Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.572
Filtrar
1.
Ren Fail ; 46(2): 2394635, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39192609

RESUMO

BACKGROUND: The quality of life of patients receiving long-term peritoneal dialysis (PD) is significantly impacted by the onset of peritoneal fibrosis (PF), and one of the pathological changes is mesothelial-mesenchymal transition (MMT). In this study, we investigated the potential roles of miR-454-3p and signal transducer and activator of transcription 3 (STAT3) in the progression of peritoneal MMT and the underlying mechanisms. METHODS: Peritoneums were collected to detect morphology via hematoxylin-eosin staining and differentially expressed miRNAs were detected via RT-qPCR. PD effluent-derived cell populations in the peritoneal cavity were isolated from the effluents of 20 PD patients to determine miR-454-3p, STAT3, and MMT markers via Western blotting and RT-qPCR. The relationship between miR-454-3p and STAT3 was examined via a dual-luciferase reporter assay. Western blotting and RT-qPCR were utilized to evaluate the expression of STAT3, MMT markers, and glycolytic enzymes. Immunofluorescence staining revealed the localization and expression of MMT markers and STAT3. RESULTS: MiR-454-3p was downregulated in the peritoneums and PD effluent-derived cell populations of long-term PD patients. High glucose (HG) treatment promoted HMrSV5 cell MMT and glycolysis. MiR-454-3p overexpression alleviated HG-induced MMT and suppressed the expression of STAT3 and glycolytic enzymes. In contrast, the miR-454-3p inhibitor exacerbated HG-induced MMT and promoted the expression of glycolytic enzymes and STAT3. Moreover, STAT3 was the target of miR-454-3p. CONCLUSIONS: This study demonstrated the protective role of miR-454-3p in HG-induced MMT and glycolysis in HMrSv5 cells, suggesting that miR-454-3p may prevent MMT by suppressing glycolytic enzymes via the STAT3/PFKFB3 pathway in the HG environment.


Assuntos
Transição Epitelial-Mesenquimal , Glucose , Glicólise , MicroRNAs , Diálise Peritoneal , Fibrose Peritoneal , Peritônio , Fator de Transcrição STAT3 , MicroRNAs/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/genética , Peritônio/patologia , Peritônio/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Linhagem Celular , Regulação para Baixo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos
2.
BMC Nephrol ; 25(1): 268, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179976

RESUMO

BACKGROUND: Urinary Dickkopf 3 (DKK3) excretion is a recently established biomarker of renal functional development. Its excretion into the peritoneal cavity has not been reported. We here studied DKK3 in peritoneal dialysis. METHODS: DKK3 was assessed in serum, urine and dialysate in a prevalent adult peritoneal dialysis cohort and its concentration analyzed in relation to creatinine and clinical characteristics. RESULTS: Highest DKK3 concentrations were found in serum, followed by urine. Dialysate concentrations were significantly lower. Dialysate DKK3 correlated with both other compartments. Serum, dialysate and urine values were stable during three months of follow-up. Continuous ambulatory dialysis (CAPD) but not cycler-assisted peritoneal dialysis (CCPD) volume-dependently increased peritoneal DKK3 in relation to creatinine. RAAS blockade significantly decreased urinary, but not serum or peritoneal DKK3. CONCLUSION: Our data provide a detailed characterization of DKK3 in peritoneal dialysis. They support the notion that the RAAS system is essential for renal DKK3 handling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diálise Peritoneal , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quimiocinas/sangue , Quimiocinas/metabolismo , Idoso , Adulto , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Falência Renal Crônica/terapia , Falência Renal Crônica/metabolismo , Biomarcadores/sangue , Soluções para Diálise/metabolismo , Rim/metabolismo , Peritônio/metabolismo , Diálise Peritoneal Ambulatorial Contínua , Sistema Renina-Angiotensina/fisiologia , Creatinina/urina , Creatinina/sangue , Creatinina/metabolismo
3.
Ren Fail ; 46(2): 2384586, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39082695

RESUMO

Peritoneal dialysis (PD) is a widely used sustainable kidney replacement therapy. Prolonged use of PD fluids is associated with mesothelial-mesenchymal transition, peritoneal fibrosis, and eventual ultrafiltration (UF) failure. However, the impact of pressure on the peritoneum remains unclear. In the present study, we hypothesized increased pressure is a potential contributing factor to peritoneal fibrosis and investigated the possible mechanisms. In vitro experiments found that pressurization led to a mesenchymal phenotype, the expression of fibrotic markers and inflammatory factors in human mesothelial MeT-5A cells. Pressure also increased cell proliferation and augmented cell migration potential in MeT-5A cells. The mouse PD model and human peritoneum equilibrium test (PET) data both showed a positive association between higher pressure and increased small solute transport, along with decreased net UF. Mechanistically, we found that significant upregulation of CD44 in mesothelial cells upon pressurization. Notably, the treatment of CD44 neutralizing antibodies prevented pressure-induced phenotypic changes in mesothelial cells, while a CD44 inhibitor oligo-fucoidan ameliorated pressure-induced peritoneal thickening, fibrosis, and inflammation in PD mice. To conclude, intraperitoneal pressure results in peritoneal fibrosis in PD via CD44-mediated mesothelial changes and inflammation. CD44 blockage can be utilized as a novel preventive approach for PD-related peritoneal fibrosis and UF failure.


Assuntos
Receptores de Hialuronatos , Diálise Peritoneal , Fibrose Peritoneal , Peritônio , Transdução de Sinais , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/patologia , Animais , Camundongos , Receptores de Hialuronatos/metabolismo , Humanos , Peritônio/patologia , Peritônio/metabolismo , Diálise Peritoneal/efeitos adversos , Modelos Animais de Doenças , Inflamação/metabolismo , Pressão/efeitos adversos , Masculino , Proliferação de Células , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Linhagem Celular , Movimento Celular
4.
Am J Physiol Renal Physiol ; 327(3): F363-F372, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38961839

RESUMO

Epithelial-to-mesenchymal transition (EMT) is considered as one of the senescence processes; reportedly, antisenescence therapies effectively reduce EMT. Some models have shown antisenescence effects with the use of sodium-glucose cotransporter 2 (SGLT2) inhibitor. Therefore, our study investigated the antisenescence effects of empagliflozin as an SGLT2 inhibitor in a peritoneal fibrosis model and their impact on EMT inhibition. For in vitro study, human peritoneal mesothelial cells (HPMCs) were isolated and grown in a 96-well plate. The cell media were exchanged with serum-free M199 medium with d-glucose, with or without empagliflozin. All animal experiments were carried out in male mice. Mice were randomly classified into three treatment groups based on peritoneal dialysis (PD) or empagliflozin. We evaluated changes in senescence and EMT markers in HPMCs and PD model. HPMCs treated with glucose transformed from cobblestone to spindle shape, resulting in EMT. Empagliflozin attenuated these morphological changes. Reactive oxygen species production, DNA damage, senescence, and EMT markers were increased by glucose treatment; however, cotreatment with glucose and empagliflozin attenuated these changes. For the mice with PD, an increase in thickness, collagen deposition, staining for senescence, or EMT markers of the parietal peritoneum was observed, which, however, was attenuated by cotreatment with empagliflozin. p53, p21, and p16 increased in mice with PD compared with those in the control group; however, these changes were decreased by empagliflozin. In conclusion, empagliflozin effectively attenuated glucose-induced EMT in HPMCs through a decrease in senescence. Cotreatment with empagliflozin improved peritoneal thickness and fibrosis in PD.NEW & NOTEWORTHY Epithelial-to-mesenchymal transition (EMT) is considered one of the senescence processes. Antisenescence therapies may effectively reduce EMT in peritoneal dialysis models. Human peritoneal mesothelial cells treated with glucose show an increase in senescence and EMT markers; however, empagliflozin attenuates these changes. Mice undergoing peritoneal dialysis exhibit increased senescence and EMT markers, which are decreased by empagliflozin. These findings suggest that empagliflozin may emerge as a novel strategy for prevention or treatment of peritoneal fibrosis.


Assuntos
Compostos Benzidrílicos , Senescência Celular , Transição Epitelial-Mesenquimal , Glucosídeos , Diálise Peritoneal , Fibrose Peritoneal , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucosídeos/farmacologia , Compostos Benzidrílicos/farmacologia , Diálise Peritoneal/efeitos adversos , Senescência Celular/efeitos dos fármacos , Masculino , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Fibrose Peritoneal/patologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Peritônio/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Camundongos , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Células Cultivadas , Dano ao DNA/efeitos dos fármacos
5.
Exp Cell Res ; 441(1): 114155, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002689

RESUMO

At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence especially because of the propensity of the OC cells to spread in the abdominal cavity leading to peritoneal metastasis. The influence of ascites on the development of pre-metastatic niches, and on the biological mechanisms leading to cancer cell colonization of the mesothelium, remains poorly understood. Here, we show that ascites weakens the mesothelium by affecting the morphology of mesothelial cells and by destabilizing their distribution in the cell cycle. Ascites also causes destabilization of the integrity of mesothelium by modifying the organization of cell junctions, but it does not affect the synthesis of N-cadherin and ZO-1 by mesothelial cells. Moreover, ascites induces disorganization of focal contacts and causes actin cytoskeletal reorganization potentially dependent on the activity of Rac1. Ascites allows the densification and reorganization of ECM proteins of the mesothelium, especially fibrinogen/fibrin, and indicates that it is a source of the fibrinogen and fibrin surrounding OC spheroids. The fibrin in ascites leads to the adhesion of OC spheroids to the mesothelium, and ascites promotes their disaggregation followed by the clearance of mesothelial cells. Both αV and α5ß1 integrins are involved. In conclusion ascites and its fibrinogen/fibrin composition affects the integrity of the mesothelium and promotes the integrin-dependent implantation of OC spheroids in the mesothelium.


Assuntos
Ascite , Fibrina , Fibrinogênio , Integrina alfa5beta1 , Neoplasias Ovarianas , Esferoides Celulares , Microambiente Tumoral , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Ascite/patologia , Ascite/metabolismo , Integrina alfa5beta1/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fibrinogênio/metabolismo , Fibrina/metabolismo , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Receptores de Vitronectina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Adesão Celular , Peritônio/patologia , Peritônio/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Caderinas/metabolismo , Células Tumorais Cultivadas
6.
FASEB J ; 38(13): e23819, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984942

RESUMO

Peritoneal dialysis is a common treatment for end-stage renal disease, but complications often force its discontinuation. Preventive treatments for peritoneal inflammation and fibrosis are currently lacking. Cyclo(His-Pro) (CHP), a naturally occurring cyclic dipeptide, has demonstrated protective effects in various fibrotic diseases, yet its potential role in peritoneal fibrosis (PF) remains uncertain. In a mouse model of induced PF, CHP was administered, and quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry was employed to identify PF-related protein signaling pathways. The results were further validated using human primary cultured mesothelial cells. This analysis revealed the involvement of histone deacetylase 3 (HDAC3) in the PF signaling pathway. CHP administration effectively mitigated PF in both peritoneal tissue and human primary cultured mesothelial cells, concurrently regulating fibrosis-related markers and HDAC3 expression. Moreover, CHP enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) while suppressing forkhead box protein M1 (FOXM1), known to inhibit Nrf2 transcription through its interaction with HDAC3. CHP also displayed an impact on spleen myeloid-derived suppressor cells, suggesting an immunomodulatory effect. Notably, CHP improved mitochondrial function in peritoneal tissue, resulting in increased mitochondrial membrane potential and adenosine triphosphate production. This study suggests that CHP can significantly prevent PF in peritoneal dialysis patients by modulating HDAC3 expression and associated signaling pathways, reducing fibrosis and inflammation markers, and improving mitochondrial function.


Assuntos
Histona Desacetilases , Fibrose Peritoneal , Animais , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/patologia , Camundongos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Diálise Peritoneal/efeitos adversos , Peritônio/patologia , Peritônio/metabolismo
7.
Biomed Pharmacother ; 176: 116905, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865848

RESUMO

Peritoneal fibrosis, a common complication observed in long-term peritoneal dialysis patients, can gradually lead to ultrafiltration failure and the development of encapsulating peritoneal sclerosis. Although mechanisms of peritoneal fibrosis have been proposed, effective therapeutic options are unsatisfactory. Recently, several tyrosine kinase inhibitors have proven to be anti-fibrosis in rodent models. To assess the potential therapeutic effects of tyrosine kinase inhibitors on peritoneal fibrosis in the larger animal model, a novel porcine model of peritoneal fibrosis induced by 40 mM methylglyoxal in 2.5 % dialysate was established, and two different doses (20 mg/kg and 30 mg/kg) of sorafenib were given orally to evaluate their therapeutic efficacy in this study. Our results showed that sorafenib effectively reduced adhesions between peritoneal organs and significantly diminished the thickening of both the parietal and visceral peritoneum. Angiogenesis, vascular endothelial growth factor A production, myofibroblast infiltration, and decreased endothelial glycocalyx resulting from dialysate and methylglyoxal stimulations were also alleviated with sorafenib. However, therapeutic efficacy in ameliorating loss of mesothelial cells, restoring decreased ultrafiltration volume, and improving elevated small solutes transport rates was limited. In conclusion, this study demonstrated that sorafenib could potentially be used for peritoneal fibrosis treatment, but applying sorafenib alone might not be sufficient to fully rescue methylglyoxal-induced peritoneal defects.


Assuntos
Fibrose Peritoneal , Inibidores de Proteínas Quinases , Aldeído Pirúvico , Sorafenibe , Animais , Sorafenibe/farmacologia , Aldeído Pirúvico/metabolismo , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/patologia , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Suínos , Feminino , Modelos Animais de Doenças , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peritônio/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo
8.
Sci Rep ; 14(1): 12744, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830931

RESUMO

Transforming growth factor ß (TGF-ß) is implicated in both mesothelial-to-mesenchymal transition (MMT) and cellular senescence of human peritoneal mesothelial cells (HPMCs). We previously showed that senescent HPMCs could spontaneously acquire some phenotypic features of MMT, which in young HPMCs were induced by TGF-ß. Here, we used electron microscopy, as well as global gene and protein profiling to assess in detail how exposure to TGF-ß impacts on young and senescent HPMCs in vitro. We found that TGF-ß induced structural changes consistent with MMT in young, but not in senescent HPMCs. Of all genes and proteins identified reliably in HPMCs across all treatments and states, 4,656 targets represented overlapping genes and proteins. Following exposure to TGF-ß, 137 proteins and 46 transcripts were significantly changed in young cells, compared to 225 proteins and only 2 transcripts in senescent cells. Identified differences between young and senescent HPMCs were related predominantly to wound healing, integrin-mediated signalling, production of proteases and extracellular matrix components, and cytoskeleton structure. Thus, the response of senescent HPMCs to TGF-ß differs or is less pronounced compared to young cells. As a result, the character and magnitude of the postulated contribution of HPMCs to TGF-ß-induced peritoneal remodelling may change with cell senescence.


Assuntos
Senescência Celular , Células Epiteliais , Peritônio , Fator de Crescimento Transformador beta , Humanos , Senescência Celular/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Peritônio/citologia , Peritônio/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Cultivadas , Epitélio/metabolismo , Epitélio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Perfilação da Expressão Gênica
9.
Nefrologia (Engl Ed) ; 44(3): 362-372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38908979

RESUMO

INTRODUCTION: In some studies, the peritoneal solute transfer rate (PSTR) through the peritoneal membrane has been related to an increased risk of mortality. It has been observed in the literature that those patients with rapid diffusion of solutes through the peritoneal membrane (high/fast transfer) and probably those with high average transfer characterized by the Peritoneal Equilibrium Test (PET) are associated with higher mortality compared to those patients who have a slow transfer rate. However, some authors have not documented this fact. In the present study, we want to evaluate the (etiological) relationship between the characteristics of peritoneal membrane transfer and mortality and survival of the technique in an incident population on peritoneal dialysis in RTS Colombia during the years 2007-2017 using a competing risk model. MATERIALS AND METHODS: A retrospective cohort study was carried out at RTS Colombia in the period between 2007 and 2017. In total, there were 8170 incident patients older than 18 years, who had a Peritoneal Equilibration Test (PET) between 28 and 180 days from the start of therapy. Demographic, clinical, and laboratory variables were evaluated. The (etiological) relationship between the type of peritoneal solute transfer rate at the start of therapy and overall mortality and technique survival were analyzed using a competing risk model (cause-specific proportional hazard model described by Royston-Lambert). RESULTS: Patients were classified into four categories based on the PET result: Slow/Low transfer (16.0%), low average (35.4%), high average (32.9%), and High/Fast transfer (15.7%). During follow-up, with a median of 730 days, 3025 (37.02%) patients died, 1079 (13.2%) were transferred to hemodialysis and 661 (8.1%) were transplanted. In the analysis of competing risks, adjusted for age, sex, presence of DM, HTA, body mass index, residual function, albumin, hemoglobin, phosphorus, and modality of PD at the start of therapy, we found cause-specific HR (HRce) for high/fast transfer was 1.13 (95% CI 0.98-1.30) p = 0.078, high average 1.08 (95% CI 0.96-1.22) p = 0.195, low average 1.09 (95% CI 0.96-1.22) p = 0.156 compared to the low/slow transfer rate. For technique survival, cause-specific HR for high/rapid transfer of 1.22 (95% CI 0.98-1.52) p = 0.66, high average HR was 1.10 (95% CI 0.91-1.33) p = 0.296, low average HR of 1.03 (95% CI 0.85-1.24) p = 0.733 compared with the low/slow transfer rate, adjusted for age, sex, DM, HTA, BMI, residual renal function, albumin, phosphorus, hemoglobin, and PD modality at start of therapy. Non-significant differences. CONCLUSIONS: When evaluating the etiological relationship between the type of peritoneal solute transfer rate and overall mortality and survival of the technique using a competing risk model, we found no etiological relationship between the characteristics of peritoneal membrane transfer according to the classification given by Twardowski assessed at the start of peritoneal dialysis therapy and overall mortality or technique survival in adjusted models. The analysis will then be made from the prognostic model with the purpose of predicting the risk of mortality and survival of the technique using the risk subdistribution model (Fine & Gray).


Assuntos
Diálise Peritoneal , Insuficiência Renal Crônica , Humanos , Colômbia/epidemiologia , Estudos Retrospectivos , Masculino , Feminino , Diálise Peritoneal/mortalidade , Pessoa de Meia-Idade , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/mortalidade , Adulto , Fatores de Tempo , Idoso , Peritônio/metabolismo , Taxa de Sobrevida , Soluções para Diálise/química
10.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721924

RESUMO

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Cafeicos , Diálise Peritoneal , Fibrose Peritoneal , Álcool Feniletílico , Sirtuína 1 , Animais , Ratos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Soluções para Diálise , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Peritônio/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Genes (Basel) ; 15(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790182

RESUMO

INTRODUCTION: Cell-free nucleic acids (cf-NAs) represent a promising biomarker of various pathological and physiological conditions. Since its discovery in 1948, cf-NAs gained prognostic value in oncology, immunology, and other relevant fields. In peritoneal dialysis (PD), blood purification is performed by exposing the peritoneal membrane. Relevant sections: Complications of PD such as acute peritonitis and peritoneal membrane aging are often critical in PD patient management. In this review, we focused on bacterial DNA, cell-free DNA, mitochondrial DNA (mtDNA), microRNA (miRNA), and their potential uses as biomarkers for monitoring PD and its complications. For instance, the isolation of bacterial DNA in early acute peritonitis allows bacterial identification and subsequent therapy implementation. Cell-free DNA in peritoneal dialysis effluent (PDE) represents a marker of stress of the peritoneal membrane in both acute and chronic PD complications. Moreover, miRNA are promising hallmarks of peritoneal membrane remodeling and aging, even before its manifestation. In this scenario, with multiple cytokines involved, mtDNA could be considered equally meaningful to determine tissue inflammation. CONCLUSIONS: This review explores the relevance of cf-NAs in PD, demonstrating its promising role for both diagnosis and treatment. Further studies are necessary to implement the use of cf-NAs in PD clinical practice.


Assuntos
Ácidos Nucleicos Livres , DNA Mitocondrial , Diálise Peritoneal , Humanos , Diálise Peritoneal/efeitos adversos , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/genética , Biomarcadores , MicroRNAs/genética , DNA Bacteriano/genética , Peritonite/genética , Peritônio/metabolismo , Peritônio/patologia
12.
J Cell Mol Med ; 28(10): e18381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780509

RESUMO

Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.


Assuntos
Ácidos Aminossalicílicos , Fibroblastos , Fibrose Peritoneal , Fenótipo , Fator de Transcrição STAT3 , Transdução de Sinais , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/genética , Fator de Transcrição STAT3/metabolismo , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Camundongos , Ácidos Aminossalicílicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Peritônio/patologia , Peritônio/metabolismo , Interleucina-6/metabolismo , Matriz Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Diálise Peritoneal/efeitos adversos , Benzenossulfonatos
13.
Clin Transl Sci ; 17(4): e13774, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38561910

RESUMO

This study aims to investigate the differential expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) in the peritoneal dialysate among patients with different durations of peritoneal dialysis and its association with the angiogenic marker vascular* endothelial growth factor (VEGF), the fibronectin (FN), and various clinical indicators. A cohort of 122 peritoneal dialysis patients was categorized into short-term (≤1 year, n = 33), mid-term (>1 and ≤5 years, n = 55), and long-term (>5 years, n = 34) groups based on dialysis duration. We utilized enzyme-linked immunosorbent assay (ELISA) and western blot assays to quantify the levels of IGF2BP3, VEGF, and FN in the dialysate. Our findings showed a progressive increase in IGF2BP3 levels with the duration of PD, with the long-term group exhibiting significantly higher levels than both the short-term and mid-term groups (p < 0.001). A positive correlation between IGF2BP3 and VEGF (r = 0.386, p = 0.013), as well as between IGF2BP3 and FN (r = 0.340, p = 0.030), was observed. IGF2BP3 levels also correlated positively with serum creatinine, calcium, and phosphorus levels. In vitro analysis further confirmed that IGF2BP3 expression is enhanced in human peritoneal mesothelial cells under high-glucose conditions (p < 0.05). The study highlights the potential of IGF2BP3 in PD effluent as a biomarker for monitoring PF progression, with its expression significantly correlated with the duration of PD (Pearson r = 0.897, p < 0.001). In conclusion, our results underscore a correlation between elevated IGF2BP3 levels and PD duration, suggesting the clinical significance of IGF2BP3 as a biomarker for PF progression.


Assuntos
Diálise Peritoneal , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peritônio/química , Peritônio/metabolismo , Relevância Clínica , Soluções para Diálise/metabolismo , Biomarcadores/metabolismo
14.
Iran J Kidney Dis ; 18(2): 118-123, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38660699

RESUMO

INTRODUCTION: Peritoneal dialysis (PD) is an effective treatment  modality for advanced kidney failure, offering patients a significant  degree of independence. However, the long-term use of PD is  limited due to the degeneration of the peritoneal membrane,  resulting in reduced dialysis adequacy. Evaluating the peritoneal  membrane condition in patients with advanced kidney failure  who are undergoing PD is challenging with existing methods.  Therefore, this study aimed to investigate the correlation between  8-hydroxy-2'-deoxyguanosine (8OHDG) levels in the peritoneal  solution of patients undergoing PD and various factors, such  as peritoneal equilibration test (PET), dialysis adequacy (Kt/V),  underlying diseases, serum ferritin, and albumin levels. 8OHDG  is a sensitive marker of oxidative stress caused by DNA damage. METHODS: A total of 56 patients were included in this cross-sectional  study. Five milliliters of PD fluid were collected from the patients,  and 8-OHdG levels were measured using ELISA method. Then, they  were compared with PET, Kt/V, albumin, and ferritin markers in  the patients' files, and the results were analyzed by statistical tests. RESULTS: The study examined the correlation between 8OHDG  and other markers. It was found that this index had significant  associations with PET and underlying HTN (P < .05), whereas no  significant associations were identified with the other markers. CONCLUSION: The results of the present study demonstrate that  the level of 8OHDG, as one of the oxidative stress markers, could  be used to evaluate the function of the peritoneum in patients  undergoing PD. DOI: 10.52547/ijkd.7654.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Estresse Oxidativo , Diálise Peritoneal , Feminino , Humanos , Masculino , 8-Hidroxi-2'-Desoxiguanosina/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos Transversais , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Desoxiguanosina/sangue , Ferritinas/sangue , Ferritinas/análise , Falência Renal Crônica/terapia , Falência Renal Crônica/sangue , Diálise Peritoneal/efeitos adversos , Peritônio/química , Peritônio/metabolismo , Peritônio/patologia , Albumina Sérica/análise , Albumina Sérica/metabolismo
15.
Sci Rep ; 14(1): 7412, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548914

RESUMO

Peritoneal membrane dysfunction in peritoneal dialysis (PD) is primarily attributed to angiogenesis; however, the integrity of vascular endothelial cells can affect peritoneal permeability. Hyaluronan, a component of the endothelial glycocalyx, is reportedly involved in preventing proteinuria in the normal glomerulus. One hypothesis suggests that development of encapsulating peritoneal sclerosis (EPS) is triggered by protein leakage due to vascular endothelial injury. We therefore investigated the effect of hyaluronan in the glycocalyx on peritoneal permeability and disease conditions. After hyaluronidase-mediated degradation of hyaluronan on the endothelial cells of mice, macromolecules, including albumin and ß2 microglobulin, leaked into the dialysate. However, peritoneal transport of small solute molecules was not affected. Pathologically, hyaluronan expression was diminished; however, expression of vascular endothelial cadherin and heparan sulfate, a core protein of the glycocalyx, was preserved. Hyaluronan expression on endothelial cells was studied using 254 human peritoneal membrane samples. Hyaluronan expression decreased in patients undergoing long-term PD treatment and EPS patients treated with conventional solutions. Furthermore, the extent of hyaluronan loss correlated with the severity of vasculopathy. Hyaluronan on endothelial cells is involved in the peritoneal transport of macromolecules. Treatment strategies that preserve hyaluronan in the glycocalyx could prevent the leakage of macromolecules and subsequent related complications.


Assuntos
Diálise Peritoneal , Fibrose Peritoneal , Humanos , Animais , Camundongos , Ácido Hialurônico/metabolismo , Células Endoteliais , Diálise Peritoneal/efeitos adversos , Peritônio/metabolismo , Transporte Biológico , Soluções para Diálise/metabolismo , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo
16.
Front Immunol ; 15: 1357340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504975

RESUMO

In the context of multimodal treatments for abdominal cancer, including procedures such as cytoreductive surgery and intraperitoneal chemotherapy, recurrence rates remain high, and long-term survival benefits are uncertain due to post-operative complications. Notably, treatment-limiting side effects often arise from an uncontrolled activation of the immune system, particularly peritoneally localized macrophages, leading to massive cytokine secretion and phenotype changes. Exploring alternatives, an increasing number of studies investigated the potential of plasma-activated liquids (PAL) for adjuvant peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-toxicity of PAL, we isolated primary human macrophages from the peritoneum and subjected them to PAL exposure. Employing an extensive methodological spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest protein analysis, we observed a pronounced resistance of macrophages towards PAL. This resistance was characterized by an upregulation of proliferation and anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell death. The observed cellular effects of PAL treatment on human tissue-resident peritoneal macrophages unveil a potential avenue for PAL-derived immunomodulatory effects within the human peritoneal cavity. Our findings contribute to understanding the intricate interplay between PAL and macrophages, shedding light on the promising prospects for PAL in the adjuvant treatment of peritoneal cancer.


Assuntos
Neoplasias Peritoneais , Peritônio , Humanos , Peritônio/metabolismo , Macrófagos Peritoneais , Macrófagos , Cavidade Peritoneal , Neoplasias Peritoneais/metabolismo , Estresse Oxidativo
17.
Int Urol Nephrol ; 56(8): 2659-2670, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38483736

RESUMO

Sirtuin 6 (SIRT6) can inhibit the fibrosis of many organs. However, the relationship between SIRT6 and peritoneal fibrosis (PF) in peritoneal dialysis (PD) remains unclear. We collected 110 PD patients with a duration of PD for more than 3 months and studied the influence of PD duration and history of peritonitis on SIRT6 levels in PD effluents (PDEs). We also analyzed the relationship between SIRT6 levels in PDEs and transforming growth factor beta 1 (TGF-ß1), IL-6, PD duration, peritoneal function, PD ultrafiltration (UF), and glucose exposure. We extracted human peritoneal mesothelial cells (HPMCs) from PDEs and measured the protein and gene expression levels of SIRT6, E-cadherin, vimentin, and TGF-ß1 in these cells. Based on the clinical results, we used human peritoneal mesothelial cells lines (HMrSV5) to observe the changes in SIRT6 levels and mesothelial-to-mesenchymal transition (MMT) after intervention with PD fluid. By overexpressing and knocking down SIRT6 expression, we investigated the effect of SIRT6 expression on E-cadherin, vimentin, and TGF-ß1 expression to elucidate the role of SIRT6 in mesothelial-to-epithelial transition in PMCs. Results: (1) With the extension of PD duration, the influence of infection on SIRT6 levels in PDEs increased. Patients with the PD duration of more than 5 years and a history of peritonitis had the lowest SIRT6 levels. (2) SIRT6 levels in PDEs were negatively correlated with PD duration, total glucose exposure, TGF-ß1, IL-6 levels, and the dialysate-to-plasma ratio of creatinine (Cr4hD/P), but positively correlated with UF. This indicates that SIRT6 has a protective effect on the peritoneum. (3) The short-term group (PD ≤ 1 year) had higher SIRT6 and E-cadherin gene and protein levels than the mid-term group (1 year < PD ≤ 5 years) and long-term group (PD > 5 years) in PMCs, while vimentin and TGF-ß1 levels were lower in the mid-term group and long-term group. Patients with a history of peritonitis had lower SIRT6 and E-cadherin levels than those without such a history. (4) After 4.25% PD fluid intervention for HPMCs, longer intervention time resulted in lower SIRT6 levels. (5) Overexpressing SIRT6 can lead to increased E-cadherin expression and decreased vimentin and TGF-ß1 expression in HPMCs. Knocking down SIRT6 expression resulted in decreased E-cadherin expression and increased vimentin and TGF-ß1 expression in HPMCs. This indicates that SIRT6 expression can inhibit MMT in HPMCs, alleviate PF associated with PD, and have a protective effect on the peritoneum.


Assuntos
Células Epiteliais , Diálise Peritoneal , Peritônio , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Masculino , Peritônio/metabolismo , Peritônio/citologia , Pessoa de Meia-Idade , Feminino , Células Epiteliais/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo , Idoso , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/etiologia , Caderinas/metabolismo , Adulto , Transição Epitelial-Mesenquimal
18.
Free Radic Biol Med ; 214: 54-68, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311259

RESUMO

Peritoneal mesothelial cell senescence promotes the development of peritoneal dialysis (PD)-related peritoneal fibrosis. We previously revealed that Brahma-related gene 1 (BRG1) is increased in peritoneal fibrosis yet its role in modulating peritoneal mesothelial cell senescence is still unknown. This study evaluated the mechanism of BRG1 in peritoneal mesothelial cell senescence and peritoneal fibrosis using BRG1 knockdown mice, primary peritoneal mesothelial cells and human peritoneal samples from PD patients. The augmentation of BRG1 expression accelerated peritoneal mesothelial cell senescence, which attributed to mitochondrial dysfunction and mitophagy inhibition. Mitophagy activator salidroside rescued fibrotic responses and cellular senescence induced by BRG1. Mechanistically, BRG1 was recruited to oxidation resistance 1 (OXR1) promoter, where it suppressed transcription of OXR1 through interacting with forkhead box protein p2. Inhibition of OXR1 abrogated the improvement of BRG1 deficiency in mitophagy, fibrotic responses and cellular senescence. In a mouse PD model, BRG1 knockdown restored mitophagy, alleviated senescence and ameliorated peritoneal fibrosis. More importantly, the elevation level of BRG1 in human PD was associated with PD duration and D/P creatinine values. In conclusion, BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. This indicates that modulating BRG1-OXR1-mitophagy signaling may represent an effective treatment for PD-related peritoneal fibrosis.


Assuntos
Diálise Peritoneal , Fibrose Peritoneal , Animais , Humanos , Camundongos , Senescência Celular/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/genética , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Peritônio/metabolismo , Peritônio/patologia
19.
Semin Dial ; 37(3): 242-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420712

RESUMO

Longitudinal evolution of peritoneal protein loss (PPL), a reflection of hydrostatic pressure-driven leak of plasma proteins through the large-pore pathway, is not clear. Time on PD causes loss of mesothelial cells, vasculopathy, and increased thickness of the submesothelial fibrous layer. Are these structural changes associated with progressive increase of PPL, in a parallel with the rise in the D/P creatinine? The aim of the present study was to identify longitudinal changes of PPL over time. This single-center, longitudinal study included 52 peritoneal dialysis (PD) patients with a median follow-up of 26.5 months, evaluated at two different time points with a minimum interval of 6 months. Repeated measures analysis was performed using paired sample t-test or the nonparametric Wilcoxon signed-rank test, depending on the distribution. After a median interval of 15.5 months, lower levels of residual renal function and urine volume, lower Kt/V, and creatinine clearance were found. D/P creatinine and PPL were stable, but a decrease in ultrafiltration was present. Systemic inflammation, nutrition, and volume overload showed no significant change with time on PD. Analysis of a subpopulation with over 48 months between initial and subsequential assessment (n = 11) showed again no difference in inflammation, nutritional and hydration parameters from baseline, but importantly PPL decreased after more than 4 years on PD (mean difference 1.2 g/24, p = 0.033). D/P creatinine and dip of sodium remained unchanged. The absence of deleterious effects of time on PD is reassuring, pointing to the benefit of updated PD prescription, including the standard use of more biocompatible solutions towards membrane preservation and adjusted prescription avoiding overhydration and inflammation while maintaining nutritional status. After controlling for confounders, PPL may act as a biomarker of acquired venous vasculopathy, even if small pore fluid transport rates and free water transport are preserved.


Assuntos
Diálise Peritoneal , Peritônio , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Peritônio/metabolismo , Peritônio/patologia , Estudos Longitudinais , Falência Renal Crônica/terapia , Fatores de Tempo , Idoso , Adulto
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5145-5155, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38240782

RESUMO

The current study examines the effects of linalool in preventing postoperative abdominal adhesions. Twenty male Wistar rats were randomly divided into four groups. (1) Sham: in this group, the abdomen was approached, and without any manipulations, it was sutured. (2) Control: rats in this group underwent a surgical procedure to induce adhesions. This involved making three incisions on the right abdominal side and removing a 1×1-cm piece of the peritoneum on the left abdominal side. (3) Treatment groups: these groups underwent the same surgical procedure as the control group to induce adhesions. Animals in these groups received linalool orally with doses of 50 and 100 mg/kg, respectively, for a period of 14 days. Moreover, rats in the sham and control groups received normal saline via gavage for 14 days. The evaluation of TNF-α, TGF-ß, VEGF, and caspase 3 was performed using western blot and IHC methods. Furthermore, oxidative stress biomarkers such as MDA, TAC, GSH, and NO were assessed in the peritoneal adhesion tissue. The findings revealed that linalool significantly reduced peritoneal adhesions by reducing TNF-α, TGF-ß, VEGF, and caspase 3 levels. Moreover, MDA concentration was significantly decreased, while NO, TAC, and GSH levels were notably increased. Overall, linalool was effective in preventing adhesion formation and reduced inflammation, angiogenesis, apoptosis, and oxidative stress. Therefore, linalool as a potent antioxidant is suggested for reducing postoperative adhesions in rats.


Assuntos
Monoterpenos Acíclicos , Estresse Oxidativo , Complicações Pós-Operatórias , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular , Animais , Aderências Teciduais/prevenção & controle , Masculino , Monoterpenos Acíclicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Complicações Pós-Operatórias/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ratos , Doenças Peritoneais/prevenção & controle , Doenças Peritoneais/patologia , Doenças Peritoneais/metabolismo , Monoterpenos/farmacologia , Caspase 3/metabolismo , Peritônio/efeitos dos fármacos , Peritônio/patologia , Peritônio/metabolismo , Antioxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...