Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.927
Filtrar
1.
PLoS One ; 19(7): e0307987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39058757

RESUMO

Proper variance partitioning and estimation of genetic parameters at appropriate time interval is crucial for understanding the dynamics of trait variance and genetic correlations and for deciding the future breeding strategy of the population. This study was conducted on the same premise to estimate genetic parameters of major economic traits in a White Leghorn strain IWH using Bayesian approach and to identify the role of maternal effects in the regulation of trait variance. Three different models incorporating the direct additive effect (Model 1), direct additive and maternal genetic effect (Model 2) and direct additive, maternal genetic and maternal permanent environmental effects (Model 3) were tried to estimate the genetic parameters for body weight traits (birth weight, body weight at 16, 20, 40 and 52 weeks), Age at sexual maturity (ASM), egg production traits (egg production up to 24, 28, 40, 52, 64 and 72 weeks) and egg weight traits (egg weight at 28, 40 and 52 weeks). Model 2 and Model 3 with maternal effects were found to be the best having the highest accuracy for almost all the traits. The direct additive genetic heritability was moderate for ASM, moderate to high for body weight traits and egg weight traits and low to moderate for egg production traits. Though the maternal heritability (h2mat) and permanent environmental effect (c2mpe) was low (<0.1) for most of the traits, they formed an important component of trait variance. Traits like egg weight at 28 weeks (0.14±0.06) and egg production at 72 weeks (0.13±0.07) reported comparatively higher values for c2mpe and h2mat respectively. Additive genetic correlation was high and positive between body weight traits, between egg weight traits, between consecutive egg production traits and between body weight and egg weight traits. However, a negative genetic correlation existed between egg production and egg weight traits, egg production and body weight traits, ASM and early egg production traits. Overall, a moderate positive genetic correlation was estimated between ASM and body weight traits and ASM and egg weight traits. Based on our findings, we can deduce that maternal effects constitute an important source of variation for all the major economic traits in White Leghorn and should be necessarily considered in genetic evaluation programs.


Assuntos
Teorema de Bayes , Peso Corporal , Galinhas , Herança Materna , Feminino , Animais , Galinhas/genética , Herança Materna/genética , Peso Corporal/genética , Modelos Genéticos , Característica Quantitativa Herdável , Masculino
2.
PLoS Genet ; 20(7): e1011036, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968323

RESUMO

Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.


Assuntos
Adaptação Fisiológica , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Camundongos , Adaptação Fisiológica/genética , América do Sul , Genômica/métodos , Genoma , América , Peso Corporal/genética , Genética Populacional
3.
Pestic Biochem Physiol ; 202: 105934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879326

RESUMO

Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.


Assuntos
Comportamento Alimentar , Proteínas de Insetos , Mucosa Intestinal , Locusta migratoria , Proteínas Qa-SNARE , Locusta migratoria/genética , Locusta migratoria/crescimento & desenvolvimento , Locusta migratoria/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Comportamento Alimentar/fisiologia , Técnicas de Silenciamento de Genes , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Peso Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento
4.
Sci Rep ; 14(1): 13043, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844572

RESUMO

Hu sheep are a unique breed in our country with great reproductive potential, the extent of whose breeding has been steadily rising in recent years. The study subjects in this experiment were 8-month-old Hu sheep (n = 112). First of all, the growth performance, slaughter performance and meat quality of their eye muscle quality were assessed, meanwhile their live weight, carcass weight, body length, body height, chest circumference, chest depth and tube circumference were respectively 33.81 ± 5.47 kg, 17.43 ± 3.21 kg, 60.36 ± 4.41 cm, 63.25 ± 3.88 cm, 72.03 ± 5.02 cm, 30.70 ± 2.32 cm and 7.36 ± 0.56 cm, with a significant difference between rams and ewes (P < 0.01). Following that, transcriptome sequencing was done, and candidate genes related to growth performance were identified using the weighted co-expression network analysis (WGCNA) approach, which was used to identified 15 modules, with the turquoise and blue modules having the strongest association with growth and slaughter performance, respectively. We discovered hub genes such as ARHGAP31, EPS8, AKT3, EPN1, PACS2, KIF1C, C12H1orf115, FSTL1, PTGFRN and IFIH1 in the gene modules connected with growth and slaughter performance. Our research identifies the hub genes associated with the growth and slaughter performance of Hu sheep, which play an important role in their muscle growth, organ and cartilage development, blood vessel development and energy metabolic pathways. Our findings might lead to the development of potentially-useful biomarkers for the selection of growth and slaughterer performance-related attributes of sheep and other livestock.


Assuntos
Redes Reguladoras de Genes , Animais , Ovinos/genética , Ovinos/crescimento & desenvolvimento , Feminino , Transcriptoma , Perfilação da Expressão Gênica , Masculino , Cruzamento , Peso Corporal/genética , Carne
5.
BMC Genomics ; 25(1): 641, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937677

RESUMO

BACKGROUND: The Alpine Merino is a new breed of fine-wool sheep adapted to the cold and arid climate of the plateau in the world. It has been popularized in Northwest China due to its superior adaptability as well as excellent production performance. Those traits related to body weight, wool yield, and wool fiber characteristics, which are economically essential traits in Alpine Merino sheep, are controlled by QTL (Quantitative Trait Loci). Therefore, the identification of QTL and genetic markers for these key economic traits is a critical step in establishing a MAS (Marker-Assisted Selection) breeding program. RESULTS: In this study, we constructed the high-density genetic linkage map of Alpine Merino sheep by sequencing 110 F1 generation individuals using WGR (Whole Genome Resequencing) technology. 14,942 SNPs (Single Nucleotide Polymorphism) were identified and genotyped. The map spanned 2,697.86 cM, with an average genetic marker interval of 1.44 cM. A total of 1,871 high-quality SNP markers were distributed across 27 linkage groups, with an average of 69 markers per LG (Linkage Group). Among them, the smallest genetic distance is 19.62 cM for LG2, while the largest is 237.19 cM for LG19. The average genetic distance between markers in LGs ranged from 0.24 cM (LG2) to 3.57 cM (LG17). The marker density in the LGs ranged from LG14 (39 markers) to LG1 (150 markers). CONCLUSIONS: The first genetic map of Alpine Merino sheep we constructed included 14,942 SNPs, while 46 QTLs associated with body weight, wool yield and wool fiber traits were identified, laying the foundation for genetic studies and molecular marker-assisted breeding. Notably, there were QTL intervals for overlapping traits on LG4 and LG8, providing potential opportunities for multi-trait co-breeding and further theoretical support for selection and breeding of ultra-fine and meaty Alpine Merino sheep.


Assuntos
Peso Corporal , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , , Animais , Peso Corporal/genética , Lã/crescimento & desenvolvimento , Ovinos/genética , Ligação Genética , Marcadores Genéticos , Sequenciamento Completo do Genoma , Fenótipo , Carneiro Doméstico/genética , Genótipo
6.
Poult Sci ; 103(8): 103899, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909509

RESUMO

The Jinling White duck represents a newly developed breed characterized by a rapid growth rate and a superior meat quality, offering significant economic value and research potential; however, the genetic basis underlying their body weight traits remains less understood. Here, we performed whole-genome resequencing for 201 diverse Jinling White male ducks and conducted population genomic analyses, suggesting a rich genetic diversity within the Jinling White duck population. Equipped with our genomic resources, we applied genome-wide association analysis for body weight on birth (BWB), body weight on 1 wk (BW1), body weight on 3 wk (BW3), body weight on 5 wk (BW5) and body weight on 7 wk (BW7) using 4 statistical models. Comparative studies indicated that factored spectrally transformed linear mixed models (FaST-LMM) demonstrated the most superior efficiency, yielding more results with the minimal false positives. We discovered that PUS7, FBXO11, FOXN2, MSH6, and SLC4A4 were associated with BWB. RAG2, and TMEFF2 were candidate genes for BW1, and STARD13, Klotho, ZAR1L are likely candidates for BW3 and BW5. PLXNC1, ATP1A1, CD58, FRYL, OCIAD1, and OCIAD2 were linked to BW7. These findings provide a genetic reference for the selection and breeding of Jinling White ducks, while also deepened our understanding of Growth and development phenotypic in ducks.


Assuntos
Peso Corporal , Patos , Estudo de Associação Genômica Ampla , Animais , Patos/genética , Patos/fisiologia , Patos/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla/veterinária , Peso Corporal/genética , Masculino , China , População do Leste Asiático
7.
Sci Rep ; 14(1): 13120, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849438

RESUMO

Body weight is an important economic trait for sheep meat production, and its genetic improvement is considered one of the main goals in the sheep breeding program. Identifying genomic regions that are associated with growth-related traits accelerates the process of animal breeding through marker-assisted selection, which leads to increased response to selection. In this study, we conducted a weighted single-step genome-wide association study (WssGWAS) to identify potential candidate genes for direct and maternal genetic effects associated with birth weight (BW) and weaning weight (WW) in Baluchi sheep. The data used in this research included 13,408 birth and 13,170 weaning records collected at Abbas-Abad Baluchi Sheep Breeding Station, Mashhad-Iran. Genotypic data of 94 lambs genotyped by Illumina 50K SNP BeadChip for 54,241 markers were used. The proportion of variance explained by genomic windows was calculated by summing the variance of SNPs within 1 megabase (Mb). The top 10 window genomic regions explaining the highest percentages of additive and maternal genetic variances were selected as candidate window genomic regions associated with body weights. Our findings showed that for BW, the top-ranked genomic regions (1 Mb windows) explained 4.30 and 4.92% of the direct additive and maternal genetic variances, respectively. The direct additive genetic variance explained by the genomic window regions varied from 0.31 on chromosome 1 to 0.59 on chromosome 8. The highest (0.84%) and lowest (0.32%) maternal genetic variances were explained by genomic windows on chromosome 10 and 17, respectively. For WW, the top 10 genomic regions explained 6.38 and 5.76% of the direct additive and maternal genetic variances, respectively. The highest and lowest contribution of direct additive genetic variances were 1.37% and 0.42%, respectively, both explained by genomic regions on chromosome 2. For maternal effects on WW, the highest (1.38%) and lowest (0.41%) genetic variances were explained by genomic windows on chromosome 2. Further investigation of these regions identified several possible candidate genes associated with body weight. Gene ontology analysis using the DAVID database identified several functional terms, such as translation repressor activity, nucleic acid binding, dehydroascorbic acid transporter activity, growth factor activity and SH2 domain binding.


Assuntos
Peso ao Nascer , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Desmame , Animais , Feminino , Ovinos/genética , Peso ao Nascer/genética , Locos de Características Quantitativas , Peso Corporal/genética , Herança Materna , Cruzamento , Genótipo , Masculino , Fenótipo
8.
Theriogenology ; 223: 70-73, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692036

RESUMO

Selection to increase body weight in poultry can hamper reproduction traits and compromise production efficiency. Thus, attention to reproduction traits is essential to improving the sustainability of breeding programs. Data from a domestic quail breeding program for meat production were used to estimate genetic parameters. We analyzed five traits: 4-week body weight, age at sexual maturity for males and females, cloacal gland area, female, and male reproductive organs weights. A multi-trait mixed model analysis with fixed effects of generation/hatch was performed, assuming environmental covariance equals zero for sex-limited traits. Heritability estimates range from low to moderate for male sexual maturity and cloacal gland area, and high for other traits. Intersexual genetic correlation for age at sexual maturity is positive, which can lead to correlated responses in the other sex. Reproductive organs weights are genetically correlated with body weight, but not significantly between sexes and nor with sexual maturity. Genetic correlations for the cloacal gland area were positive with body weight and negative with age at sexual maturity of males and females, demonstrating a potential use of this trait for selection with favorable outcomes in reproduction. The use of the cloacal gland area can be used in the same way as the scrotal circumference in mammals, improving female reproduction traits by selecting a trait recorded in males.


Assuntos
Peso Corporal , Codorniz , Maturidade Sexual , Animais , Masculino , Feminino , Maturidade Sexual/genética , Peso Corporal/genética , Codorniz/genética , Codorniz/fisiologia , Tamanho do Órgão/genética , Cloaca
9.
PLoS One ; 19(5): e0295109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739572

RESUMO

The genetic complexity of polygenic traits represents a captivating and intricate facet of biological inheritance. Unlike Mendelian traits controlled by a single gene, polygenic traits are influenced by multiple genetic loci, each exerting a modest effect on the trait. This cumulative impact of numerous genes, interactions among them, environmental factors, and epigenetic modifications results in a multifaceted architecture of genetic contributions to complex traits. Given the well-characterized genome, diverse traits, and range of genetic resources, chicken (Gallus gallus) was employed as a model organism to dissect the intricate genetic makeup of a previously identified major Quantitative Trait Loci (QTL) for body weight on chromosome 1. A multigenerational advanced intercross line (AIL) of 3215 chickens whose genomes had been sequenced to an average of 0.4x was analyzed using genome-wide association study (GWAS) and variance-heterogeneity GWAS (vGWAS) to identify markers associated with 8-week body weight. Additionally, epistatic interactions were studied using the natural and orthogonal interaction (NOIA) model. Six genetic modules, two from GWAS and four from vGWAS, were strongly associated with the studied trait. We found evidence of both additive- and non-additive interactions between these modules and constructed a putative local epistasis network for the region. Our screens for functional alleles revealed a missense variant in the gene ribonuclease H2 subunit B (RNASEH2B), which has previously been associated with growth-related traits in chickens and Darwin's finches. In addition, one of the most strongly associated SNPs identified is located in a non-coding region upstream of the long non-coding RNA, ENSGALG00000053256, previously suggested as a candidate gene for regulating chicken body weight. By studying large numbers of individuals from a family material using approaches to capture both additive and non-additive effects, this study advances our understanding of genetic complexities in a highly polygenic trait and has practical implications for poultry breeding and agriculture.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Peso Corporal/genética , Polimorfismo de Nucleotídeo Único , Epistasia Genética , Fenótipo , Feminino , Herança Multifatorial , Masculino
10.
Physiol Behav ; 282: 114582, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38750805

RESUMO

Food restriction can have profound effects on various aspects of behavior, physiology, and morphology. Such effects might be amplified in animals that are highly active, given that physical activity can represent a substantial fraction of the total daily energy budget. More specifically, some effects of food restriction could be associated with intrinsic, genetically based differences in the propensity or ability to perform physical activity. To address this possibility, we studied the effects of food restriction in four replicate lines of High Runner (HR) mice that have been selectively bred for high levels of voluntary wheel running. We hypothesized that HR mice would respond differently than mice from four non-selected Control (C) lines. Healthy adult females from generation 65 were housed individually with wheels and provided access to food and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to attain a plateau in daily running distances. Ad libitum food intake of each mouse was measured on days 20-22 (Phase 2). After this, each mouse experienced a 20 % food restriction for 7 days (days 24-30; Phase 3), and then a 40 % food restriction for 7 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-minute bins, during the entire experiment. Repeated-measures ANOVA of daily wheel-running distance during Phases 2-4 indicated that HR mice always ran much more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 3.58-fold higher with -20 % food, and 3.06-fold higher with -40 % food. Seven days of food restriction at -20 % did not significantly reduce wheel-running distance of either HR (-5.8 %, P = 0.0773) or C mice (-13.3 %, P = 0.2122). With 40 % restriction, HR mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. values at 20 % restriction), whereas C mice did not (P = 0.4068 vs. values at 20 % restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634). For HR mice, daily running distances averaged 11.4 % lower at -40 % food versus baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-4.8 %, P = 0.7004). Repeated-measures ANOVA of body mass during Phases 2-4 indicated a highly significant effect of food restriction (P = 0.0001), but no significant effect of linetype (P = 0.1764) and no interaction (P = 0.8524). Both HR and C mice had a significant reduction in body mass only when food rations were reduced by 40 % relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for HR mice (-2.6 %) and -0.49 g (-2.0 %) for C mice. Overall, our results indicate a surprising insensitivity of body mass to food restriction in both high-activity (HR) and ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus calling for studies of compensatory mechanisms that allow this insensitivity.


Assuntos
Peso Corporal , Ingestão de Alimentos , Atividade Motora , Corrida , Animais , Camundongos , Feminino , Peso Corporal/fisiologia , Peso Corporal/genética , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/genética , Atividade Motora/fisiologia , Corrida/fisiologia , Privação de Alimentos/fisiologia , Seleção Artificial , Análise de Variância
11.
Nat Commun ; 15(1): 3776, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710707

RESUMO

The causes of temporal fluctuations in adult traits are poorly understood. Here, we investigate the genetic determinants of within-person trait variability of 8 repeatedly measured anthropometric traits in 50,117 individuals from the UK Biobank. We found that within-person (non-directional) variability had a SNP-based heritability of 2-5% for height, sitting height, body mass index (BMI) and weight (P ≤ 2.4 × 10-3). We also analysed longitudinal trait change and show a loss of both average height and weight beyond about 70 years of age. A variant tracking the Alzheimer's risk APOE- E 4 allele (rs429358) was significantly associated with weight loss ( ß = -0.047 kg per yr, s.e. 0.007, P = 2.2 × 10-11), and using 2-sample Mendelian Randomisation we detected a relationship consistent with causality between decreased lumbar spine bone mineral density and height loss (bxy = 0.011, s.e. 0.003, P = 3.5 × 10-4). Finally, population-level variance quantitative trait loci (vQTL) were consistent with within-person variability for several traits, indicating an overlap between trait variability assessed at the population or individual level. Our findings help elucidate the genetic influence on trait-change within an individual and highlight disease risks associated with these changes.


Assuntos
Apolipoproteínas E , Estatura , Índice de Massa Corporal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doença de Alzheimer/genética , Antropometria , Apolipoproteínas E/genética , Estatura/genética , Peso Corporal/genética , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Estudos Longitudinais , Vértebras Lombares , Análise da Randomização Mendeliana , Biobanco do Reino Unido , Reino Unido
12.
Meat Sci ; 214: 109518, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38677055

RESUMO

This is the first UK genome wide association study investigating potential links between Video Image Analysis (VIA) carcass traits and molecular polymorphisms in crossbred sheep. Phenotypic and genotypic data were collected from two crossbred lamb populations: Texel x Scotch Mule (TxSM, n = 2330) and Texel x Lleyn (TxL, n = 3816). Traits measured included live weights at birth, eight weeks and weaning (∼15 weeks). VIA-predicted traits included total weights and weights of fat, muscle and bone in the whole carcass and primal (hind leg, saddle, shoulder) regions. Within-breed heritabilities estimated for the VIA traits ranged from 0.01 to 0.70, indicating potential for inclusion of some traits in breeding programmes. The two crossbred populations differed in SNPs associated with different traits. Two SNPs on chromosomes two (s74618.1) and eight (s68536.1), respectively, reached genome-wise significance for TxSM, explaining <1% of trait variance, for whole carcass fat and muscle weights, hind leg and saddle fat weights and shoulder bone weights. For TxL, four SNPs reached genome-wise significance, on chromosome two for hind leg muscle weight (OAR2_117,959,202 and OAR2_11804335), on chromosome 10 for whole carcass bone weight (OAR19_8,995,957.1), and on chromosome 19 for weaning weight (s40847.1), each explaining <1% of trait genetic variation. Differences in apparent genetic control of carcass traits may be influenced by the lambs' cross-breed, but also by management decisions affecting environmental variance and trait definitions, which should be understood in order to define protocols for incorporation of carcass traits into (cross)breeding programmes. IMPLICATIONS: Combining VIA-measured carcass traits with conventional production traits in a breeding programme could potentially improve the production and product quality of meat sheep. Phenotypes for VIA traits could be collected relatively easily if VIA machines were present at all abattoir sites. The current study and future Genome Wide Association Studies may help to identify potentially informative molecular markers, that explain large proportions of the genetic variance observed in VIA-measured carcass traits. Including this information in the estimation of breeding values could increase the accuracy of prediction, increasing the potential rate of genetic improvement for product quality. This study confirms the polygenic architecture of the investigated carcass traits, with a small number of molecular markers that each explain a small amount of genetic variation. Further studies across breed types are recommended to further test and validate molecular markers for traits related to lamb carcass quality, as measured by video image analysis.


Assuntos
Cruzamento , Estudo de Associação Genômica Ampla , Músculo Esquelético , Fenótipo , Polimorfismo de Nucleotídeo Único , Carne Vermelha , Carneiro Doméstico , Animais , Carne Vermelha/análise , Carneiro Doméstico/genética , Masculino , Tecido Adiposo , Feminino , Genótipo , Composição Corporal/genética , Peso Corporal/genética , Processamento de Imagem Assistida por Computador/métodos , Gravação em Vídeo
13.
An Acad Bras Cienc ; 96(1): e20230010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451594

RESUMO

Growth and carcass traits are essential selection criteria for beef cattle breeding programs. However, it is necessary to combine these measurements with body composition traits to meet the demand of the consumer market. This study aimed to estimate the genetic parameters for visual scores, growth (pre and post-weaning weights), and carcass (rib eye area (REA), back and rump fat thickness) traits in Nellore cattle using Bayesian inference. Data from 12,060 animals belonging to the HoRa Hofig Ramos herd were used. Morphological traits were evaluated by the MERCOS methodology. The heritability estimates obtained ranged from low to high magnitude, from 0.15 to 0.28 for visual scores, 0.13 to 0.44 for growth, and from 0.42 to 0.46 for carcass traits. Genetic correlations between visual scores and growth traits were generally of moderate to high magnitudes, however, visual scores showed low correlations with carcass traits, except between sacral bone and structure and REA. Selection for visual score traits can lead to favorable responses in body weight and vice versa, but the same is not true for carcass traits. Morphological categorical traits can be used as complementary tools that add value to selection.


Assuntos
Composição Corporal , Bovinos/genética , Animais , Teorema de Bayes , Peso Corporal/genética , Composição Corporal/genética , Fenótipo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38452850

RESUMO

Declining flesh quality has drawn considerable attention in the farmed large yellow croaker (LYC; Larimichthys crocea) industry. Inosine monophosphate (IMP) is the primary flavor substance in aquatic animals. Adenosine monophosphate deaminase 1 (AMPD1) plays a critical role in IMP formation by catalyzing the deamination of AMP to IMP in the purine nucleotide cycle. To further evaluate the correlation between ampd1 mRNA expression levels and IMP content in the LYC muscle tissue, the relevant open reading frame (ORF) of L. crocea (Lcampd1) was cloned, and the IMP content and Lcampd1 mRNA expression in the muscles of LYCs of different sizes were examined. The ORF cDNA of Lcampd1 was 2211 bp in length and encoded a polypeptide of 736 amino acids (AAs). The deduced protein, LcAMPD1, possesses conserved AMPD active regions (SLSTDDP) and shows high homology with AMPD proteins of other teleost fishes. The genomic DNA sequence of Lcampd1 exhibits a high degree of evolutionary conservation in terms of structural organization among species. Phylogenetic analysis of the deduced AA sequence revealed that teleost fish and mammalian AMPD1 were separate from each other and formed a cluster with AMPD3, suggesting that AMPD1 and AMPD3 arose by duplication of a common primordial gene. In healthy LYC, Lcampd1 mRNA was expressed only in the muscle tissue. The IMP content in the muscle of LYCs with different average body weights was measured by high-performance liquid chromatography; the results showed that the IMP content in the muscle of LYCs with greater body weight was significantly higher than that in LYC with lower body weight. Moreover, a similar trend in Lcampd1 expression was observed in these muscle tissues. The Pearson correlation analysis further showed that the Lcampd1 mRNA expression was positively correlated with IMP content in the muscles of different-sized LYCs. These results suggest the potential function of Lcampd1 in determining the IMP content in LYC and provide a theoretical basis for flesh quality improvement, as well as a scientific basis for the development of the molecular breeding of LYC.


Assuntos
Inosina Monofosfato , Perciformes , Animais , Sequência de Bases , Sequência de Aminoácidos , Inosina Monofosfato/metabolismo , Filogenia , Perciformes/genética , Perciformes/metabolismo , Monofosfato de Adenosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peso Corporal/genética , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
15.
Sci Rep ; 14(1): 6090, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480780

RESUMO

Genome wide association studies (GWAS) have been utilized to identify genetic risk loci associated with both simple and complex inherited disorders. Here, we performed a GWAS in Labrador retrievers to identify genetic loci associated with hip dysplasia and body weight. Hip dysplasia scores were available for 209 genotyped dogs. We identified a significantly associated locus for hip dysplasia on chromosome 24, with three equally associated SNPs (p = 4.3 × 10-7) in complete linkage disequilibrium located within NDRG3, a gene which in humans has been shown to be differentially expressed in osteoarthritic joint cartilage. Body weight, available for 85 female dogs, was used as phenotype for a second analysis. We identified two significantly associated loci on chromosome 10 (p = 4.5 × 10-7) and chromosome 31 (p = 2.5 × 10-6). The most associated SNPs within these loci were located within the introns of the PRKCE and CADM2 genes, respectively. PRKCE has been shown to play a role in regulation of adipogenesis whilst CADM2 has been associated with body weight in multiple human GWAS. In summary, we identified credible candidate loci explaining part of the genetic inheritance for hip dysplasia and body weight in Labrador retrievers with strong candidate genes in each locus previously implicated in the phenotypes investigated.


Assuntos
Luxação Congênita de Quadril , Luxação do Quadril , Displasia Pélvica Canina , Cães , Feminino , Humanos , Animais , Estudo de Associação Genômica Ampla , Displasia Pélvica Canina/genética , Luxação do Quadril/genética , Suécia , Loci Gênicos , Luxação Congênita de Quadril/genética , Peso Corporal/genética , Polimorfismo de Nucleotídeo Único
16.
BMC Genomics ; 25(1): 296, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509464

RESUMO

BACKGROUND: Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS: We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS: We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION: Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Locos de Características Quantitativas , Genômica , Peso Corporal/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , China
17.
Genes (Basel) ; 15(3)2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540354

RESUMO

The search for SNPs and candidate genes that determine the manifestation of major selected traits is one crucial objective for genomic selection aimed at increasing poultry production efficiency. Here, we report a genome-wide association study (GWAS) for traits characterizing meat performance in the domestic quail. A total of 146 males from an F2 reference population resulting from crossing a fast (Japanese) and a slow (Texas White) growing breed were examined. Using the genotyping-by-sequencing technique, genomic data were obtained for 115,743 SNPs (92,618 SNPs after quality control) that were employed in this GWAS. The results identified significant SNPs associated with the following traits at 8 weeks of age: body weight (nine SNPs), daily body weight gain (eight SNPs), dressed weight (33 SNPs), and weights of breast (18 SNPs), thigh (eight SNPs), and drumstick (three SNPs). Also, 12 SNPs and five candidate genes (GNAL, DNAJC6, LEPR, SPAG9, and SLC27A4) shared associations with three or more traits. These findings are consistent with the understanding of the genetic complexity of body weight-related traits in quail. The identified SNPs and genes can be used in effective quail breeding as molecular genetic markers for growth and meat characteristics for the purpose of genetic improvement.


Assuntos
Coturnix , Estudo de Associação Genômica Ampla , Masculino , Animais , Coturnix/genética , Polimorfismo de Nucleotídeo Único/genética , Carne/análise , Peso Corporal/genética
18.
Genes (Basel) ; 15(3)2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540449

RESUMO

Qianhua Mutton Merino is a dual-purpose (meat and wool) breed of sheep that has been newly developed in China. In this study, we assessed the growth and development of the Qianhua Mutton Merino sheep breed under house feeding conditions by measuring the body weight and chest circumference of 2300 rams and ewes of this breed aged 0-24 months. Based on the fitting results of three nonlinear growth models, namely Logistic, Gompertz, and von Bertalanffy, in Qianhua Mutton Merino, we selected the von Bertalanffy model because of its highest fitting degree among all models (R2 > 0.977). The significant analysis of the combined fixation of each sheep body's weight and bust took place (A: mature body weight, B: adjustment parameter, K: instant relative growth rate). The results revealed that parameters A, B, and K of body weight and chest circumference have high heritability and thus could be used as target traits for genetic improvement. Moreover, the correlation strength among A, B, and K suggested that these parameters can be used as a reference to adjust the genetic parameters in the growth model to genetically improve the body size of Qianhua Mutton Merino during breeding.


Assuntos
Carne Vermelha , Carneiro Doméstico , Ovinos/genética , Animais , Masculino , Feminino , Peso Corporal/genética , Fenótipo , Carne
19.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395612

RESUMO

ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Animais , Feminino , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
20.
Poult Sci ; 103(4): 103480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330887

RESUMO

Random samples from generation S41 of the Virginia high and low 8-week body weight lines formed the base population for producing a multigenerational reciprocal intercross population. Although genetic mapping from this intercross has been reported, lacking are phenotypic trends across multiple generations. Here, we provide phenotypic information for the parental base population, the F1 reciprocal cross, and subsequent segregating recombinant generations F2 to F17. Heterosis for the selected trait in the F1 was negative for both reciprocal crosses. Phenotypic correlations for the selected trait in the recombinant generations were essentially nil for both males and females as was percent sexual dimorphism and coefficients of variation.


Assuntos
Galinhas , Feminino , Masculino , Animais , Galinhas/genética , Virginia , Cruzamentos Genéticos , Mapeamento Cromossômico/veterinária , Peso Corporal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...