Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 240: 124819, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31563723

RESUMO

The sea cucumbers are common members of marine benthic communities, widespread distributed, easily available and handled. Nevertheless, no data are available on embryo toxicity assays using sea cucumbers, despite some of these species could fully meet the requirements for model test organisms. Holothuria polii is a key species in soft sediments and seagrass meadows; the aim of the present study was the standardization of a new embryo bioassay with this species, as an ecologically relevant test to evaluate the effects of environmental stressors. Sequential experiments were carried out, allowing to define the test acceptability, and a minimum sample size of 240 embryos. Temperature of 26 °C, salinity at 36‰ and a density of 60 eggs/ml were identified as optimum experimental conditions for performing the bioassay. The EC50 calculated for Cd2+ and Cu2+ in dose-response experiments indicated a good sensitivity of H. polii, with comparable values with those obtained in embryo toxicity bioassays of other marine invertebrates. An Integrative Toxicity Index (ITI) was calculated by integrating the frequency of abnormal embryos with the severity of observed abnormalities. The index allows to better discriminate different levels of toxicity, appearing particularly relevant for validating the usefulness of H. polii in embryo assays and ecotoxicological studies on environmental quality.


Assuntos
Bioensaio/métodos , Ecotoxicologia/métodos , Pepinos-do-Mar/química , Pepinos-do-Mar/embriologia , Animais
2.
Phys Biol ; 16(1): 016005, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30485253

RESUMO

A method of numerical simulation of cell division using phase fields is presented. The cell division plane is obtained as a result of the spindle position and orientation considered with the spatial distribution of the activated cortical force generators and the dividing cell shape. To exemplify the application of the proposed method, numerical simulations of the development of cysts and early embryos are performed. The numerical results demonstrate that the activated cortical force generators that are localized at the lateral cortices of the epithelial cells lead to the formation of a single central lumen. It is additionally shown that the linear distribution of the activated cortical force generators along the animal-vegetal axis of a spherical cell engenders a similar cell proliferation of the divided embryo generated by the 32 cell period in a sea cucumber.


Assuntos
Divisão Celular , Simulação por Computador , Modelos Biológicos , Animais , Polaridade Celular , Forma Celular , Embrião não Mamífero/citologia , Células Epiteliais/citologia , Morfogênese , Pepinos-do-Mar/citologia , Pepinos-do-Mar/embriologia
3.
Proc Biol Sci ; 285(1879)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848645

RESUMO

Whole-body chimaeras (organisms composed of genetically distinct cells) have been directly observed in modular/colonial organisms (e.g. corals, sponges, ascidians); whereas in unitary deuterostosmes (including mammals) they have only been detected indirectly through molecular analysis. Here, we document for the first time the step-by-step development of whole-body chimaeras in the holothuroid Cucumaria frondosa, a unitary deuterostome belonging to the phylum Echinodermata. To the best of our knowledge, this is the most derived unitary metazoan in which direct investigation of zygote fusibility has been undertaken. Fusion occurred among hatched blastulae, never during earlier (unhatched) or later (larval) stages. The fully fused chimaeric propagules were two to five times larger than non-chimaeric embryos. Fusion was positively correlated with propagule density and facilitated by the natural tendency of early embryos to agglomerate. The discovery of natural chimaerism in a unitary deuterostome that possesses large externally fertilized eggs provides a framework to explore key aspects of evolutionary biology, histocompatibility and cell transplantation in biomedical research.


Assuntos
Quimera/embriologia , Pepinos-do-Mar/embriologia , Animais
4.
Dev Genes Evol ; 225(5): 275-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26250612

RESUMO

The presence of an anteroposterior body axis is a fundamental feature of bilateria. Within this group, echinoderms have secondarily evolved pentameral symmetric body plans. Although all echinoderms present bilaterally symmetric larval stages, they dramatically rearrange their body axis and develop a pentaradial body plan during metamorphosis. Therefore, the location of their anteroposterior body axis in adult forms remains a contentious issue. Unlike other echinoderms, sea cucumbers present an obvious anteroposterior axis not rearranged during metamorphosis, thus representing an interesting group to study their anteroposterior axis patterning. Hox genes are known to play a broadly conserved role in anteroposterior axis patterning in deuterostomes. Here, we report the expression patterns of Hox genes from early development to pentactula stage in sea cucumber. In early larval stages, five Hox genes (AjHox1, AjHox7, AjHox8, AjHox11/13a, and AjHox11/13b) were expressed sequentially along the archenteron, suggesting that the role of anteroposterior patterning of the Hox genes is conserved in bilateral larvae of echinoderms. In doliolaria and pentactula stages, eight Hox genes (AjHox1, AjHox5, AjHox7, AjHox8, AjHox9/10, AjHox11/13a, AjHox11/13b, and AjHox11/13c) were expressed sequentially along the digestive tract, following a similar expression pattern to that found in the visceral mesoderm of other bilateria. Unlike other echinoderms, pentameral expression patterns of AjHox genes were not observed in sea cucumber. Altogether, we concluded that AjHox genes are involved in the patterning of the digestive tract in both larvae and metamorphosis of sea cucumbers. In addition, the anteroposterior axis in sea cucumbers might be patterned like that of other bilateria.


Assuntos
Genes Homeobox , Pepinos-do-Mar/embriologia , Pepinos-do-Mar/genética , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Filogenia
5.
Evol Dev ; 15(1): 5-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23331913

RESUMO

The myogenesis of class-specific larval forms of three classes belonging to the phylum Echinodermata (Echinoidae, Asteroidea, and Holothuroidea) was investigated via gross-anatomy and comparative morphology of larval muscles. Using staining with phalloidin and antibodies against the muscle proteins, with subsequent CLSM and 3D imaging, we have examined myogenesis in the larvae from the gastrula stage to pre-metamorphosis larval stages. We have shown that temporal and spatial expression of muscle proteins is similar in echinoidea and asteroidea larvae but differs in holothuroidea larvae at early developmental stages. New insights regarding the protein composition of maturing muscular fibrils during development in echinoderm larvae were detected. The first differentiating muscle structures in all tested classes have been found to be circular esophageal muscles that are associated with larval feeding. During early differentiation of echinoderm larval muscle cells, we observed that the expression patterns of the muscle proteins were not uniform but with a characteristic diffuse distribution, which is typical for smooth muscle. An unusual pattern of expression of the muscle proteins was detected in larval sphincters: the thick muscle proteins were first expressed during the early developmental stages, whereas F-actin appeared at later stages. In addition, paired star-shaped muscles were revealed in the mature Echinoidae plutei, but were absent in the Asteroidea, and Holothuroidea larvae. All tested species of Echinodermata exhibited both conserved features of muscle morphology during development indicating a common life history strategy and a planktonic habitat, and also an extensive morphological diversity representing specific anatomical adaptations during development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/fisiologia , Pepinos-do-Mar/embriologia , Ouriços-do-Mar/embriologia , Estrelas-do-Mar/embriologia , Actinas/metabolismo , Animais , Biologia do Desenvolvimento/métodos , Técnicas de Cultura Embrionária , Perfilação da Expressão Gênica , Imageamento Tridimensional , Imuno-Histoquímica , Larva/anatomia & histologia , Músculos/embriologia , Faloidina/química , Filogenia , Pepinos-do-Mar/fisiologia , Ouriços-do-Mar/fisiologia , Estrelas-do-Mar/fisiologia
6.
Evol Dev ; 9(3): 244-56, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17501748

RESUMO

In adult echinoderms, the nervous system includes the ectoneural and hyponeural subsystems. The former has been believed to develop from the ectoderm, whereas the latter is considered to be mesodermal in origin. However, this view has not been substantially supported by embryological examinations. Our study deals with the developmental origin of the nervous system in the direct-developing sea cucumber Eupentacta fraudatrix. The rudiment of the adult nervous system develops from ectodermally derived cells, which ingress into the primary body cavity from the floor of the vestibule. At the earliest stages, only the rudiment of the ectoneural nerve ring is laid down. The radial nerve cords and tentacular nerves grow out from this subcutaneous rudiment. The ectoneural cords do not develop simultaneously but make their appearance in the following order: unpaired mid-ventral cord, paired dorsal lateral cords, and ventral lateral cords. These transitional developmental stages probably recapitulate the evolution of the echinoderm body plan. The holothurian hyponeural subsystem, as other regions of the metazoan nervous system, has an ectodermal origin. It originally appears as a narrow band of tissue, which bulges out of the basal region of the ectoneural neuroepithelium. Our data combined with those of other workers strongly suggest that the adult nervous tissue in echinoderms develops separately from the superficial larval system of ciliary nerves. Therefore, our data are neither in strict accordance with Garstang's hypothesis nor do they allow to refuse it. Nevertheless, in addition to ciliary bands, other areas of neurogenetic epidermis must be taken into account.


Assuntos
Sistema Nervoso Central/embriologia , Pepinos-do-Mar/embriologia , Animais , Sistema Nervoso Central/ultraestrutura , Ectoderma/fisiologia , Ectoderma/ultraestrutura , Epiderme/fisiologia , Epiderme/ultraestrutura , Pepinos-do-Mar/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...