed that compared with the control group, the weight gain rate and specific growth rate of the starvation group were significantly different. Body weight, visceral weight, condition factor, viscerosomatic index, hepatosomatic index, and viscera fat index all decreased, while visceral weight and hepatosomatic index decreased significantly after starvation for 30 days. The hardness and crude protein of muscle increased significantly and crude lipid decreased significantly. Taste-enhancing amino acids increased slightly, and fatty acids increased significantly. Compared with the control group, starvation led to changes in antioxidant defense parameters. The level of malondialdehyde (MDA) in liver increased significantly; the activities of superoxide dismutase (SOD) increased in serum after 30 days; the activities of glutathione peroxidase (GSH-Px) increased considerably in the serum and liver after 15 days; the activities of alanine aminotransferase (ALT) increased considerably in the serum and liver after 30 days. The in-depth study of changes in physiological, biochemical, and nutritional components of fish under starvation is helpful to understand the ecological strategy of fish to adapt to starvation and of great guiding significance for fishery resource management and aquaculture production.


Assuntos
Antioxidantes , Peixes-Gato , Animais , Peixes-Gato/fisiologia , Peixes-Gato/metabolismo , Peixes-Gato/crescimento & desenvolvimento , Antioxidantes/metabolismo , Fígado/metabolismo , Superóxido Dismutase/metabolismo , Malondialdeído/metabolismo , Malondialdeído/sangue , Inanição/metabolismo , Glutationa Peroxidase/metabolismo
17.
Fish Physiol Biochem ; 50(2): 413-434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367084

RESUMO

Catfish are a highly diverse group of fish that are found in various regions across the globe. The significance of catfish culture extends to various aspects, including food security, economic advancement, preservation of cultural legacy, and ecological stewardship. The catfish industry is presently encountering unprecedented challenges as a consequence of the variability in water temperature caused by climate change. Temperature is a significant abiotic component that regulates and restricts fish physiology throughout their life cycle. The impact of severe temperatures on various species of catfish is dependent upon the magnitude of the stressor and additional influencing factors. This paper presents an analysis of the effects of temperature fluctuations on various aspects of catfish species, including growth and survival, blood parameters, enzymatic and hormone response, oxygen consumption rates, sound generation and hearing skills, nutritional requirements, and other phenotypic attributes. While this review is certainly not exhaustive, it offers a broad synopsis of the ideal temperature ranges that are most favorable for several catfish species. In-depth research to investigate the interacting impacts of severe temperature occurrences in conjunction with other associated environmental stresses on a wider variety of catfish species is crucial in order to further our understanding of how catfish species will respond to the anticipated climate change in the future.


Assuntos
Peixes-Gato , Temperatura , Animais , Peixes-Gato/fisiologia , Mudança Climática , Estresse Fisiológico/fisiologia
18.
Sci Rep ; 14(1): 2252, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278845

RESUMO

It is an urgent needs to address climate change and pollution in aquatic systems using suitable mitigation measures to avoid the aquatic animals' extinction. The vulnerability and extinction of the aquatic animals in the current scenario must be addressed to enhance safe fish food production. Taking into consideration of such issues in fisheries and aquaculture, an experiment was designed to mitigate high temperature (T) and low pH stress, as well as arsenic (As) pollution in fish using copper (Cu) containing diets. In the present investigation, the Cu-containing diets graded with 0, 4, 8, and 12 mg kg-1 were prepared and fed to Pangasianodon hypophthalmus reared under As, low pH, and high-temperature stress. The gene expression was highly affected in terms of the primary, secondary, and tertiary stress response, whereas supplementation of Cu-containing diet mitigates the stress response. Oxidative stress genes such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were significantly upregulated by stressors (As, As + T, and As + pH + T). Whereas, heat shock protein (HSP 70), inducible nitric oxide synthase (iNOS), metallothionine (MT), caspase 3a (Cas 3a), and cytochrome P450 (CYP 450) were highly upregulated by stressors, while dietary Cu at 8 mg kg-1 diet significantly downregulated these gene expressions. Indeed, the immunity-related genes viz. TNFα, Ig, TLR, and immune-related attributes viz. albumin, globulin, total protein, A:G ratio, blood glucose, NBT, and myeloperoxidase (MPO) were also improved with Cu-containing diets. Cu containing diets substantially improved neurotransmitter enzyme (AChE) and vitamin C (Vit C). DNA damage was also reduced with supplementation of Cu at 8 mg kg-1 diet. The growth index viz. final body weight gain (%), specific growth rate, protein efficiency ratio, food conversion ratio, relative feed intake, and daily growth index were noticeably enhanced by Cu diets (4 and 8 mg kg-1 diet). The growth-related genes expressions viz. growth hormone (GH), growth hormone regulator 1 (Ghr1), growth hormone regulator ß (Ghrß,) myostatin (MYST), and somatostatin (SMT) supported the growth enhancement with Cu at 8 mg kg-1 diet. The bioaccumulation of As was reduced with Cu-containing diets. The fish were infected with Aeromonas hydrophila at the end of the 105 days experimental trial. Cu at 8 mg kg-1 diet improved immunity, reduced the cumulative mortality, and enhanced the relative percentage survival of the fish. The results revealed that the innovative Cu diets could reduce the extinction of the fish against climate change and pollution era and produce the safest production that is safe to humans for consumption.


Assuntos
Peixes-Gato , Suplementos Nutricionais , Animais , Humanos , Antioxidantes/metabolismo , Cobre , Dieta , Peixes-Gato/fisiologia , Hormônio do Crescimento , Ração Animal/análise
19.
Fish Physiol Biochem ; 50(2): 605-616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165562

RESUMO

This study was designed to evaluate the tolerance of Clarias gariepinus juveniles to a gradual and abrupt increase in salinity over time. To this effect, C. gariepinus juveniles were exposed to three salinity incremental protocols namely 1 g L-1 day-1, 5 g L-1 day-1, and 10 g L-1 day-1. Changes in the hematological parameters and the gill histology of fish were analyzed to determine the impact of osmotic stress on the health status of the fish and its osmoregulatory ability. The result obtained showed that juveniles of C. gariepinus can tolerate salinity stress up to 14 g L-1. At 15 g L-1 and beyond, all samples died regardless of gradual (i.e., 1 g L-1 day-1 administered for 15 days) or abrupt salinity exposure (i.e., 5 g L-1 day-1 administered for three days and 10 g L-1 day-1 administered for two days). Interestingly, more than 90% of the fish survived a direct 10 g L-1 exposure for 24 h without prior acclimation. The hematological parameters accessed in the fish exposed to 10 g L-1 (either gradually or abruptly) showed a significant increase in the white blood cells and a decrease in the red blood cells, packed cell volume, hemoglobin concentration, and all derived blood parameters. The results of the serum biochemistry show a lower total protein and albumin in the salinity-treated fish compared to the control group. However, the serum glucose and the plasma electrolytes (i.e., K+, Na+, and Cl-) were higher in the former group than in the latter. Aside from the stress response expressed in the blood parameters, severe gill degenerations were seen in the histological micrograph obtained for the salinity-treated fish, while the control had a near-normal gill architecture. It was concluded that C. gariepinus could tolerate salinity exposure of 10 g L-1 day-1 (administered gradually or abruptly) and below without killing the fish within 24 h.


Assuntos
Peixes-Gato , Tolerância ao Sal , Animais , Brânquias , Peixes-Gato/fisiologia , Eritrócitos , Hematócrito , Salinidade
20.
Fish Physiol Biochem ; 50(1): 239-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37656302

RESUMO

Pollution and climate change pose significant threats to aquatic ecosystems, with adverse impacts on aquatic animals, including fish. Climate change increases the toxicity of metal in aquatic ecosystems. To understand the severity of metal pollution and climate change, an experiment was conducted to delineate the mitigation potential of selenium (Se) and selenium nanoparticles (Se-NPs) against lead (Pb) and high temperature stress in Pangasianodon hypophthalmus. For the experiment, five isonitrogenous and isocaloric diets were prepared, varying in selenium supplementation as Se at 0, 1, and 2 mg kg-1 diet, and Se-NPs at 1 and 2 mg kg-1 diet. The fish in stressor groups were exposed to Pb (1/20th of LC50 concentration, 4 ppm) and high temperature (34 °C) throughout the experiment. The results demonstrated that dietary supplementation of Se at 1 and 2 mg kg-1 diet, as well as Se-NPs at 1 mg kg-1 diet, significantly reduced (p < 0.01) the levels of lactate dehydrogenase and malate dehydrogenase in both liver and muscle tissues. Additionally, the levels of alanine aminotransferase and aspartate aminotransferase in both gill and liver tissues were significantly decreased (p < 0.01) with the inclusion of Se and Se-NPs in the diets. Furthermore, the enzymes glucose-6-phosphate dehydrogenase in gill and liver tissues, fructose 1,6-bisphosphatase in liver and muscle tissues, and acid phosphatase in liver tissue were remarkably reduced (p < 0.01) due to the supplementation of Se and Se-NPs. Moreover, dietary supplementation of Se and Se-NPs significantly enhanced (p < 0.01) the activity of pyruvate kinase, glucokinase, hexokinase, alkaline phosphatase, ATPase, protease, amylase, lipase, and RNA/DNA ratio in the fish. Histopathological examination of gill and liver tissues also indicated that Se and Se-NPs protected against structural damage caused by lead and high-temperature stress. Moreover, the study examined the bioaccumulation of selenium and lead in muscle, water, and diets. The aim of the study revealed that Se and Se-NPs effectively protected the fish from lead toxicity and high-temperature stress, while also improving the function of cellular metabolic enzymes in P. hypophthalmus.


Assuntos
Peixes-Gato , Nanopartículas , Selênio , Animais , Chumbo/metabolismo , Ecossistema , Antioxidantes/metabolismo , Peixes-Gato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...