Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 964
Filtrar
1.
Anim Sci J ; 95(1): e13988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165081

RESUMO

Short-chain fatty acids (SCFAs) produced in the rumen are key factors affecting dairy cows' energy balance (EB). This study aimed to quantitatively evaluate the effects of SCFAs production on EB in dairy cows. Primiparous dairy cows were divided into high non-esterified fatty acid (NEFA; group H) and low NEFA (group L) groups based on their blood NEFA levels at week 3 postpartum, which served as an indicator of EB. The amounts of SCFAs produced in the rumen, including acetate, propionate, and butyrate (SCFAsP), were calculated using the predicted rumen volume. Because there were no differences between the groups in SCFAsP/dry matter intake, whereas 4% fat-corrected milk (FCM)/SCFAsP was significantly higher in group H, it was suggested that more body fat was mobilized for milk production in group H. However, group L, which showed better EB, had propionate dominant and lower FCM/SCFAsP and milk energy/SCFAs energy at 3 and 7 weeks postpartum, indicating that group L had a better energy supply for milk production. These results suggest that SCFAsP produced by rumen fermentation and the composition of SCFAs in the rumen affect milk production and EB.


Assuntos
Metabolismo Energético , Ácidos Graxos não Esterificados , Ácidos Graxos Voláteis , Fermentação , Lactação , Leite , Rúmen , Animais , Rúmen/metabolismo , Bovinos/metabolismo , Bovinos/fisiologia , Feminino , Ácidos Graxos Voláteis/metabolismo , Lactação/metabolismo , Lactação/fisiologia , Leite/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/sangue , Gravidez , Paridade , Período Pós-Parto/metabolismo , Propionatos/metabolismo
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 619-629, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948275

RESUMO

Objective: Based on the secreted frizzled-related protein 2 (SFRP2)-Wnt/ß-catenin signaling pathway, this study explored the effect and mechanism of Cuiru Keli (CRKL) in the treatment of postpartum hypogalactia. Methods: A rat model of postpartum hypogalactia was established by gavaging 2 mL of 1.6 mg/mL bromocriptine mesylate to female rats on the third day after delivery. Female rats with a delivery time difference of less than 48 hours were selected and randomly assigned to 7 groups, including a normal group (without any modeling or medication), a model group, a CRKL low-dose group of model group model rats receiving CRKL at the dose of 3 g/kg, a CRKL medium-dose group of model rats receiving CRKL at the dose of 6 g/kg, a CRKL high-dose group of model rats receiving CRKL at the dose of 9 g/kg, a positive drug group of model rats receiving domperidone at the dose of 3 mg/kg, and a negative control (NC) group of model rats receiving normal saline. Each group contained 6 rats. Except for the normal and model groups, the remaining 5 groups were continuously administered with the respective intervention drugs at the specified doses by gavage once a day for 10 days. Changes in the total litter mass of the offspring in the 7 groups within 10 days were measured, and HE staining was performed to identify pathological changes in the mammary tissue (MT). Six groups of rats (excluding the positive control group) were used to observe the pathological changes of eosinophils in pituitary tissue. ELISA was performed to determine the content of prolactin (PRL) in serum, immunohistochemical staining was used to determine the expression of prolactin receptor (PRLR) in MT, and RT-qPCR was used to determine the mRNA expression of genes related to lactation in MT. Network pharmacology and molecular docking were used to study the therapeutic effect and mechanism of CRKL on postpartum hypogalactia, particularly whether it acted through the SFRP2-Wnt/ß-catenin signaling pathway. The mechanism of CRKL treatment was further validated by detecting mRNA (RT-qPCR) and protein expression (Western blot) of related pathway genes. Cell experiments were conducted using primary culture rat mammary epithelial cells (RMEC) from rat MT. RMEC were divided into four groups, including a normal group (primary culture RMEC, untreated), SFRP2 overexpression group (primary cultured RMEC treated with SFRP2 overexpression vector), SFRP2 overexpression+CRKL group (receiving treatment for SFRP2 overexpression group plus 10% drug-containing serum), and negative control group (primary culture RMEC treated with empty vector). The effect of CRKL on the expression of lactation-related genes FASN, CSN2, and GLUT1 mRNA after SFRP2 overexpression was detected by RT-qPCR. Results: In this study, CRKL was administered at a dose of 3 g/kg in the CRKL low-dose group, 6 g/kg in the medium-dose group, and 9 g/kg in the high-dose group (P<0.05 or P<0.01). Compared with the model group, CRKL at all doses significantly increased the total litter weight gain of the offsprings within 10 days (P<0.05 or P<0.01), and effectively increased lactation (P<0.01), the area of mammary lobules, and the size and filling of acinar cavities. CRKL at all doses also increased the number of eosinophils that secreted PRL in the pituitary gland of the postpartum hypogalactia rat model, and increased the content of PRL in the serum (P<0.05 or P<0.01). CRKL promoted the secretion and expression of PRL in postpartum hypogalactic model rats. In addition, it significantly promoted the expression of genes related to milk fat, milk protein, and lactose synthesis in MT (P<0.05 or P<0.01). Network pharmacology predicted that the Wnt signaling pathway might be a key pathway for CRKL in treating postpartum hypogalactia. The molecular docking results showed that related chemical components in CRKL had good binding ability with CCND1 and SFRP2. Compared with the model group, CRKL at all doses inhibited the expression of SFRP2 gene in vivo (P<0.01) and activated the mRNA and protein expression of CCND1 and c-Myc in the Wnt/ß-catenin signaling pathway in MT (P<0.05 or P<0.01). Cell experiments showed that, compared to the normal group, SFRP2 overexpression reduced the mRNA expression of milk synthesis-related genes FASN, CSN2, and GLUT1 in RMEC (P<0.01). The CCK8 results indicated that 10% of the drug-containing serum was the effective concentration administered to cells (P<0.01). After administering drug-containing serum, the expression of the lactation-related genes FASN, CSN2, and GLUT1 were up-regulated (compared with the SFRP2 overexpression group, P<0.01). Conclusion: CRKL alleviates postpartum hypogalactia through the SFRP2-Wnt/ß-catenin signaling pathway. SFRP2 might be a potential new target for the diagnosis and treatment of postpartum hypogalactia. This reveals a new mechanism of CRKL in treating postpartum hypogalactia and promotes its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Período Pós-Parto , Via de Sinalização Wnt , Animais , Feminino , Ratos , Via de Sinalização Wnt/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Período Pós-Parto/metabolismo , Ratos Sprague-Dawley , Gravidez , beta Catenina/metabolismo , beta Catenina/genética
3.
Sci Rep ; 14(1): 14621, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918525

RESUMO

Gestational diabetes mellitus (GDM) is associated with increased postpartum risk for metabolic dysfunction-associated steatotic liver disease (MASLD). GDM-related MASLD predisposes to advanced liver disease, necessitating a better understanding of its development in GDM. This preclinical study evaluated the MASLD development in a lean GDM mouse model with impaired insulin secretion capacity. Lean GDM was induced by short-term 60% high-fat diet and low-dose streptozotocin injections (60 mg/kg for 3 days) before mating in C57BL/6N mice. The control dams received only high-fat diet or low-fat diet. Glucose homeostasis was assessed during pregnancy and postpartum, whereas MASLD was assessed on postpartum day 30 (PP30). GDM dams exhibited a transient hyperglycemic phenotype during pregnancy, with hyperglycaemia reappearing after lactation. Lower insulin levels and impaired glucose-induced insulin response were observed in GDM mice during pregnancy and postpartum. At PP30, GDM dams displayed higher hepatic triglyceride content compared controls, along with increased MAS (MASLD) activity scores, indicating lipid accumulation, inflammation, and cell turnover indices. Additionally, at PP30, GDM dams showed elevated plasma liver injury markers. Given the absence of obesity in this double-hit GDM model, the results clearly indicate that impaired insulin secretion driven pregnancy hyperglycaemia has a distinct contribution to the development of postpartum MASLD.


Assuntos
Diabetes Gestacional , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Período Pós-Parto , Animais , Diabetes Gestacional/metabolismo , Gravidez , Feminino , Camundongos , Período Pós-Parto/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Insulina/metabolismo , Insulina/sangue , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Glicemia/metabolismo , Triglicerídeos/metabolismo , Triglicerídeos/sangue
4.
Neurochem Res ; 49(9): 2615-2635, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38904910

RESUMO

Despite the increase in the prevalence of postpartum depression among maternal disorder, its treatment outcomes remain suboptimal. Studies have shown that exercise can reduce postpartum depressive episodes in the mother, but the effects of exercise during pregnancy on maternal behavior and the potential mechanisms involved remain poorly understood. From the second day of pregnancy to the day of birth, dams exercised for 1 h a day by running on a controlled wheel. The maternal behaviors of the dams were assessed on postpartum day 2 to postpartum day 8. Chronic restraint stress was applied from postpartum day 2 to day 12. Blood was collected on postpartum days 3 and 8, then subjected to ELISA to determine the serum concentration of prolactin. The weight of each dam and the food intake were recorded. Anxiety- and depression-like behavioral tests were conducted, and hippocampal neuroinflammation and prolactin receptor levels were measured. The dams exhibited elevated levels of anxiety and depression, decreased serum prolactin levels, decreased prolactin receptor expression, and activation of NLRP3-mediated neuroinflammation in the hippocampus following the induction of postpartum chronic restraint stress, which were reversed with controlled wheel running during pregnancy. Overall, the findings of this study revealed that the preventive effects of exercise during pregnancy on postpartum anxiety-and depression-like behaviors were accompanied by increased serum prolactin levels, hippocampal prolactin receptor expression and hippocampal NLRP3-mediated neuroinflammation.


Assuntos
Ansiedade , Hipocampo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Período Pós-Parto , Prolactina , Receptores da Prolactina , Animais , Feminino , Prolactina/sangue , Prolactina/metabolismo , Hipocampo/metabolismo , Gravidez , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ansiedade/metabolismo , Receptores da Prolactina/metabolismo , Camundongos , Período Pós-Parto/metabolismo , Condicionamento Físico Animal/fisiologia , Depressão Pós-Parto/metabolismo , Depressão Pós-Parto/prevenção & controle , Depressão/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Corrida/fisiologia , Corrida/psicologia
5.
Anim Sci J ; 95(1): e13961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769804

RESUMO

The objective of this study was to evaluate the effect of feeding beef cows with sodium butyrate during the late pregnancy and early post-partum periods on concentrations of glucagon-like peptide (GLP)-1 and 2 in plasma, colostrum, and transition milk. Twelve Japanese Black female cows were fed concentrate feed without (CON; n = 6) or with (BUTY; n = 6) sodium butyrate supplementation at 1.1% of dietary dry matter from -60 d relative to the expected parturition date to 4 d after parturition. Plasma total cholesterol concentration was higher for the BUTY than for the CON (P = 0.04). In addition, plasma GLP-1 concentration was higher for the BUTY than for the CON at 3 d after calving (P < 0.05). This study showed for the first time that GLP-1 is present in the colostrum of Japanese Black cows at higher concentrations as compared to in plasma (P < 0.01). On the other hand, no treatment effect was observed for concentrations of metabolite and hormone in colostrum and transition milk. In summary, feeding beef cows with sodium butyrate during the late gestation and early post-partum period likely increases plasma GLP-1 concentrations post-partum without affecting the components of colostrum and transition milk.


Assuntos
Ácido Butírico , Colostro , Peptídeo 1 Semelhante ao Glucagon , Período Pós-Parto , Animais , Feminino , Colostro/química , Colostro/metabolismo , Bovinos/metabolismo , Gravidez , Ácido Butírico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Período Pós-Parto/metabolismo , Leite/química , Leite/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Ração Animal , Suplementos Nutricionais , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Animal
6.
Psychoneuroendocrinology ; 165: 107033, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569396

RESUMO

Peripartum mood and anxiety disorders (PMADs) affect 15-20% of peripartum women and are well known to disrupt infant caregiving. A recent study in humans reported that anxiety and depressive symptoms were alleviated by peripartum treatment with the probiotic, Lactocaseibacillus rhamnosus HN001. The current study determined the effects of chronic Lactocaseibacillus rhamnosus HN001 (HN001) treatment on postpartum affective and caregiving behaviors in a laboratory rodent model. Female rats were given probiotic overnight in their drinking water, or untreated water, from the first day of pregnancy through postpartum day 10. To determine whether the HN001 effects were influenced by a background of stress, half the females underwent chronic variable pregnancy stress and the other half remained undisturbed. The results revealed that, even without pregnancy stress, HN001 reduced postpartum anxiety-related behavior, increased variability in behavioral fragmentation when dams interacted with pups, increased time away from pups, and decreased prefrontal cortex norepinephrine (NE), dopamine (DA) and serotonin (5-HT). Probiotic plus stress consistently reduced the latency to float in the forced swim test, increased DA and 5-HT turnovers in the prefrontal cortex, increased hippocampal NE, and reduced hypothalamic DA. Fecal microbe alpha and beta diversities were lower postpartum than prepartum, which was prevented by the probiotic treatment and/or stress. Across the entire sample lower postpartum anxiety behavior was associated with lower fecal Bacteroides dorei. This study reveals novel information about how L. rhamnosus HN001 influences postpartum behavior and microbiota-gut-brain physiology in female laboratory rats, with implications for probiotic supplement use by pregnant and postpartum women.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Período Pós-Parto , Probióticos , Animais , Feminino , Probióticos/farmacologia , Probióticos/administração & dosagem , Ratos , Ansiedade/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Período Pós-Parto/metabolismo , Gravidez , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Serotonina/metabolismo , Ratos Sprague-Dawley , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Norepinefrina/metabolismo , Dopamina/metabolismo , Estresse Psicológico/metabolismo , Comportamento Materno/fisiologia , Comportamento Materno/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo
7.
Psychoneuroendocrinology ; 165: 107048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657341

RESUMO

INTRODUCTION: The dynamic capacity of the hypothalamic-pituitary-adrenal (HPA) axis supports healthy adaptions to stress and play a key role in maintaining mental health. Perinatal adaptations in the HPA-axis dynamics in terms of the Cortisol Awakening Response (CAR), may be involved in dysregulation of perinatal mental health. We aimed to determine if CAR and absolute evening cortisol early postpartum differed from non-perinatal women and evaluate the association between the CAR and maternal mental well-being. METHODS: The CAR was computed as the area under the curve with respect to increase from baseline from serial home-sampling of saliva across 0-60 minutes from awakening. We evaluated differences in CAR and absolute evening cortisol between postpartum women (N=50, mean postpartum days: 38, SD: ±11) and non-perinatal women (N=91) in a multiple linear regression model. We also evaluated the association between CAR and maternal mental well-being in a multiple linear regression model. RESULTS: We found that healthy postpartum women had a blunted CAR (p<0.001) corresponding to 84% reduction and 80% lower absolute evening cortisol (p<0.001) relative to non-perinatal healthy women. In the postpartum group, there was a trend-level association between lower CAR and higher scores on the WHO Well-Being Index (WHO-5) (p=0.048) and lower Edinburgh Postnatal Depression Scale (EPDS) scores (p=0.04). CONCLUSION: Our data emphasize the unique hormonal landscape during the postpartum period in terms of blunted CAR and lower absolute evening cortisol in healthy women early postpartum compared to non-perinatal. Our findings show a potential association between a reduced CAR and improved mental well-being during early motherhood, which suggests that reduced CAR might reflect healthy adjustment to early motherhood.


Assuntos
Ritmo Circadiano , Hidrocortisona , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Período Pós-Parto , Saliva , Vigília , Humanos , Feminino , Hidrocortisona/metabolismo , Hidrocortisona/análise , Período Pós-Parto/metabolismo , Período Pós-Parto/fisiologia , Adulto , Saliva/química , Saliva/metabolismo , Ritmo Circadiano/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Vigília/fisiologia , Gravidez , Saúde Mental , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
8.
Am J Physiol Heart Circ Physiol ; 326(5): H1324-H1335, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38551485

RESUMO

The goal of the present study was to characterize changes in mitochondrial respiration in the maternal heart during pregnancy and after birth. Timed pregnancy studies were performed in 12-wk-old female FVB/NJ mice, and cardiac mitochondria were isolated from the following groups of mice: nonpregnant (NP), midpregnancy (MP), late pregnancy (LP), and 1-wk postbirth (PB). Similar to our previous studies, we observed increased heart size during all stages of pregnancy (e.g., MP and LP) and postbirth (e.g., PB) compared with NP mice. Differential cardiac gene and protein expression analyses revealed changes in several mitochondrial transcripts at LP and PB, including several mitochondrial complex subunits and members of the Slc family, important for mitochondrial substrate transport. Respirometry revealed that pyruvate- and glutamate-supported state 3 respiration was significantly higher in PB vs. LP mitochondria, with respiratory control ratio (RCR) values higher in PB mitochondria. In addition, we found that PB mitochondria respired more avidly when given 3-hydroxybutyrate (3-OHB) than mitochondria from NP, MP, and LP hearts, with no differences in RCR. These increases in respiration in PB hearts occurred independent of changes in mitochondrial yield but were associated with higher abundance of 3-hydroxybutyrate dehydrogenase 1. Collectively, these findings suggest that, after birth, maternal cardiac mitochondria have an increased capacity to use 3-OHB, pyruvate, and glutamate as energy sources; however, increases in mitochondrial efficiency in the postpartum heart appear limited to carbohydrate and amino acid metabolism.NEW & NOTEWORTHY Few studies have detailed the physiological adaptations that occur in the maternal heart. We and others have shown that pregnancy-induced cardiac growth is associated with significant changes in cardiac metabolism. Here, we examined mitochondrial respiration and substrate preference in isolated mitochondria from the maternal heart. We show that following birth, cardiac mitochondria are "primed" to respire on carbohydrate, amino acid, and ketone bodies. However, heightened respiratory efficiency is observed only with carbohydrate and amino acid sources. These results suggest that significant changes in mitochondrial respiration occur in the maternal heart in the postpartum period.


Assuntos
Mitocôndrias Cardíacas , Período Pós-Parto , Animais , Feminino , Mitocôndrias Cardíacas/metabolismo , Gravidez , Período Pós-Parto/metabolismo , Camundongos , Metabolismo Energético , Respiração Celular , Ácido 3-Hidroxibutírico/metabolismo , Consumo de Oxigênio , Ácido Pirúvico/metabolismo
9.
Animal ; 18(2): 101063, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237478

RESUMO

The severe loss of body condition score (BCS) during the early lactation period has been associated with infertility in cows. However, the mechanisms are not fully understood. The aim of this study was to examine the effect of BCS loss on liver health, and ovarian functions in cows during early lactation. Retrospectively multiparous cows from two farms were categorized based on units of BCS (1-5 scale) loss as Moderate (MOD, <0.75 units; n = 11) or Severe (SEV, ≥0.75 units; n = 9) loss groups. From Weeks -3 to 7, relative to calving, MOD and SEV cows lost on average 0.4 and 1.0-unit BCS, respectively. All data except hepatic transcriptomes were analyzed with PROC MIXED procedure of SAS. The plasma concentration of non-esterified fatty acids at Week 0 and 1, ß-hydroxy butyrate at Week 1, and γ-glutamyl transferase at Weeks 1 and 7 relative to calving were higher in SEV cows. Hepatic transcriptome analysis showed that 1 186 genes were differentially expressed in SEV (n = 3) compared to MOD (n = 3) cows at Week 7 after calving. Pathway analysis revealed that significant DEGs in SEV cows enriched in lipid metabolisms including, lipid metabolic process, ether lipid metabolism, fatty acid beta-oxidation, fatty acid biosynthetic process, fatty acid metabolic process, fat digestion and absorption, linoleic acid metabolism, alpha-linolenic acid metabolism. The impaired liver function in SEV cows was associated with 1.5-fold reduction of hepatic IGF1 gene expression and lower serum IGF1 concentrations. At the ovarian level, SEV cows had lower IGF1 concentration in the follicular fluid of the dominant follicle of the synchronized follicular wave compared to that of MOD cows at 7 weeks after calving. Further, the follicular fluid concentration of estradiol-17ß was lower in SEV cows along with lower transcript abundance of genes from granulosa cells associated with dominant follicle competence, including CYP19A1, NR5A2, IGF1, and LHCGR. These data show that SEV loss of BCS during early lactation leading up to the planned start of breeding is associated with liver dysfunction, including lower IGF1 secretion, and impaired function of the dominant follicle in the ovary.


Assuntos
Lactação , Animais , Bovinos/genética , Feminino , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados , Lactação/metabolismo , Lipídeos , Fígado/metabolismo , Leite/metabolismo , Período Pós-Parto/metabolismo , Estudos Retrospectivos
10.
J Dairy Sci ; 107(2): 1263-1285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777004

RESUMO

The objective of this study was to characterize changes in the serum metabolome and various indicators of oxidative balance in dairy cows starting 2 wk before dry-off and continuing until wk 16 of lactation. Twelve Holstein dairy cows (body weight 745 ± 71 kg, body condition score 3.43 ± 0.66; mean ± SD) were housed in a tiestall barn from 10 wk before to 16 wk after parturition. Cows were dried off 6 wk before the expected calving date (mean dry period length = 42 d). From 8 wk before calving to 16 wk after calving, blood samples were taken weekly to study redox metabolism by determining antioxidant capacity, measured as the ferric-reducing ability of plasma, reactive oxidative metabolites, oxidative stress index, oxidative damage of lipids, measured as thiobarbituric acid reactive substances, and glutathione peroxidase activity. According to these results, dairy cows had the lowest serum antioxidant capacity and greater levels of oxidative stress during the dry-off period and the early postpartum period. For metabolomics, a subset of serum samples including wk -7 (before dry-off), -5 (after dry-off), -1, 1, 5, 10, and 15 relative to calving were used. A targeted metabolomics approach was performed using liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 240 metabolites in serum were used in the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a remarkable shift in metabolic phenotype between the dry period and late and early lactation. Changes in many non-lipid metabolites associated with one-carbon metabolism, the tricarboxylic acid cycle, the urea cycle, and AA catabolism were observed in the study, with changes in AA serum concentrations likely related to factors such as energy and nitrogen balance, digestive efficiency, and changing diets. The study confirmed an extensive remodeling of the serum lipidome in peripartum dairy cows, highlighting the importance of changes in acylcarnitine (acylCN), phosphatidylcholines (PC), and triacylglycerols (TG), as they play a crucial role in lipid metabolism. Results showed that short-chain acylCN increased after dry-off and decreased thereafter, whereas lipid-derived acylCN increased around parturition, suggesting that more fatty acids could enter mitochondria. Phospholipids and sphingolipids in serum showed changes during lactation. In particular, concentrations of sphingomyelins, PC, and lysoPC decreased around calving but increased in mid- and late lactation. In contrast, concentrations of TG remained consistently low after parturition. The serum concentrations of bile acids fluctuated during the dry period and lactation, with glycocholic acid, cholic acid, glycodeoxycholic acid, and taurocholic acid showing the greatest concentrations. These changes are likely due to the interplay of diet, liver function, and the ability of the gut microbiota to convert primary to secondary bile acids. Overall, these descriptive results may aid in hypothesis generation and in the design and interpretation of future metabolite-based studies in dairy cows. Furthermore, they contribute to our understanding of the physiological ranges in serum metabolites relative to the lactation cycle of the dairy cow.


Assuntos
Antioxidantes , Leite , Feminino , Bovinos , Animais , Leite/química , Antioxidantes/metabolismo , Soro , Lactação/fisiologia , Período Pós-Parto/metabolismo , Dieta/veterinária , Metaboloma , Metabolismo Energético , Ácidos e Sais Biliares
11.
J Dairy Sci ; 107(2): 1228-1243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37769944

RESUMO

The onset of lactation is characterized by substantially altered calcium (Ca) metabolism; recently, emphasis has been placed on understanding the dynamics of blood Ca in the peripartal cow in response to this change. Thus, the aim of our study was to delineate how prepartum dietary cation-anion difference (DCAD) diets and the magnitude of Ca decline at the onset of lactation altered blood Ca dynamics in the periparturient cow. Thirty-two multiparous Holstein cows were blocked by parity, previous 305-d milk yield and expected parturition date, and randomly allocated to either a positive (+120 mEq/kg) or negative (-120 mEq/kg) DCAD diet from 251 d of gestation until parturition (n = 16/diet). Immediately after parturition cows were continuously infused for 24 h with (1) an intravenous solution of 10% dextrose or (2) Ca gluconate (CaGlc) to maintain blood ionized (iCa) concentrations at ∼1.2 mM (normocalcemia) to form 4 treatment groups (n = 8/treatment). Blood was sampled every 6 h from 102 h before parturition until 96 h after parturition and every 30 min during 24 h continuous infusion. Cows fed a negative DCAD diet prepartum exhibited a less pronounced decline in blood iCa approaching parturition with lesser magnitude of decline relative to positive DCAD-fed cows. Cows fed a negative DCAD diet prepartum required lower rates of CaGlc infusion to maintain normocalcemia in the 24 h postpartum relative to positive DCAD-fed cows. Infusion of CaGlc disrupted blood Ca and P dynamics in the immediate 24 h after parturition and in the days following infusion. Collectively, these data demonstrate that prepartum negative DCAD diets facilitate a more transient hypocalcemia and improve blood Ca profiles at the onset of lactation whereas CaGlc infusion disrupts mineral metabolism.


Assuntos
Cálcio , Suplementos Nutricionais , Gravidez , Feminino , Bovinos , Animais , Lactação/fisiologia , Dieta/veterinária , Cálcio da Dieta , Período Pós-Parto/metabolismo , Ânions , Minerais/metabolismo , Cátions , Ração Animal/análise
12.
J Dairy Sci ; 107(3): 1751-1765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806621

RESUMO

In a previously established animal model, 38 multiparous Holstein cows were assigned to 2 groups fed different diets to achieve either a normal (NBCS) or high (HBCS) body condition score (BCS) and backfat thickness (BFT) until dry-off at -49 d before calving (NBCS: BCS <3.5 [3.02 ± 0.24) and BFT <1.2 cm [0.92 ± 0.21]; HBCS: BCS >3.75 [3.82 ± 0.33] and BFT >1.4 cm [2.36 ± 0.35], mean ± SD). The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg; mean ± SD). The cows were then fed the same diet during the dry period and subsequent lactation, maintaining the differences in BFT and BCS throughout the study. Using the serum metabolomics data, we created a classification model that identified different metabotypes. Machine learning classifiers revealed a distinct cluster labeled HBCS-PN (HBCS predicted normal BCS) among over-conditioned cows. These cows showed higher feed intake and better energy balance than the HBCS-PH (high BCS predicted high BCS) group, while milk yield was similar. The aim of this study was to investigate the changes in the hepatic transcriptome of cows differing in serum-metabotype postpartum. We performed hepatic transcriptome analysis in cows from 3 metabolic clusters: HBCS-PH (n = 8), HBCS-PN (n = 6), and normal BCS predicted normal BCS (NBCS-PN, n = 8) on d 21 (±2) postpartum. Liver tissue from cows expressed a total of 13,118 genes aligned with the bovine genome. A total of 48 differentially expressed genes (DEG; false discovery rate ≤0.1 and fold-change >1.5) were found between NBCS-PN and HBCS-PH cows, whereas 24 DEG (14 downregulated and 10 upregulated) were found between HBCS-PN and HBCS-PH cows. The downregulated DEG (n = 31) in NBCS-PN cows compared with HBCS-PH cows are involved in biosynthetic processes such as lipid, lipoprotein, and cholesterol synthesis (e.g., APOA1, MKX, RPL3L, CANT1, CHPF, FUT1, ZNF696), cell organization, biogenesis, and localization (e.g., SLC12A8, APOA1, BRME1, RPL3L, STAG3, FBXW5, TMEM120A, SLC16A5, FGF21), catabolic processes (e.g., BREH1, MIOX, APOBEC2, FBXW5, NUDT16), and response to external stimuli (e.g., APOA1, FGF21, TMEM120A, FNDC4), whereas upregulated DEG (n = 17) are related to signal transduction and cell motility (e.g., RASSF2, ASPN, SGK1, KIF7, ZEB2, MAOA, ACKR4, TCAF1), suggesting altered metabolic adaptations during lactation. Our results showed 24 DEG between HBCS-PN and HBCS-PH in the liver. The expression of SLC12A8, SLC16A5, FBXW5, OSGIN1, LAMA3, KDELR3, OR4X17, and INHBE, which are responsible for regulating cellular processes was downregulated in HBCS-PN cows compared with HBCS-PH cows. In particular, the downregulation of SLC12A8 and SLC16A5 expression in HBCS-PN cows indicates lower metabolic load and reduced need for NAD+ biosynthesis to support mitochondrial respiratory processes. The upregulation of MAOA, ACKR4, KIF27, SFRP1, and CAV2 in the liver of HBCS-PN cows may indicate adaptive mechanisms to maintain normal liver function in response to increased metabolic demands from over-conditioning. These molecular differences underscore the existence of distinct metabolic types in cows and provide evidence for the role of the liver in shaping different metabolic patterns.


Assuntos
Período Pós-Parto , Transcriptoma , Feminino , Bovinos , Animais , Período Pós-Parto/metabolismo , Lactação/fisiologia , Leite/química , Fígado/metabolismo
13.
J Dairy Sci ; 107(1): 317-330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678771

RESUMO

The transition period is one of the most challenging periods in the lactation cycle of high-yielding dairy cows. It is commonly known to be associated with diminished animal welfare and economic performance of dairy farms. The development of data-driven health monitoring tools based on on-farm available milk yield development has shown potential in identifying health-perturbing events. As proof of principle, we explored the association of these milk yield residuals with the metabolic status of cows during the transition period. Over 2 yr, 117 transition periods from 99 multiparous Holstein-Friesian cows were monitored intensively. Pre- and postpartum dry matter intake was measured and blood samples were taken at regular intervals to determine ß-hydroxybutyrate, nonesterified fatty acids (NEFA), insulin, glucose, fructosamine, and IGF1 concentrations. The expected milk yield in the current transition period was predicted with 2 previously developed models (nextMILK and SLMYP) using low-frequency test-day (TD) data and high-frequency milk meter (MM) data from the animal's previous lactation, respectively. The expected milk yield was subtracted from the actual production to calculate the milk yield residuals in the transition period (MRT) for both TD and MM data, yielding MRTTD and MRTMM. When the MRT is negative, the realized milk yield is lower than the predicted milk yield, in contrast, when positive, the realized milk yield exceeded the predicted milk yield. First, blood plasma analytes, dry matter intake, and MRT were compared between clinically diseased and nonclinically diseased transitions. MRTTD and MRTMM, postpartum dry matter intake and IGF1 were significantly lower for clinically diseased versus nonclinically diseased transitions, whereas ß-hydroxybutyrate and NEFA concentrations were significantly higher. Next, linear models were used to link the MRTTD and MRTMM of the nonclinically diseased cows with the dry matter intake measurements and blood plasma analytes. After variable selection, a final model was constructed for MRTTD and MRTMM, resulting in an adjusted R2 of 0.47 and 0.73, respectively. While both final models were not identical the retained variables were similar and yielded comparable importance and direction. In summary, the most informative variables in these linear models were the dry matter intake postpartum and the lactation number. Moreover, in both models, lower and thus also more negative MRT were linked with lower dry matter intake and increasing lactation number. In the case of an increasing dry matter intake, MRTTD was positively associated with NEFA concentrations. Furthermore, IGF1, glucose, and insulin explained a significant part of the MRT. Results of the present study suggest that milk yield residuals at the start of a new lactation are indicative of the health and metabolic status of transitioning dairy cows in support of the development of a health monitoring tool. Future field studies including a higher number of cows from multiple herds are needed to validate these findings.


Assuntos
Insulinas , Leite , Feminino , Bovinos , Animais , Leite/metabolismo , Ácidos Graxos não Esterificados , Ácido 3-Hidroxibutírico , Dieta/veterinária , Metabolismo Energético , Período Pós-Parto/metabolismo , Lactação/metabolismo , Glucose/metabolismo
14.
J Dairy Sci ; 107(5): 2864-2882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101729

RESUMO

Rumen-protected choline (RPC) promotes benefits in milk production, immunity, and health in dairy cows by optimizing lipid metabolism during transition period management and early lactation. However, the RPC success in dairy cows depends on choline bioavailability, which is affected by the type of protection used in rumen-protected choline. Therefore, our objectives were to determine the effects of a novel RPC on dry matter intake (DMI), identify markers of metabolism and immunity, and evaluate lactation performance. Dry Holstein (n = 48) cows at 245 ± 3 d of gestation were blocked by parity and assigned to control or RPC treatment within each block. Cows enrolled in the RPC treatment received 15 g/d of CholiGEM (Kemin Industries, Cavriago RE, Italy) from 21 d prepartum and 30 g/d of CholiGEM from calving to 21 d postpartum. During the transition period, DMI was measured daily, and blood was sampled weekly for energy-related metabolites such as ß-hydroxybutyrate (BHB), glucose, and nonesterified fatty acids (NEFA), as well as immune function markers such as haptoglobin (Hp) and lipopolysaccharide-binding protein (LPB). Vaginal discharge samples were collected at the calving and 7 d postpartum and stored in microcentrifuge tubes at -80°C until 16S rRNA sequencing. The main responses of body condition score, body weight, DMI, milk yield, milk components, and immune function markers were analyzed using the GLIMMIX procedure of SAS with the effects of treatment, time, parity, and relevant covariates added to the models. The relative abundance of microbiome α-diversity was evaluated by 3 indexes (Chao1, Shannon, and Simpson) and ß-diversity by principal coordinate analysis and permutational multivariate ANOVA. We found no differences in DMI in the pre- and postpartum periods. Cows fed RPC increased the yields of energy- and 3.5% fat-corrected milk and fat yield in primiparous and multiparous cows, with an interaction between treatment and parity for these lactation variables. However, we found no differences in milk protein and lactose up to 150 DIM between treatments. Glucose, NEFA, and BHB had no differences between the treatments. However, RPC decreased BHB numerically (control = 1.07 ± 0.13 vs. RPC = 0.63 ± 0.13) in multiparous on the third week postpartum and tended to reduce the incidence of subclinical ketosis (12.7% vs. 4.2%). No effects for Hp and LPB were found in cows fed RPC. Chao1, Shannon, and Simpson indexes were lower at calving in the RPC treatment than in the Control. However, no differences were found 7 d later for Chao1, Shannon, and Simpson indexes. The vaginal discharge microbiome was altered in cows fed RPC at 7 d postpartum. Fusobacterium, a common pathogen associated with metritis, was reduced in cows fed RPC. Rumen-protected choline enhanced lactation performance and health and altered the vaginal discharge microbiome which is a potential proxy for uterine healthy in dairy cows. The current study's findings corroborate that RPC is a tool to support adaptation to lactation and shed light on opportunities for further research in reproductive health.


Assuntos
Doenças dos Bovinos , Descarga Vaginal , Gravidez , Feminino , Bovinos , Animais , Colina/farmacologia , Colina/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Graxos não Esterificados , Rúmen/metabolismo , RNA Ribossômico 16S/metabolismo , Período Pós-Parto/metabolismo , Lactação/fisiologia , Glucose/metabolismo , Descarga Vaginal/veterinária , Doenças dos Bovinos/metabolismo
15.
J Dairy Sci ; 106(12): 9514-9531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678786

RESUMO

Excessive and protracted lipolysis in adipose tissues of dairy cows is a major risk factor for clinical ketosis (CK). This metabolic disease is common in postpartum cows when lipolysis provides fatty acids as an energy substrate to offset negative energy balance. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory pathways. Current treatments for CK focus on improving glucose in blood (i.e., oral propylene glycol [PG], or i.v. dextrose). However, these therapies do not inhibit the canonical and inflammatory lipolytic pathways. Niacin (NIA) can reduce activation of the canonical pathway. Blocking inflammatory responses with cyclooxygenase inhibitors such as flunixin meglumine (FM) can inhibit inflammatory lipolytic activity. The objective of this study was to determine the effects of including NIA and FM in the standard PG treatment for postpartum CK on circulating concentrations of ketone bodies. A 4-group, parallel, individually randomized trial was conducted in multiparous Jersey cows (n = 80) from a commercial dairy in Michigan during a 7-mo period. Eligible cows had CK symptoms (lethargy, depressed appetite, and milk yield) and hyperketonemia (blood ß-hydroxybutyrate [BHB] ≥1.2 mmol/L). Cows with CK were randomly assigned to 1 of 3 groups where the first group received 310 g of oral PG once per day for 5 d; the second group received PG for 5 d + 24 g of oral NIA once per day for 3 d (PGNIA); and the third group received PG for 5 d + NIA for 3 d + 1.1 mg/kg i.v. FM once per day for 3 d (PGNIAFM). The control group consisted of cows that were clinically healthy (HC; untreated; BHB <1.2 mmol/L, n = 27) matching for parity and DIM with all 3 groups. Animals were sampled at enrollment (d 0), and d 3, 7, and 14 to evaluate ketone bodies and circulating metabolic and inflammatory biomarkers. Effects of treatment, sampling day, and their interactions were evaluated using mixed effects models. Logistic regression was used to calculate the odds ratio (OR) of returning to normoketonemia (BHB <1.2 mmol/L). Compared with HC, enrolled CK cows exhibited higher blood concentrations of dyslipidemia markers, including nonesterified fatty acids (NEFA) and BHB, and lower glucose and insulin levels. Cows with CK also had increased levels of biomarkers of pain (substance P), inflammation, including lipopolysaccharide-binding protein, haptoglobin, and serum amyloid A, and proinflammatory cytokines IL-4, MCP-1, MIP-1α, and TNFα. Importantly, 72.2% of CK cows presented endotoxemia and had higher circulating bacterial DNA compared with HC. By d 7, the percentage of cows with normoketonemia were higher in PGNIAFM = 87.5%, compared with PG = 58.33%, and PGNIA = 62.5%. At d 7 the OR for normoketonemia in PGNIAFM cows were 1.5 (95% CI, 1.03-2.17) and 1.4 (95% CI, 0.99-1.97) relative to PG and PGNIA, respectively. At d 3, 7, and 14, PGNIAFM cows presented the lowest values of BHB (PG = 1.36; PGNIA = 1.24; PGNIAFM = 0.89 ± 0.13 mmol/L), NEFA (PG = 0.58; PGNIA = 0.59; PGNIAFM = 0.45 ± 0.02 mmol/L), and acute phase proteins. Cows in PGNIAFM also presented the highest blood glucose increment across time points and insulin by d 7. These data provide evidence that bacteremia or endotoxemia, systemic inflammation, and pain may play a crucial role in CK pathogenesis. Additionally, targeting lipolysis and inflammation with NIA and FM during CK effectively reduces dyslipidemia biomarkers, improves glycemia, and improves overall clinical recovery.


Assuntos
Doenças dos Bovinos , Dislipidemias , Endotoxemia , Cetose , Gravidez , Feminino , Bovinos , Animais , Lactação , Lipólise , Ácidos Graxos não Esterificados , Endotoxemia/veterinária , Período Pós-Parto/metabolismo , Leite/metabolismo , Insulina , Inflamação/metabolismo , Inflamação/veterinária , Cetose/tratamento farmacológico , Cetose/veterinária , Cetose/metabolismo , Biomarcadores/metabolismo , Ácido 3-Hidroxibutírico , Corpos Cetônicos , Glucose/metabolismo , Dor/veterinária , Dislipidemias/metabolismo , Dislipidemias/veterinária , Doenças dos Bovinos/metabolismo
16.
J Dairy Sci ; 106(12): 9793-9806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641308

RESUMO

Objectives were to evaluate the effects of Bacillus subtilis PB6 (BSP) on gastrointestinal tract permeability, metabolism, inflammation, and production parameters in periparturient Holstein cows. Multiparous cows (n = 48) were stratified by previous 305-d mature equivalent milk yield and parity and assigned to 1 of 2 top-dressed dietary treatments 21 d before expected calving through 63 DIM: (1) control (CON; 13 g/d calcium carbonate; n = 24) or (2) BSP (13 g/d BSP; CLOSTAT, Kemin Industries, Des Moines, IA; n = 24). Gastrointestinal tract permeability was evaluated in vivo using the oral paracellular marker chromium (Cr)-EDTA. Effects of treatment, time, and treatment × time were assessed using PROC MIXED of SAS version 9.4 (SAS Institute Inc.). Prepartum dry matter intake (DMI) was unaffected by treatment; however, BSP supplementation decreased postpartum DMI relative to CON (0.7 kg). Milk yield, energy-corrected milk (ECM), fat-corrected milk (FCM), and solids-corrected milk (SCM) increased in BSP cows compared with CON (1.6, 1.8, 1.6, and 1.5 kg, respectively). Decreased DMI and increased production collectively improved feed efficiency of milk yield, ECM, FCM, and SCM for BSP cows (6, 5, 5, and 5%, respectively). No treatment differences were observed for concentrations of milk fat, protein, total solids, somatic cell count, somatic cell score, body weight, or body condition score. Milk urea nitrogen concentrations decreased (5%), whereas milk protein and lactose yield increased (5 and 2%, respectively) with BSP supplementation. Prepartum fecal pH did not differ among treatments; conversely, postpartum fecal pH was increased with BSP supplementation (0.09 pH units). Prepartum fecal dry matter percentage, starch, acetic acid, propionic acid, butyric acid, and ethanol did not differ among treatments. Postpartum concentrations of the aforementioned fecal parameters were also unaffected by treatment, but fecal propionic acid concentration was decreased (24%) in BSP cows relative to CON. Circulating glucose, nonesterified fatty acids, l-lactate, and insulin were similar between treatments both pre- and postpartum. Prepartum ß-hydroxybutyrate (BHB) did not differ between treatments, but postpartum BSP supplementation decreased (21%) circulating BHB relative to CON. Regardless of treatment, inflammatory markers (serum amyloid A and haptoglobin) peaked immediately following parturition and progressively decreased with time, but this pattern was not influenced by treatment. Postpartum lipopolysaccharide binding protein tended to be decreased on d 3 in BSP relative to CON cows (19%). Neither treatment nor time affected Cr-EDTA area under the curve. In summary, supplementing BSP had no detectable effects prepartum, but increased key postpartum production parameters. Bacillus subtilis PB6 consistently increased postpartum fecal pH and decreased fecal propionate concentrations but did not appear to have an effect on gastrointestinal tract permeability.


Assuntos
Bacillus subtilis , Lactação , Gravidez , Feminino , Bovinos , Animais , Propionatos , Ácido Edético , Período Pós-Parto/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Trato Gastrointestinal
17.
J Dairy Sci ; 106(9): 6444-6463, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37500445

RESUMO

During the transition phase, dairy cows are susceptible to develop postpartum diseases. Cows that stay healthy or recover rapidly can be considered to be more resilient in comparison to those that develop postpartum diseases. An indication of loss of resilience will allow for early intervention with preventive and supportive measures before the onset of disease. We investigated which quantitative behavioral characteristics during the dry period could be used as indicators of reduced resilience after calving, using noninvasive Smart Tag neck and Smart Tag leg sensors in dairy cows (Nedap N.V.). We followed 180 cows during 2 wk before until 6 wk after parturition at 4 farms in the Netherlands. Serving as proxy for loss of resilience, as defined by the duration and severity of disease, a clinical assessment was performed twice weekly and blood samples were taken in the first and fifth week after parturition. For each cow, clinical and serum value deviations were aggregated into a total deficit score (TDS total). We also calculated TDS values relating to inflammation, locomotion, or metabolic problems, which were further divided into macro-mineral and liver-related deviations. Smart Tag neck and leg sensors provided continuous behavioral activity signals of which we calculated the average, variance, and autocorrelation during the dry period. Diurnal patterns in the behavioral activity signals were derived by fast Fourier transformation and the calculation of the nonperiodicity. To select significant predictors of resilience, we first performed a univariate analysis with TDS as dependent variable and the behavioral characteristics that were measured during the dry period, as potential predictors with cow as experimental unit. We included parity group as fixed effect and farm as random effect. Next, we performed multivariable analysis with only significant predictors, followed by a variable selection procedure to obtain a final linear mixed model with an optimal subset of predictors with parity group as fixed effect and farm as random effect. The TDS total was best predicted by average inactive time, nonperiodicity ruminating, nonperiodicity of bouts standing up and fast Fourier transformation stand still. Average inactive time was negatively correlated with average eating time, and these 2 predictors could be exchanged with only little difference in model performance. Our best performing model predicted TDS total at a cutoff level of 60 points, with a sensitivity of 79.5% and a specificity of 73.2% with a positive predicted value of 0.69 and a negative predicted value of 0.83. The models to predict the other TDS categories showed a lower predictive performance as compared with the TDS total model, which could be related to the limited sample size and therefore, low occurrence of problems within a specific TDS category. Furthermore, more resilient dairy cows are characterized by high averages of eating time with high regularity in rumination and low averages of inactive time. They reveal high regularity in standing time and transitions from lying to standing, in the dry period. These behaviors can be used as indicators of resilience and allow for preventive intervention during the dry period in vulnerable dairy cattle. However, further examination is still required to find clues for adequate intervention strategies.


Assuntos
Período Pós-Parto , Transtornos Puerperais , Gravidez , Feminino , Bovinos , Animais , Período Pós-Parto/metabolismo , Lactação , Parto , Paridade , Ingestão de Alimentos , Transtornos Puerperais/veterinária , Leite/metabolismo
18.
Anim Sci J ; 94(1): e13857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496108

RESUMO

Fatty liver syndrome, a common health problem in dairy cows, occurs during the transition from pregnancy to lactation. If the energy supplied to the cow's body cannot meet its needs, a negative energy balance ensues, and the direct response is fat mobilization. Nicotinamide (NAM) has been reported to reduce the nonesterified fatty acid concentration of postpartum plasma. To study the biochemical adaptations underlying this physiologic dysregulation, 12 dairy cows were sequentially assigned to a NAM (45 g/day) treatment or control group. Blood samples were collected on day (D) 1 and D21 relative to parturition. Changes to the plasma lipid metabolism of dairy cows in the two groups were compared using lipidomics. There were significant increases in plasma sphingomyelins d18:1/18:0, d18:1/23:0, d18:1/24:1, d18:1/24:0, and d18:0/24:0 in the NAM group on D1 relative to parturition. In addition, fatty acids 18:2, 18:1, 18:0, 16:1, and 16:0 were obviously decreased on D21 relative to calving. This research has provided insights into how NAM supplementation improves lipid metabolism in perinatal dairy cows.


Assuntos
Dieta , Leite , Gravidez , Feminino , Bovinos , Animais , Dieta/veterinária , Leite/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Lipidômica , Período Pós-Parto/metabolismo , Lactação/fisiologia , Ácidos Graxos não Esterificados , Suplementos Nutricionais , Metabolismo Energético/fisiologia
19.
J Dairy Sci ; 106(8): 5723-5739, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331874

RESUMO

Metabolic and oxidative stress have been characterized as risk factors during the transition period from pregnancy to lactation. Although mutual relations between both types of stress have been suggested, they rarely have been studied concomitantly. For this, a total of 99 individual transition dairy cows (117 cases, 18 cows sampled during 2 consecutive lactations) were included in this experiment. Blood samples were taken at -7, 3, 6, 9, and 21 d relative to calving and concentrations of metabolic parameters (glucose, ß-hydroxybutyric acid (BHBA), nonesterified fatty acids, insulin, insulin-like growth factor 1, and fructosamine) were determined. In the blood samples of d 21, biochemical profiles related to liver function and parameters related to oxidative status were determined. First, cases were allocated to 2 different BHBA groups (ketotic vs. nonketotic, N:n = 20:33) consisting of animals with an average postpartum BHBA concentration and at least 2 out of 4 postpartum sampling points exceeding 1.2 mmol/L or remaining below 0.8 mmol/L, respectively. Second, oxidative parameters [proportion of oxidized glutathione to total glutathione in red blood cells (%)], activity of glutathione peroxidase, and of superoxide dismutase, concentrations of malondialdehyde and oxygen radical absorbance capacity were used to perform a fuzzy C-means clustering. From this, 2 groups were obtained [i.e., lower antioxidant ability (LAA80%, n = 31) and higher antioxidant ability (HAA80%, n = 19)], with 80% referring to the cutoff value for cluster membership. Increased concentrations of malondialdehyde, decreased superoxide dismutase activity, and impaired oxygen radical absorbance capacity were observed in the ketotic group compared with the nonketotic group, and inversely, the LAA80% group showed increased concentrations of BHBA. In addition, the concentration of aspartate transaminase was higher in the LAA80% group compared with the HAA80% group. Both the ketotic and LAA80% groups showed lower dry matter intake. However, a lower milk yield was observed in the LAA80% group but not in the ketotic group. Only 1 out of 19 (5.3%) and 3 out of 31 (9.7%) cases from the HAA80% and LAA80% clusters belong to the ketotic and nonketotic group, respectively. These findings suggested that dairy cows vary in oxidative status at the beginning of the lactation, and fuzzy C-means clustering allows to classify observations with distinctive oxidative status. Dairy cows with higher antioxidant capacity in early lactation rarely develop ketosis.


Assuntos
Doenças dos Bovinos , Cetose , Gravidez , Feminino , Bovinos , Animais , Antioxidantes/análise , Lactação/metabolismo , Período Pós-Parto/metabolismo , Leite/química , Ácido 3-Hidroxibutírico , Cetose/veterinária , Superóxido Dismutase , Malondialdeído/análise , Ácidos Graxos não Esterificados , Doenças dos Bovinos/metabolismo
20.
J Dairy Sci ; 106(7): 4896-4905, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37291041

RESUMO

Colostrum yield and quality are influenced by prepartum nutrition and the metabolic status of the cow; however, data considering these associations on multiple dairy farms are limited. Our objective was to identify cow-level prepartum metabolic indicators, as well as farm-level nutritional strategies associated with colostrum yield and the indicator of colostrum quality, Brix %. A convenience sample of 19 New York Holstein dairies (median: 1,325 cows; range: 620 to 4,600 cows) were enrolled in this observational study. Records for individual colostrum yield and Brix % were collected by farm personnel between October 2019 and February 2021. Farms were visited 4 times, approximately 3 mo apart, to obtain feed samples of the prepartum diets, collect blood samples from 24 pre- and postpartum cows, respectively, and determine prepartum body condition score. Feed samples were submitted for analysis of chemical composition, and particle size was determined on-farm using a particle separator. Prepartum serum samples (n = 762) were analyzed for glucose and nonesterified fatty acid concentrations. Whole blood from postpartum cows was analyzed for herd prevalence of hyperketonemia (proportion of samples with ß-hydroxybutyrate ≥1.2 mmol/L). A cohort of primiparous (PP; n = 1,337) and multiparous (MPS; n = 3,059) cows calving ± 14 d of each farm visit were included in the statistical analysis. Animals calving in this period were assigned results for the close-up diet composition and herd prevalence of hyperketonemia collected from the respective farm visit. Greatest colostrum yield from PP and MPS cows was associated with moderate starch [18.6-22.5% of dry matter (DM)] and a moderate herd prevalence of hyperketonemia (10.1-15.0%). Greatest colostrum yield from MPS cows was associated with moderate crude protein (13.6-15.5% of DM) and a less severe negative dietary cation-anion difference (DCAD; >-8 mEq/100 g), whereas greatest colostrum yield from PP cows was associated with low crude protein (≤13.5% of DM). In addition, a moderate proportion of the diet with particle length ≥19 mm (15.3-19.1%) was associated with lowest colostrum yield from PP and MPS cows. Highest colostrum Brix % was associated with prepartum dietary factors of low neutral detergent fiber (≤39.0% of DM) and high proportion of the diet with particle length ≥19 mm (>19.1%). In addition, low starch (≤18.5% of DM) and low and moderate DCAD level (≥-15.9 mEq/100 g) were associated with greatest Brix % from PP cows, whereas moderate DCAD (-15.9 to -8.0 mEq/100 g) was associated with greatest Brix % from MPS cows. Prepartum serum nonesterified fatty acid concentration ≥290 µEq/L was associated with increased colostrum yield, but prepartum serum glucose concentration and body condition score were not associated with colostrum yield or Brix %. These data provide nutritional and metabolic variables to consider when troubleshooting colostrum production on farms.


Assuntos
Lactação , Leite , Animais , Bovinos , Feminino , Gravidez , Ração Animal/análise , Colostro , Dieta/veterinária , Ácidos Graxos/metabolismo , Leite/metabolismo , New York , Período Pós-Parto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...