Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Sci Rep ; 14(1): 13940, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886463

RESUMO

Perilla frutescens (L.) Britton, a member of the Lamiaceae family, stands out as a versatile plant highly valued for its unique aroma and medicinal properties. Additionally, P. frutescens seeds are rich in Îs-linolenic acid, holding substantial economic importance. While the nuclear and chloroplast genomes of P. frutescens have already been documented, the complete mitochondrial genome sequence remains unreported. To this end, the sequencing, annotation, and assembly of the entire Mitochondrial genome of P. frutescens were hereby conducted using a combination of Illumina and PacBio data. The assembled P. frutescens mitochondrial genome spanned 299,551 bp and exhibited a typical circular structure, involving a GC content of 45.23%. Within the genome, a total of 59 unique genes were identified, encompassing 37 protein-coding genes, 20 tRNA genes, and 2 rRNA genes. Additionally, 18 introns were observed in 8 protein-coding genes. Notably, the codons of the P. frutescens mitochondrial genome displayed a notable A/T bias. The analysis also revealed 293 dispersed repeat sequences, 77 simple sequence repeats (SSRs), and 6 tandem repeat sequences. Moreover, RNA editing sites preferentially produced leucine at amino acid editing sites. Furthermore, 70 sequence fragments (12,680 bp) having been transferred from the chloroplast to the mitochondrial genome were identified, accounting for 4.23% of the entire mitochondrial genome. Phylogenetic analysis indicated that among Lamiaceae plants, P. frutescens is most closely related to Salvia miltiorrhiza and Platostoma chinense. Meanwhile, inter-species Ka/Ks results suggested that Ka/Ks < 1 for 28 PCGs, indicating that these genes were evolving under purifying selection. Overall, this study enriches the mitochondrial genome data for P. frutescens and forges a theoretical foundation for future molecular breeding research.


Assuntos
Uso do Códon , Genoma Mitocondrial , Perilla frutescens , Edição de RNA , Edição de RNA/genética , Perilla frutescens/genética , Filogenia , Repetições de Microssatélites/genética , RNA de Transferência/genética , Composição de Bases , Anotação de Sequência Molecular
2.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893341

RESUMO

Perilla frutescens var. acuta (Lamiaceae) is widely used not only as an oil or a spice, but also as a traditional medicine to treat colds, coughs, fever, and indigestion. As an ongoing effort, luteolin-7-O-diglucuronide (1), apigenin-7-O-diglucuronide (2), and rosmarinic acid (3) isolated from P. frutescens var. acuta were investigated for their anti-adipogenic and thermogenic activities in 3T3-L1 cells. Compound 1 exhibited a strong inhibition against adipocyte differentiation by suppressing the expression of Pparg and Cebpa over 52.0% and 45.0%, respectively. Moreover, 2 inhibited the expression of those genes in a dose-dependent manner [Pparg: 41.7% (5 µM), 62.0% (10 µM), and 81.6% (50 µM); Cebpa: 13.8% (5 µM), 18.4% (10 µM), and 37.2% (50 µM)]. On the other hand, the P. frutescens var. acuta water extract showed moderate thermogenic activities. Compounds 1 and 3 also induced thermogenesis in a dose-dependent manner by stimulating the mRNA expressions of Ucp1, Pgc1a, and Prdm16. Moreover, an LC-MS/MS chromatogram of the extract was acquired using UHPLC-MS2 and it was analyzed by feature-based molecular networking (FBMN) and the Progenesis QI software (version 3.0). The chemical profiling of the extract demonstrated that flavonoids and their glycoside derivatives, including those isolated earlier as well as rosmarinic acid, are present in P. frutescens var. acuta.


Assuntos
Células 3T3-L1 , Fármacos Antiobesidade , Cinamatos , Depsídeos , Perilla frutescens , Extratos Vegetais , Ácido Rosmarínico , Camundongos , Perilla frutescens/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Depsídeos/farmacologia , Depsídeos/química , Depsídeos/isolamento & purificação , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/isolamento & purificação , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Termogênese/efeitos dos fármacos
3.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731431

RESUMO

An excessive inflammatory response of the gastrointestinal tract is recognized as one of the major contributors to ulcerative colitis (UC). Despite this, effective preventive approaches for UC remain limited. Rosmarinic acid (RA), an enriched fraction from Perilla frutescens, has been shown to exert beneficial effects on disease-related inflammatory disorders. However, RA-enriched perilla seed meal (RAPSM) and perilla seed (RAPS) extracts have not been investigated in dextran sulfate sodium (DSS)-induced UC in mice. RAPSM and RAPS were extracted using the solvent-partitioning method and analyzed with high-pressure liquid chromatography (HPLC). Mice with UC induced using 2.5% DSS for 7 days were pretreated with RAPSM and RAPS (50, 250, 500 mg/kg). Then, the clinical manifestation, colonic histopathology, and serum proinflammatory cytokines were determined. Indeed, DSS-induced UC mice exhibited colonic pathological defects including an impaired colon structure, colon length shortening, and increased serum proinflammatory cytokines. However, RAPSM and RAPS had a protective effect at all doses by attenuating colonic pathology in DSS-induced UC mice, potentially through the suppression of proinflammatory cytokines. Concentrations of 50 mg/kg of RAPSM and RAPS were sufficient to achieve a beneficial effect in UC mice. This suggests that RAPSM and RAPS have a preventive effect against DSS-induced UC, potentially through alleviating inflammatory responses and relieving severe inflammation in the colon.


Assuntos
Colite Ulcerativa , Citocinas , Sulfato de Dextrana , Perilla , Extratos Vegetais , Sementes , Animais , Sulfato de Dextrana/efeitos adversos , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/prevenção & controle , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Citocinas/metabolismo , Citocinas/sangue , Sementes/química , Perilla/química , Modelos Animais de Doenças , Masculino , Depsídeos/farmacologia , Depsídeos/química , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Cinamatos/farmacologia , Cinamatos/química , Ácido Rosmarínico , Perilla frutescens/química
4.
Food Chem ; 452: 139508, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733681

RESUMO

In this study, an ultrasonic-assisted natural deep eutectic solvent (NaDES) was used to extract flavonoids from Perilla frutescens (L.) Britt. leaves. Of 10 tested NaDESs, that comprising D-(+)-glucose and glycerol exhibited the best total flavonoid extraction rate. Response surface methodology (RSM) was used for extraction modeling and optimization, and the total flavonoid content reached 87.48 ± 1.61 mg RE/g DW, which was a significant increase of 5.36% compared with that of 80% ethanol extraction. Morphological changes in P. frutescens leaves before and after extraction were analyzed by scanning electron microscopy (SEM), and the mechanism of NaDES formation was studied by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, 10 flavonoids were identified by UPLC-Q-TOF-MS. In addition, the NaDES extract had better biological activity according to five kinds of antioxidant capacity measurements, cyclooxygenase-2 (COX-2) and hyaluronidase (Hyal) inhibition experiments. Moreover, the stability test revealed that the total flavonoid loss rate of the NaDES extract after four weeks was 37.75% lower than that of the ethanol extract. These results indicate that the NaDES can effectively extract flavonoids from P. frutescens leaves and provide a reference for further applications in the food, medicine, health product and cosmetic industries.


Assuntos
Solventes Eutéticos Profundos , Flavonoides , Perilla frutescens , Extratos Vegetais , Folhas de Planta , Flavonoides/química , Flavonoides/isolamento & purificação , Folhas de Planta/química , Perilla frutescens/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solventes Eutéticos Profundos/química , Química Verde , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia
5.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673960

RESUMO

The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C18:1 and C18:2) but enhanced C18:3 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Perilla frutescens , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação para Baixo/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Perilla frutescens/genética , Perilla frutescens/metabolismo , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
6.
Plant Physiol ; 195(2): 1728-1744, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38441888

RESUMO

Rosmarinic acid (RA) is an important medicinal metabolite and a potent food antioxidant. We discovered that exposure to high light intensifies the accumulation of RA in the leaves of perilla (Perilla frutescens (L.) Britt). However, the molecular mechanism underlying RA synthesis in response to high light stress remains poorly understood. To address this knowledge gap, we conducted a comprehensive analysis employing transcriptomic sequencing, transcriptional activation, and genetic transformation techniques. High light treatment for 1 and 48 h resulted in the upregulation of 592 and 1,060 genes, respectively. Among these genes, three structural genes and 93 transcription factors exhibited co-expression. Notably, NAC family member PfNAC2, GBF family member PfGBF3, and cinnamate-4-hydroxylase gene PfC4H demonstrated significant co-expression and upregulation under high light stress. Transcriptional activation analysis revealed that PfGBF3 binds to and activates the PfNAC2 promoter. Additionally, both PfNAC2 and PfGBF3 bind to the PfC4H promoter, thereby positively regulating PfC4H expression. Transient overexpression of PfNAC2, PfGBF3, and PfC4H, as well as stable transgenic expression of PfNAC2, led to a substantial increase in RA accumulation in perilla. Consequently, PfGBF3 acts as a photosensitive factor that positively regulates PfNAC2 and PfC4H, while PfNAC2 also regulates PfC4H to promote RA accumulation under high light stress. The elucidation of the regulatory mechanism governing RA accumulation in perilla under high light conditions provides a foundation for developing a high-yield RA system and a model to understand light-induced metabolic accumulation.


Assuntos
Cinamatos , Depsídeos , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Plantas , Ácido Rosmarínico , Depsídeos/metabolismo , Cinamatos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perilla frutescens/genética , Perilla frutescens/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Regiões Promotoras Genéticas/genética
7.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542889

RESUMO

This study describes a simple, cost-effective, and eco-friendly method for synthesizing silver nanoparticles using a rosmarinic acid extract from Perilla frutescens (PFRAE) as the bioreduction agent. The resulting nanoparticles, called PFRAE-AgNPs, were characterized using various analytical techniques. The UV-Vis spectrum confirmed the formation of PFRAE-AgNPs, and the FTIR spectrum indicated the participation of rosmarinic acid in their synthesis and stabilization. The XRD pattern revealed the crystal structure of PFRAE-AgNPs, and the TEM analysis showed their spherical morphology with sizes ranging between 20 and 80 nm. The DLS analysis indicated that PFRAE-AgNPs were monodispersed with an average diameter of 44.0 ± 3.2 nm, and the high negative zeta potential (-19.65 mV) indicated their high stability. In the antibacterial assays, the PFRAE-AgNPs showed potent activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial pathogens, suggesting that they could be used as a potential antibacterial agent in the clinical setting. Moreover, the antioxidant activity of PFRAE-AgNPs against DPPH and ABTS radical scavengers highlights their potential in the treatment of various oxidative stress-related diseases. PFRAE-AgNPs also demonstrated significant anticancer activity against a range of cell lines including human colon cancer (COLO205), human prostate carcinoma (PC-3), human lung adenocarcinoma (A549), and human ovarian cancer (SKOV3) cell lines suggesting their potential in cancer therapy. The nanoparticles may also have potential in drug delivery, as their small size and high stability could enable them to cross biological barriers and deliver drugs to specific target sites. In addition to the aforementioned properties, PFRAE-AgNPs were found to be biocompatible towards normal (CHO) cells, which is a crucial characteristic for their application in cancer therapy and drug delivery systems. Their antibacterial, antioxidant, and anticancer properties make them promising candidates for the development of new therapeutic agents. Furthermore, their small size, high stability, and biocompatibility could enable them to be used in drug delivery systems to enhance drug efficacy and reduce side effects.


Assuntos
Nanopartículas Metálicas , Neoplasias , Perilla frutescens , Humanos , Antioxidantes/farmacologia , Prata/farmacologia , Prata/química , Ácido Rosmarínico , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
J Asian Nat Prod Res ; 26(1): 69-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305031

RESUMO

Two new depside derivatives 1 and 2 as well as a new pair of rosmarinic acid enantiomers 3a/b were isolated from the leaves of Perilla frutescens (L.) britt. The chemical structures of these compounds were identified based on detailed spectroscopic and physicochemical analyses (HR-ESI-MS, NMR) and comparison of literature data. Compounds 3a/b were obtained by chiral separation, and their absolute configurations were determined by comparison of experimental and calculated ECD spectra. Compounds 3a/b exhibited potential inhibitory activity on nitric oxide (NO) production induced by lipopolysaccharide in RAW264.7 cells with IC50 values of 15.92 ± 3.32 µM and 48.72 ± 4.12 µM.


Assuntos
Perilla frutescens , Perilla frutescens/química , Ácido Rosmarínico , Extratos Vegetais/química , Folhas de Planta/química , Anti-Inflamatórios/farmacologia
9.
Ecotoxicol Environ Saf ; 271: 115956, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215665

RESUMO

The new-type tobacco varieties "Zisu" and "Luole" were obtained by distant hybridization between N. tabacum L. var. HHY and Perilla frutescens and Ocimum basilicum, with obviously different chemical composition. Smoking is the major risk factor for COPD, characterized by neutrophil-dominant inflammation. In the present study, rat COPD model was established by cigarette exposure, and the health hazard of three varieties was compared by general condition observation, pathological and morphological evaluation, total and differential cell numeration, and characterization of major inflammatory mediators and MAPK/NF-κB pathway, etc. Rats in "HHY" group developed obvious symptoms such as cough, dyspnea, mental fatigue, etc., but these symptoms were obviously mitigated in "Zisu" and "Luole" groups. H&E staining analysis, including score, MLI, MAN, wt% and WA%, showed that "Zisu" and "Luole" significantly alleviated lung injury and the degree of airway remodeling and emphysema compared to "HHY". In BALF, the number of total leukocyte and the percent neutrophils in "Zisu" and "Luole" groups were evidently lower than "HHY" group. The levels of inflammatory mediators, such as IL-8, MPO, MIP-2, LTB4, TNF-α and neutrophil elastase, in "HHY" group were obviously higher than "Zisu" and "Luole" groups. The ROS-mediated NF-κB p65 and p38MAPK pathways may play an important role. Results indicated that tobacco introduced perilla and basil genes could remarkably attenuate recruitment, infiltration and activation of neutrophils and intervene in airway inflammation, retarding disease progression, especially "Zisu". Changes in chemical composition via breeding techniques may be a novel way for tobacco harm reduction.


Assuntos
Ocimum basilicum , Perilla frutescens , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Ocimum basilicum/genética , Ocimum basilicum/metabolismo , Perilla frutescens/genética , Perilla frutescens/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , NF-kappa B/metabolismo , Líquido da Lavagem Broncoalveolar , Melhoramento Vegetal , Pulmão/metabolismo , Inflamação/genética , Inflamação/metabolismo , Nicotiana , Fumaça/efeitos adversos , Mediadores da Inflamação/metabolismo
10.
Meat Sci ; 209: 109419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154372

RESUMO

Addressing health-related concerns linked to the metabolite profile of lamb meat has become paramount, in line with the growing demand for enhanced flavor and taste. We examined the impact of Perilla frutescens seeds on Tan lamb growth, carcass traits, and metabolite profiles. Three diets were employed: a low-concentrate group (LC), a high-concentrate group (HC), and a PFS group (the LC diet supplemented with 3% Perilla frutescens seeds) on a dry matter basis. Forty-five male Tan-lambs (approximately six months) with similar body weights (25.1 kg ± 1.12 SD) were randomly assigned to one of these three groups for 84-day feeding, including an initial 14-day adjustment phase. The supplementation of PFS resulted in increased average daily gain (P < 0.01) and improved carcass quality and meat color (P < 0.05). Additionally, it led to an enhancement in omega-3 polyunsaturated fatty acids (P < 0.05) and a reduction in the omega-6/omega-3 ratio (P < 0.05). Using gas chromatography-mass spectrometry, 369 volatile compounds were identified with enhanced levels of acetaldehyde and 1,2,4-trimethyl-benzene associated with PFS (P < 0.05). Among the 807 compounds identified by ultra-high performance liquid chromatography-mass spectrometry, there were 66 significantly differential compounds (P < 0.05), including 43 hydrophilic metabolites and 23 lipids. PFS supplementation led to significant alterations in 66 metabolites, with three metabolites including 2,5-diisopropyl-3-methylphenol, 3-hydroxydecanoic acid, and lysophosphatidylcholine (15:0) emerging as potential PFS-related biomarkers. The study indicates that PFS supplementation can enhance Tan-lamb growth, feed efficiency, and meat quality, potentially providing lamb meat with improved flavor and nutritional characteristics.


Assuntos
Perilla frutescens , Carne Vermelha , Animais , Masculino , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Carne/análise , Carne Vermelha/análise , Ovinos , Carneiro Doméstico
11.
Chemosphere ; 350: 141066, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159731

RESUMO

Radionuclide uranium is a great threat to human health, due to its high chemical toxicity and radioactivity. Finding suitable uranium decorporation to reduce damage caused by uranium internal contamination is an important aspect of nuclear emergency response. However, the poor selectivity and/or high toxicity of the only excretory promoter approved by Food and Drug Administration (FDA) is an obvious disadvantage. Herein, we choose an edible natural product, the traditional Chinese medicine called Perilla frutescens (PF), which has wide sources and can be used as an excellent and effective uranyl decorporation. In vivo uranium decorporation assays illustrate the removal efficiency of uranium in kidney were 68.87% and 43.26%, in femur were 56.66% and 54.53%, by the test of prophylactic and immediate administration, respectively. Cell level experiments confirmed that it had better biocompatibility than CaNa3-DTPA (CaNa3-diethylenetriamine pentaacetate, a commercial actinide excretion agent). In vitro static adsorption experiments exhibited that its excellent selectivity sorption for uranyl. All those results findings would provide new research insights about natural product for uranyl decorporation.


Assuntos
Produtos Biológicos , Perilla frutescens , Urânio , Humanos , Urânio/toxicidade , Quelantes/farmacologia , Rim , Produtos Biológicos/farmacologia
12.
Plant Physiol Biochem ; 204: 108151, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37931559

RESUMO

Perilla frutescens (L.) Britt is a renowned medicinal plant with pharmaceutically valuable phenolic acids and flavonoids. The present study was aimed to study the eliciting effect of silver and copper nanoparticles (AgNPs and CuNPs, 50 and 100 mg/L), and methyl jasmonate (MeJa, 50 and 100 µM) on the biochemical traits, the accumulation of phenolic compounds and antioxidative capacity of P. frutescens cell suspension culture. Suspension cells were obtained from friable calli derived from nodal explants in Murashige and Skoog (MS) liquid medium containing 1 mg/L 2,4-D and 1 mg/L BAP. The 21 days old cell suspension culture established from nodal explant derived callus supplemented with 100 mg/L MeJa resulted in the highest activity of catalase and guaiacol peroxidase enzymes, and CuNPs 100 mg/L treated cells indicated the maximum content of total phenol, total anthocyanin, superoxide dismutase, malondialdehyde, and H2O2. Also, the highest content of ferulic acid (1.41 ± 0.03, mg/g DW), rosmarinic acid (19.29 ± 0.12, mg/g DW), and phenylalanine ammonia-lyase (16.81 ± 0.18, U/mg protein) were observed with 100 mg/L CuNPs, exhibiting a total increase of 1.58-fold, 2.12-fold, and 1.51-fold, respectively, higher than untreated cells. On the other hand, AgNPs 100 mg/L treated cells indicated the most amounts of caffeic acid (0.57 ± 0.03, mg/g DW) and rutin (1.13 ± 0.07, mg/g DW), as well as the highest scavenging potential of free radicals. Overall, the results of the present study can be applied for the large-scale production of valuable phenolic acids and flavonoids from P. frutescens through CuNPs and AgNPs 100 mg/L elicited cell suspension cultures.


Assuntos
Perilla frutescens , Peróxido de Hidrogênio , Fenóis/química , Antioxidantes/química , Flavonoides , Técnicas de Cultura de Células
13.
Molecules ; 28(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005276

RESUMO

The development of natural antioxidants to replace synthetic compounds is attractive. Perilla frutescens leaves were proven to be rich in antioxidants. The extraction of antioxidants from Perilla leaves via ultrasonic-assisted extraction (UAE) based on choline chloride-based deep eutectic solvents (DESs) was studied. Firstly, several DESs were prepared, and their extraction effects were compared. Secondly, the extraction process was optimized by single-factor experiments and response surface methodology (RSM). Finally, the optimization results were verified and compared with the results of traditional solvent-based UAE. The effects of solvents on the surface cell morphology of Perilla frutescens leaves were characterized by scanning electron microscopy (SEM). Choline chloride-acetic acid-based DES (ChCl-AcA) extract showed a relatively high ferric-reducing antioxidant activity (FRAP) and 2,2-diphenyl-1-picrylhyldrazyl radical scavenging rate (DPPH). Under the optimal operating conditions (temperature 41 °C, liquid-solid ratio 33:1, ultrasonic time 30 min, water content 25%, ultrasonic power 219 W), the experimental results are as follows: DPPH64.40% and FRAP0.40 mM Fe(II)SE/g DW. The experimental and predicted results were highly consistent with a low error (<3.38%). The values of the DPPH and FRAP were significantly higher than that for the water, ethanol, and butanol-based UAE. SEM analysis confirmed that ChCl-AcA enhanced the destruction of the cell wall, so that more antioxidants were released. This study provides an eco-friendly technology for the efficient extraction of antioxidants from Perilla frutescens leaves. The cytotoxicity and biodegradability of the extract will be further verified in a future work.


Assuntos
Antioxidantes , Perilla frutescens , Antioxidantes/farmacologia , Antioxidantes/química , Solventes Eutéticos Profundos , Ultrassom/métodos , Solventes/química , Água/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Colina
14.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894485

RESUMO

Lowering blood cholesterol levels is crucial for reducing the risk of cardiovascular disease in patients with familial hypercholesterolemia. To develop Perilla frutescens (L.) Britt. leaves as a functional food with a cholesterol-lowering effect, in this study, we collected P. frutescens (L.) Britt. leaves from different regions of China and Republic of Korea. On the basis of the extraction yield (all components; g/kg), we selected P. frutescens (L.) Britt. leaves from Hebei Province, China with an extract yield of 60.9 g/kg. After evaluating different concentrations of ethanol/water solvent for P. frutescens (L.) Britt. leaves, with luteolin 7-glucuronide as the indicator component, we selected a 30% ethanol/water solvent with a high luteolin 7-glucuronide content of 0.548 mg/g in Perilla. frutescens (L.) Britt. leaves. Subsequently, we evaluated the cholesterol-lowering effects of P. frutescens (L.) Britt. leaf extract and luteolin 7-glucuronide by detecting total cholesterol in HepG2 cells. The 30% ethanol extract lowered cholesterol levels significantly by downregulating 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression. This suggests that P. frutescens (L.) Britt leaves have significant health benefits and can be explored as a potentially promising food additive for the prevention of hypercholesterolemia-related diseases.


Assuntos
Perilla frutescens , Humanos , Glucuronídeos , Luteolina , Extratos Vegetais/farmacologia , Solventes , Etanol , Colesterol , Água , Folhas de Planta
15.
Molecules ; 28(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37894678

RESUMO

Perilla frutescens leaves are hypothesized to possess antioxidant and amyloid-ß (Aß) aggregation inhibitory properties primarily due to their polyphenol-type compounds. While these bioactivities fluctuate daily, the traditional methods for quantifying constituent contents and functional properties are both laborious and impractical for immediate field assessments. To address this limitation, the present study introduces an expedient approach for on-site analysis, employing fluorescence spectra obtained through excitation light irradiation of perilla leaves. Standard analytical techniques were employed to evaluate various constituent contents (chlorophyl (Chl), total polyphenol content (TPC), total flavonoid content (TFC), and rosmarinic acid (RA)) and functional attributes (DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and Aß aggregation inhibitory activity). Correlations between the fluorescence spectra and these parameters were examined using normalized difference spectral index (NDSI), ratio spectral index (RSI), and difference spectral index (DSI) analyses. The resulting predictive model exhibited a high coefficient of determination, with R2 values equal to or greater than 0.57 for constituent contents and 0.49 for functional properties. This approach facilitates the convenient, simultaneous, and nondestructive monitoring of both the chemical constituents and the functional capabilities of perilla leaves, thereby simplifying the determination of optimal harvest times. The model derived from this method holds promise for real-time assessments, indicating its potential for the simultaneous evaluation of both constituents and functionalities in perilla leaves.


Assuntos
Perilla frutescens , Perilla , Perilla frutescens/química , Antioxidantes/química , Perilla/química , Polifenóis/análise , Extratos Vegetais/química , Peptídeos beta-Amiloides/análise , Folhas de Planta/química
16.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894786

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops.


Assuntos
Perilla frutescens , Perilla frutescens/genética , Perilla frutescens/metabolismo , Glicerol/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Ácidos Graxos Insaturados/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Óleos de Plantas/metabolismo , Fosfatos/metabolismo
17.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687260

RESUMO

The present study reports the biomimetic synthesis of silver nanoparticles (AgNPs) using a simple, cost effective and eco-friendly method. In this method, the flavonoid extract of Perilla frutescens (PFFE) was used as a bioreduction agent for the reduction of metallic silver into nanosilver, called P. frutescens flavonoid extract silver nanoparticles (PFFE-AgNPs). The Ultraviolet-Visible (UV-Vis) spectrum showed a characteristic absorption peak at 440 nm that confirmed the synthesis of PFFE-AgNPs. A Fourier transform infrared spectroscopic (FTIR) analysis of the PFFE-AgNPs revealed that flavonoids are involved in the bioreduction and capping processes. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns confirmed the face-centered cubic (FCC) crystal structure of PFFE-AgNPs. A transmission electron microscopic (TEM) analysis indicated that the synthesized PFFE-AgNPs are 20 to 70 nm in size with spherical morphology and without any aggregation. Dynamic light scattering (DLS) studies showed that the average hydrodynamic size was 44 nm. A polydispersity index (PDI) of 0.321 denotes the monodispersed nature of PFFE-AgNPs. Further, a highly negative surface charge or zeta potential value (-30 mV) indicates the repulsion, non-aggregation, and stability of PFFE-AgNPs. PFFE-AgNPs showed cytotoxic effects against cancer cell lines, including human colon carcinoma (COLO205) and mouse melanoma (B16F10), with IC50 concentrations of 59.57 and 69.33 µg/mL, respectively. PFFE-AgNPs showed a significant inhibition of both Gram-positive (Listeria monocytogens and Enterococcus faecalis) and Gram-negative (Salmonella typhi and Acinetobacter baumannii) bacteria pathogens. PFFE-AgNPs exhibited in vitro antioxidant activity by quenching 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) free radicals with IC50 values of 72.81 and 92.48 µg/mL, respectively. In this study, we also explained the plausible mechanisms of the biosynthesis, anticancer, and antibacterial effects of PFFE-AgNPs. Overall, these findings suggest that PFFE-AgNPs have potential as a multi-functional nanomaterial for biomedical applications, particularly in cancer therapy and infection control. However, it is important to note that further research is needed to determine the safety and efficacy of these nanoparticles in vivo, as well as to explore their potential in other areas of medicine.


Assuntos
Neoplasias do Colo , Nanopartículas Metálicas , Perilla frutescens , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Prata/farmacologia , Peróxido de Hidrogênio , Antibacterianos/farmacologia
18.
Gene ; 889: 147808, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37722611

RESUMO

Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.


Assuntos
Perilla frutescens , Perilla , Perilla frutescens/genética , Perilla frutescens/metabolismo , Perilla/genética , Perilla/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Sementes/genética , Família Multigênica , Óleos de Plantas , Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
19.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570851

RESUMO

Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias , Perilla frutescens , Perilla , Perilla frutescens/química , Perilla/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes , Folhas de Planta , Neoplasias/tratamento farmacológico
20.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445708

RESUMO

The increasingly serious trend of soil salinization inhibits the normal growth and development of soybeans, leading to reduced yields and a serious threat to global crop production. Microsomal ω-3 fatty acid desaturase encoded by the FAD3 gene is a plant enzyme that plays a significant role in α-linolenic acid synthesis via regulating the membrane fluidity to better accommodate various abiotic stresses. In this study, PfFAD3a was isolated from perilla and overexpressed in soybeans driven by CaMV P35S, and the salt tolerance of transgenic plants was then evaluated. The results showed that overexpression of PfFAD3a increased the expression of PfFAD3a in both the leaves and seeds of transgenic soybean plants, and α-linolenic acid content also significantly increased; hence, it was shown to significantly enhance the salt tolerance of transgenic plants. Physiological and biochemical analysis showed that overexpression of PfFAD3a increased the relative chlorophyll content and PSII maximum photochemical efficiency of transgenic soybean plants under salt stress; meanwhile, a decreased accumulation of MDA, H2O2, and O2•-, increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbic acid peroxidase (APX), as well as the production of proline and soluble sugar. In summary, the overexpression of PfFAD3a may enhance the salt tolerance in transgenic soybean plants through enhanced membrane fluidity and through the antioxidant capacity induced by C18:3.


Assuntos
Perilla frutescens , Perilla , Tolerância ao Sal/genética , Perilla frutescens/genética , Perilla frutescens/metabolismo , Glycine max , Perilla/genética , Ácido alfa-Linolênico , Peróxido de Hidrogênio/metabolismo , Peroxidases/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...