Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 874
Filtrar
1.
Stem Cell Reports ; 19(10): 1399-1416, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39332407

RESUMO

Understanding the molecular mechanisms of epicardial epithelial-to-mesenchymal transition (EMT), particularly in directing cell fate toward epicardial derivatives, is crucial for regenerative medicine using human induced pluripotent stem cell (iPSC)-derived epicardium. Although transforming growth factor ß (TGF-ß) plays a pivotal role in epicardial biology, orchestrating EMT during embryonic development via downstream signaling through SMAD proteins, the function of SMAD proteins in the epicardium in maintaining vascular homeostasis or mediating the differentiation of various epicardial-derived cells (EPDCs) is not yet well understood. Our study reveals that TGF-ß-independent SMAD3 expression autonomously predicts epicardial cell specification and lineage maintenance, acting as a key mediator in promoting the angiogenic-oriented specification of the epicardium into cardiac pericyte progenitors. This finding uncovers a novel role for SMAD3 in the human epicardium, particularly in generating cardiac pericyte progenitors that enhance cardiac microvasculature angiogenesis. This insight opens new avenues for leveraging epicardial biology in developing more effective cardiac regeneration strategies.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas , Pericárdio , Pericitos , Proteína Smad3 , Humanos , Pericárdio/citologia , Pericárdio/metabolismo , Pericitos/metabolismo , Pericitos/citologia , Proteína Smad3/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem da Célula/genética , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal , Transdução de Sinais , Neovascularização Fisiológica
2.
Nat Commun ; 15(1): 8392, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349465

RESUMO

Mural cells are central to vascular integrity and function. In this study, we demonstrate the innovative use of the transcription factor NKX3.1 to guide the differentiation of human induced pluripotent stem cells into mural progenitor cells (iMPCs). By transiently activating NKX3.1 in mesodermal intermediates, we developed a method that diverges from traditional growth factor-based differentiation techniques. This approach efficiently generates a robust iMPC population capable of maturing into diverse functional mural cell subtypes, including smooth muscle cells and pericytes. These iMPCs exhibit key mural cell functionalities such as contractility, deposition of extracellular matrix, and the ability to support endothelial cell-mediated vascular network formation in vivo. Our study not only underscores the fate-determining significance of NKX3.1 in mural cell differentiation but also highlights the therapeutic potential of these iMPCs. We envision these insights could pave the way for a broader use of iMPCs in vascular biology and regenerative medicine.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio , Células-Tronco Pluripotentes Induzidas , Miócitos de Músculo Liso , Pericitos , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Animais , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Matriz Extracelular/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo
3.
Development ; 151(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166965

RESUMO

The microvascular system consists of two cell types: endothelial and mural (pericytes and vascular smooth muscle cells; VSMCs) cells. Communication between endothelial and mural cells plays a pivotal role in the maintenance of vascular homeostasis; however, in vivo molecular and cellular mechanisms underlying mural cell development remain unclear. In this study, we found that macrophages played a crucial role in TGFß-dependent pericyte-to-VSMC differentiation during retinal vasculature development. In mice with constitutively active Foxo1 overexpression, substantial accumulation of TGFß1-producing macrophages and pericytes around the angiogenic front region was observed. Additionally, the TGFß-SMAD pathway was activated in pericytes adjacent to macrophages, resulting in excess ectopic α-smooth muscle actin-positive VSMCs. Furthermore, we identified endothelial SEMA3C as an attractant for macrophages. In vivo neutralization of SEMA3C rescued macrophage accumulation and ectopic VSMC phenotypes in the mice, as well as drug-induced macrophage depletion. Therefore, macrophages play an important physiological role in VSMC development via the FOXO1-SEMA3C pathway.


Assuntos
Proteína Forkhead Box O1 , Macrófagos , Músculo Liso Vascular , Miócitos de Músculo Liso , Semaforinas , Animais , Macrófagos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Camundongos , Semaforinas/metabolismo , Semaforinas/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Pericitos/metabolismo , Pericitos/citologia , Diferenciação Celular , Transdução de Sinais , Vasos Retinianos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Fator de Crescimento Transformador beta1/metabolismo , Camundongos Endogâmicos C57BL
4.
STAR Protoc ; 5(3): 103280, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39213150

RESUMO

The generation of human pluripotent stem cell (hPSC)-derived brain organoids is continuously refined, enhancing their reproducibility and complexity. Here, we present a guided differentiation protocol for generating cortical forebrain organoids and cortico-pericyte (CP)assembloids composed of a robust outer radial glia (oRG) population and an expanded outer subventricular zone (oSVZ). We describe the steps to generate hPSC-derived cortical organoids (COs), cortical pericytes, and CP assembloids. Moreover, we outline the procedures to characterize the organoids by immunostaining and to perform single-cell dissociation. For complete details on the use and execution of this protocol, please refer to Walsh et al.1.


Assuntos
Diferenciação Celular , Células Ependimogliais , Organoides , Células-Tronco Pluripotentes , Humanos , Organoides/citologia , Organoides/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Técnicas de Cultura de Células/métodos , Córtex Cerebral/citologia , Neuroglia/citologia , Pericitos/citologia , Pericitos/metabolismo
5.
Nature ; 632(8024): 429-436, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987599

RESUMO

Tumours can obtain nutrients and oxygen required to progress and metastasize through the blood supply1. Inducing angiogenesis involves the sprouting of established vessel beds and their maturation into an organized network2,3. Here we generate a comprehensive atlas of tumour vasculature at single-cell resolution, encompassing approximately 200,000 cells from 372 donors representing 31 cancer types. Trajectory inference suggested that tumour angiogenesis was initiated from venous endothelial cells and extended towards arterial endothelial cells. As neovascularization elongates (through angiogenic stages SI, SII and SIII), APLN+ tip cells at the SI stage (APLN+ TipSI) advanced to TipSIII cells with increased Notch signalling. Meanwhile, stalk cells, following tip cells, transitioned from high chemokine expression to elevated TEK (also known as Tie2) expression. Moreover, APLN+ TipSI cells not only were associated with disease progression and poor prognosis but also hold promise for predicting response to anti-VEGF therapy. Lymphatic endothelial cells demonstrated two distinct differentiation lineages: one responsible for lymphangiogenesis and the other involved in antigen presentation. In pericytes, endoplasmic reticulum stress was associated with the proangiogenic BASP1+ matrix-producing pericytes. Furthermore, intercellular communication analysis showed that neovascular endothelial cells could shape an immunosuppressive microenvironment conducive to angiogenesis. This study depicts the complexity of tumour vasculature and has potential clinical significance for anti-angiogenic therapy.


Assuntos
Células Endoteliais , Neoplasias , Neovascularização Patológica , Análise de Célula Única , Humanos , Apresentação de Antígeno , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Progressão da Doença , Estresse do Retículo Endoplasmático , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Linfangiogênese , Neoplasias/irrigação sanguínea , Neoplasias/classificação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/patologia , Pericitos/patologia , Pericitos/citologia , Pericitos/metabolismo , Prognóstico , Receptores Notch/metabolismo , Transdução de Sinais , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Peixe-Zebra
6.
Biomater Sci ; 12(17): 4363-4375, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39023223

RESUMO

Despite recent technological advances in drug discovery, the success rate for neurotherapeutics remains alarmingly low compared to treatments for other areas of the body. One of the biggest challenges for delivering therapeutics to the central nervous system (CNS) is the presence of the blood-brain barrier (BBB). In vitro blood-brain barrier models with high predictability are essential to aid in designing parameters for new therapeutics, assess their ability to cross the BBB, and investigate therapeutic strategies that can be employed to enhance transport. Here, we demonstrate the development of a 3D printable hydrogel blood-brain barrier model that mimics the cellular composition and structure of the blood-brain barrier with human brain endothelial cells lining the surface, pericytes in direct contact with the endothelial cells on the abluminal side of the endothelium, and astrocytes in the surrounding printed bulk matrix. We introduce a simple, static printed hemi-cylinder model to determine design parameters such as media selection, co-culture ratios, and cell incorporation timing in a resource-conservative and high-throughput manner. Presence of cellular adhesion junction, VE-Cadherin, efflux transporters, P-glycoprotein (P-gp) and Breast cancer resistance protein (BCRP), and receptor-mediated transporters, Transferrin receptor (TfR) and low-density lipoprotein receptor-related protein 1 (LRP1) were confirmed via immunostaining demonstrating the ability of this model for screening in therapeutic strategies that rely on these transport systems. Design parameters determined in the hemi-cylinder model were translated to a more complex, perfusable vessel model to demonstrate its utility for determining barrier function and assessing permeability to model therapeutic compounds. This 3D-printed blood-brain barrier model represents one of the first uses of projection stereolithography to fabricate a perfusable blood-brain barrier model, enabling the patterning of complex vessel geometries and precise arrangement of cell populations. This model demonstrates potential as a new platform to investigate the delivery of neurotherapeutic compounds and drug delivery strategies through the blood-brain barrier, providing a useful in vitro screening tool in central nervous system drug discovery and development.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Impressão Tridimensional , Barreira Hematoencefálica/metabolismo , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Técnicas de Cocultura , Hidrogéis/química , Modelos Biológicos , Astrócitos/metabolismo , Astrócitos/citologia , Pericitos/metabolismo , Pericitos/citologia
7.
Tissue Cell ; 89: 102431, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870572

RESUMO

Tunneling nanotubes (TNTs) represent an innovative way for cells to communicate with one another, as they act as long conduits between cells. However, their roles in human dermal microvascular pericytes (HDMPCs) interaction remain elusive in vitro. In this work, we identified and characterized the TNT-like structures that connected two or more pericytes in two-dimensional cultures and formed a functional network in the human dermis. Immunofluorescence assay indicated that the F-actin was an essential element to form inter-pericyte TNT-like structures, as it decreased in actin polymer inhibitor-cytochalasin B treated groups, and microtubules were present in almost half of the TNT-like structures. Most importantly, we only found the presence of mitochondrial in TNT-like structures containing α-tubulin, and the application of microtubule assembly inhibitor-Nocodazole significantly reduced the percentage of TNT-like structures that contain α-tubulin, resulting in a sudden decrease in the positive rate of cytochrome c oxidase subunit 4 isoform 1 (COX IV, a marker of mitochondria) in TNT-like structures. In summary, we described a novel intercellular communication-TNT-like structures-between HDMPCs in vitro, and this work allows us to properly understand the cellular mechanisms of spreading materials between HDMPCs, shedding light on the role of HDMPCs.


Assuntos
Pericitos , Humanos , Pericitos/citologia , Pericitos/metabolismo , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Derme/citologia , Derme/metabolismo , Comunicação Celular , Mitocôndrias/metabolismo , Actinas/metabolismo , Nanotubos/química , Microvasos/citologia , Microvasos/metabolismo , Células Cultivadas , Estruturas da Membrana Celular
8.
Reprod Biol ; 24(3): 100919, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941941

RESUMO

Mesenchymal cells within theplacental villi play a crucial role in shaping the morphology of branching structures and driving the development of blood vessels. However, the markers and functions of placental villous pericytes (PVPs) as distinct subgroups of placental villous mesenchymal cells, remain unclear. Therefore, in this study, the markers and functions of PVPs were investigated. Single-cell sequencing data from the first-trimester placental villi was obtained and the Seurat tool was used to identify PVP markers. Gene Ontology (GO) analysis of specific genes was performed using the DAVID database. The Cellchat tool was employed to investigate the interaction signals between the PVPs and other cells. Expression of the PVP markers was confirmed using immunofluorescence. Presence of extracellular vesicles in the placental villous mesenchyme and PVPs was examined by transmission electron microscopy. Our findings revealed that renin (REN) and amphiregulin (AREG)-positive fibroblasts in the placental villi specifically expressed several classic pericyte markers. In the first trimester, certain conserved functions of pericytes were observed and they displayed tissue-specific functions such as in the integrin-mediated signaling pathway and extracellular exosomes. Moreover, the placental villous mesenchyme was found to be rich in extracellular vesicles. AREG is specifically transcribed in the first trimester PVPs, however, its protein was located in syncytiotrophoblasts. These insights contribute to a comprehensive understanding of early placental development and offer new therapeutic targets for placenta-derived pregnancy complications.


Assuntos
Vilosidades Coriônicas , Pericitos , Primeiro Trimestre da Gravidez , Análise de Célula Única , Feminino , Humanos , Gravidez , Pericitos/metabolismo , Pericitos/citologia , Vilosidades Coriônicas/metabolismo , Transcriptoma , Análise de Sequência de RNA , Placenta/metabolismo , Placenta/citologia , Perfilação da Expressão Gênica
9.
Stem Cell Reports ; 19(7): 946-956, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38876110

RESUMO

Functionality of the blood-brain barrier (BBB) relies on the interaction between endothelial cells (ECs), pericytes, and astrocytes to regulate molecule transport within the central nervous system. Most experimental models for the BBB rely on freshly isolated primary brain cells. Here, we explored human induced pluripotent stem cells (hiPSCs) as a cellular source for astrocytes in a 3D vessel-on-chip (VoC) model. Self-organized microvascular networks were formed by combining hiPSC-derived ECs, human brain vascular pericytes, and hiPSC-derived astrocytes within a fibrin hydrogel. The hiPSC-ECs and pericytes showed close interactions, but, somewhat unexpectedly, addition of astrocytes disrupted microvascular network formation. However, continuous fluid perfusion or activation of cyclic AMP (cAMP) signaling rescued the vascular organization and decreased vascular permeability. Nevertheless, astrocytes did not affect the expression of proteins related to junction formation, transport, or extracellular matrix, indicating that, despite other claims, hiPSC-derived ECs do not entirely acquire a BBB-like identity in the 3D VoC model.


Assuntos
Astrócitos , Barreira Hematoencefálica , Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Astrócitos/metabolismo , Astrócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Diferenciação Celular , Dispositivos Lab-On-A-Chip , Células Cultivadas , Hidrogéis , AMP Cíclico/metabolismo , Modelos Biológicos
10.
ACS Biomater Sci Eng ; 10(7): 4388-4399, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38856968

RESUMO

In this study, fibrous polyurethane (PU) materials with average fiber diameter of 200, 500, and 1000 nm were produced using a solution blow spinning (SBS) process. The effects of the rotation speed of the collector (in the range of 200-25 000 rpm) on the fiber alignment and diameter were investigated. The results showed that fiber alignment was influenced by the rotation speed of the collector, and such alignment was possible when the fiber diameter was within a specific range. Homogeneously oriented fibers were obtained only for a fiber diameter ≥500 nm. Moreover, the changes in fiber orientation and fiber diameter (resulting from changes in the rotation speed of the collector) were more noticeable for materials with an average fiber diameter of 1000 nm in comparison to 500 nm, which suggests that the larger the fiber diameter, the better the controlled architectures that can be obtained. The porosity of the produced scaffolds was about 65-70%, except for materials with a fiber diameter of 1000 nm and aligned fibers, which had a higher porosity (76%). Thus, the scaffold pore size increased with increasing fiber diameter but decreased with increasing fiber alignment. The mechanical properties of fibrous materials strongly depend on the direction of stretching, whereby the fiber orientation influences the mechanical strength only for materials with a fiber diameter of 1000 nm. Furthermore, the fiber diameter and alignment affected the pericyte growth. Significant differences in cell growth were observed after 7 days of cell culture between materials with a fiber diameter of 1000 nm (cell coverage 96-99%) and those with a fiber diameter of 500 nm (cell coverage 70-90%). By appropriately setting the SBS process parameters, scaffolds can be easily adapted to the cell requirements, which is of great importance in producing complex 3D structures for guided tissue regeneration.


Assuntos
Pericitos , Poliuretanos , Alicerces Teciduais , Poliuretanos/química , Alicerces Teciduais/química , Pericitos/citologia , Pericitos/fisiologia , Porosidade , Animais , Proliferação de Células , Engenharia Tecidual/métodos , Teste de Materiais
11.
Angiogenesis ; 27(3): 561-582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38775849

RESUMO

Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further, the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus, we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.


Assuntos
Diferenciação Celular , Células Endoteliais , Microvasos , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Microvasos/citologia , Microvasos/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Organoides/citologia , Organoides/irrigação sanguínea , Organoides/metabolismo
12.
Dev Cell ; 59(10): 1233-1251.e5, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569546

RESUMO

De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRß)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis by downregulating PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.


Assuntos
Adipócitos Marrons , Adipogenia , Diferenciação Celular , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Receptores Notch , Células-Tronco , Animais , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptores Notch/metabolismo , Camundongos , Adipócitos Marrons/metabolismo , Adipócitos Marrons/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Transdução de Sinais , Pericitos/metabolismo , Pericitos/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/citologia , Camundongos Endogâmicos C57BL , Masculino
13.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683849

RESUMO

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Assuntos
Encéfalo , Pericitos , Fatores de Transcrição , Proteínas de Peixe-Zebra , Animais , Encéfalo/metabolismo , Encéfalo/embriologia , Diferenciação Celular , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Mesoderma/citologia , Crista Neural/metabolismo , Crista Neural/citologia , Pericitos/metabolismo , Pericitos/citologia , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
15.
Biophys J ; 123(14): 2110-2121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38444160

RESUMO

Capillaries, composed of electrically coupled endothelial cells and overlying pericytes, constitute the vast majority of blood vessels in the brain. The most arteriole-proximate three to four branches of the capillary bed are covered by α-actin-expressing, contractile pericytes. These mural cells have a distinctive morphology and express different markers compared with their smooth muscle cell (SMC) cousins but share similar excitation-coupling contraction machinery. Despite this similarity, pericytes are considerably more depolarized than SMCs at low intravascular pressures. We have recently shown that pericytes, such as SMCs, possess functional voltage-dependent Ca2+ channels and ATP-sensitive K+ channels. Here, we further investigate the complement of pericyte ion channels, focusing on members of the K+ channel superfamily. Using NG2-DsRed-transgenic mice and diverse configurations of the patch-clamp technique, we demonstrate that pericytes display robust inward-rectifier K+ currents that are primarily mediated by the Kir2 family, based on their unique biophysical characteristics and sensitivity to micromolar concentrations of Ba2+. Moreover, multiple lines of evidence, including characteristic kinetics, sensitivity to specific blockers, biophysical attributes, and distinctive single-channel properties, established the functional expression of two voltage-dependent K+ channels: KV1 and BKCa. Although these three types of channels are also present in SMCs, they exhibit distinctive current density and kinetics profiles in pericytes. Collectively, these findings underscore differences in the operation of shared molecular features between pericytes and SMCs and highlight the potential contribution of these three K+ ion channels in setting pericyte membrane potential, modulating capillary hemodynamics, and regulating cerebral blood flow.


Assuntos
Encéfalo , Capilares , Pericitos , Pericitos/metabolismo , Pericitos/citologia , Animais , Capilares/metabolismo , Capilares/citologia , Camundongos , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/metabolismo , Canais de Potássio/metabolismo , Camundongos Transgênicos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Camundongos Endogâmicos C57BL
16.
Adv Healthc Mater ; 13(18): e2400388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38465502

RESUMO

Hydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells. Variations of cell density, growth factor supplementation, and media composition are systematically explored to induce vasculogenesis in endothelial mono- and cocultures with mesenchymal stromal cells or retinal microvascular pericytes in 384-well plate formats. The developed cultures are shown to respond to vasculogenesis inhibitors in a compound- and dose-dependent manner, demonstrating the scope and power of PCS-X in creating parallelized tissue and disease models for drug discovery and individualized therapies.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Hidrogéis/química , Técnicas de Cocultura/métodos , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Células Endoteliais/citologia , Células Endoteliais/metabolismo
17.
Dev Dyn ; 253(5): 519-541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112237

RESUMO

BACKGROUND: Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells. However, the overlapping and distinct expression patterns of these markers in tandem have not been fully described. RESULTS: Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular cell populations on the cranial, axial, and intersegmental vessels between 1 and 5 days postfertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord-a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. CONCLUSION: Together, our findings highlight the variability and versatility of tracking both pdgfrb and tagln expression in mural cells of the developing zebrafish embryo and reveal unexpected embryonic cell populations that express pdgfrb and tagln.


Assuntos
Animais Geneticamente Modificados , Pericitos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Pericitos/citologia , Pericitos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Cells ; 12(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37190075

RESUMO

Cardiac diseases are the foremost cause of morbidity and mortality worldwide. The heart has limited regenerative potential; therefore, lost cardiac tissue cannot be replenished after cardiac injury. Conventional therapies are unable to restore functional cardiac tissue. In recent decades, much attention has been paid to regenerative medicine to overcome this issue. Direct reprogramming is a promising therapeutic approach in regenerative cardiac medicine that has the potential to provide in situ cardiac regeneration. It consists of direct cell fate conversion of one cell type into another, avoiding transition through an intermediary pluripotent state. In injured cardiac tissue, this strategy directs transdifferentiation of resident non-myocyte cells (NMCs) into mature functional cardiac cells that help to restore the native tissue. Over the years, developments in reprogramming methods have suggested that regulation of several intrinsic factors in NMCs can help to achieve in situ direct cardiac reprogramming. Among NMCs, endogenous cardiac fibroblasts have been studied for their potential to be directly reprogrammed into both induced cardiomyocytes and induced cardiac progenitor cells, while pericytes can transdifferentiate towards endothelial cells and smooth muscle cells. This strategy has been indicated to improve heart function and reduce fibrosis after cardiac injury in preclinical models. This review summarizes the recent updates and progress in direct cardiac reprogramming of resident NMCs for in situ cardiac regeneration.


Assuntos
Transdiferenciação Celular , Técnicas de Reprogramação Celular , Reprogramação Celular , Fibroblastos , Cardiopatias , Coração , Pericitos , Regeneração , Coração/fisiologia , Cardiopatias/terapia , Fibroblastos/citologia , Fibroblastos/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Pericitos/citologia , Pericitos/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Humanos , Animais
19.
Cell Biochem Funct ; 40(5): 439-450, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35707856

RESUMO

Regular soft tissue healing relies on the well-organized interaction of different stromal cell types with endothelial cells. However, spatiotemporal conditions might provoke high densities of one special stromal cell type, potentially leading to impaired healing. Detailed knowledge of the functions of rivaling stromal cell types aiming for tissue contraction and stabilization as well as vascular support is mandatory. By the application of an in vitro approach comprising the evaluation of cell proliferation, cell morphology, myofibroblastoid differentiation, and cytokine release, we verified a density-dependent modulation of these functions among juvenile and adult fibroblasts, pericytes, and adipose-derived stem cells during their interaction with microvascular endothelial cells in cocultures. Results indicate that juvenile fibroblasts rather support angiogenesis via paracrine regulation at the early stage of healing, a role potentially compromised in adult fibroblasts. In contrast, pericytes showed a more versatile character aiming at angiogenesis, vessel stabilization, and tissue contraction. Such a universal character was even more pronounced among adipose-derived stem cells. The explicit knowledge of the characteristic functions of stromal cell types is a prerequisite for the development of new analytical and therapeutic approaches for impaired soft tissue healing. The present study delivers new considerations concerning the roles of rivaling stromal cell types within a granulation tissue, pointing to extraordinary properties of pericytes and adipose-derived stem cells.


Assuntos
Células Endoteliais , Células Estromais , Cicatrização , Tecido Adiposo/citologia , Contagem de Células , Células Endoteliais/citologia , Fibroblastos/citologia , Humanos , Neovascularização Patológica , Pericitos/citologia , Células-Tronco/citologia , Células Estromais/citologia
20.
Science ; 375(6584): eabi7377, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35084939

RESUMO

Cerebrovascular diseases are a leading cause of death and neurologic disability. Further understanding of disease mechanisms and therapeutic strategies requires a deeper knowledge of cerebrovascular cells in humans. We profiled transcriptomes of 181,388 cells to define a cell atlas of the adult human cerebrovasculature, including endothelial cell molecular signatures with arteriovenous segmentation and expanded perivascular cell diversity. By leveraging this reference, we investigated cellular and molecular perturbations in brain arteriovenous malformations, which are a leading cause of stroke in young people, and identified pathologic endothelial transformations with abnormal vascular patterning and the ontology of vascularly derived inflammation. We illustrate the interplay between vascular and immune cells that contributes to brain hemorrhage and catalog opportunities for targeting angiogenic and inflammatory programs in vascular malformations.


Assuntos
Vasos Sanguíneos/citologia , Encéfalo/irrigação sanguínea , Malformações Arteriovenosas Intracranianas/patologia , Transcriptoma , Adulto , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiologia , Vasos Sanguíneos/fisiopatologia , Células Cultivadas , Córtex Cerebral/irrigação sanguínea , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Circulação Cerebrovascular , Células Endoteliais/citologia , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Inflamação , Malformações Arteriovenosas Intracranianas/metabolismo , Monócitos/citologia , Monócitos/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiologia , Pericitos/citologia , Pericitos/fisiologia , RNA-Seq , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...