Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.386
Filtrar
1.
PLoS Biol ; 22(9): e3002755, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39255270

RESUMO

The information contained in population genomic data can tell us much about the past ecology and evolution of species. We leveraged detailed phenotypic and genomic data of nearly all living kakapo to understand the evolution of its feather color polymorphism. The kakapo is an endangered and culturally significant parrot endemic to Aotearoa New Zealand, and the green and olive feather colorations are present at similar frequencies in the population. The presence of such a neatly balanced color polymorphism is remarkable because the entire population currently numbers less than 250 birds, which means it has been exposed to severe genetic drift. We dissected the color phenotype, demonstrating that the two colors differ in their light reflectance patterns due to differential feather structure. We used quantitative genomics methods to identify two genetic variants whose epistatic interaction can fully explain the species' color phenotype. Our genomic forward simulations show that balancing selection might have been pivotal to establish the polymorphism in the ancestrally large population, and to maintain it during population declines that involved a severe bottleneck. We hypothesize that an extinct apex predator was the likely agent of balancing selection, making the color polymorphism in the kakapo a "ghost of selection past."


Assuntos
Plumas , Papagaios , Pigmentação , Seleção Genética , Animais , Pigmentação/genética , Nova Zelândia , Papagaios/genética , Polimorfismo Genético , Fenótipo , Cor , Comportamento Predatório
2.
Physiol Plant ; 176(5): e14500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221482

RESUMO

Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.


Assuntos
Angelica sinensis , Antocianinas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Angelica sinensis/genética , Angelica sinensis/metabolismo , Antocianinas/biossíntese , Antocianinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Pigmentação/genética , Ácido Abscísico/metabolismo , Pigmentos Biológicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Sci Rep ; 14(1): 20576, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39242697

RESUMO

Rosa damascena Mill., commonly known as the King Flower, is a fragrant and important species of the Rosaceae family. It is widely used in the perfumery and pharmaceutical industries. The scent and color of the flowers are significant characteristics of this ornamental plant. This study aimed to investigate the relative expression of MYB1, CCD1, FLS, PAL, CER1, GT1, ANS and PAR genes under two growth stages (S1 and S2) in two morphs. The CCD1 gene pathway is highly correlated with the biosynthesis of volatile compounds. The results showed that the overexpression of MYB1, one of the important transcription factors in the production of fragrance and color, in the Hot pink morph of sample S2 increased the expression of PAR, PAL, FLS, RhGT1, CCD1, ANS, CER1, and GGPPS. The methyl jasmonate (MeJA) stimulant had a positive and cumulative effect on gene expression in most genes, such as FLS in ACC.26 of the S2 sample, RhGT1, MYB1, CCD1, PAR, ANS, CER1, and PAL in ACC.1. To further study, a comprehensive analysis was performed to evaluate the relationship between the principal volatile compounds and colors. Our data suggest that the rose with pink flowers had a higher accumulation content of flavonoids and anthocyanin. To separate essential oil compounds, GC/MS analysis identified 26 compounds in four samples. The highest amount of geraniol, one of the main components of damask rose, was found in the Hot pink flower, 23.54%, under the influence of the MeJA hormone.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Odorantes , Rosa , Rosa/genética , Rosa/metabolismo , Flores/genética , Flores/metabolismo , Odorantes/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Genes de Plantas , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Pigmentação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo , Cor
4.
BMC Plant Biol ; 24(1): 847, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251901

RESUMO

BACKGROUND: Camellia nitidissima is a rare, prized camellia species with golden-yellow flowers. It has a high ornamental, medicinal, and economic value. Previous studies have shown substantial flavonol accumulation in C. nitidissima petals during flower formation. However, the mechanisms underlying the golden flower formation in C. nitidissima remain largely unknown. RESULTS: We performed an integrative analysis of the transcriptome, proteome, and metabolome of the petals at five flower developmental stages to construct the regulatory network underlying golden flower formation in C. nitidissima. Metabolome analysis revealed the presence of 323 flavonoids, and two flavonols, quercetin glycosides and kaempferol glycosides, were highly accumulated in the golden petals. Transcriptome and proteome sequencing suggested that the flavonol biosynthesis-related genes and proteins upregulated and the anthocyanin and proanthocyanidin biosynthesis-related genes and proteins downregulated in the golden petal stage. Further investigation revealed the involvement of MYBs and bHLHs in flavonoid biosynthesis. Expression analysis showed that flavonol synthase 2 (CnFLS2) was highly expressed in the petals, and its expression positively correlated with flavonol content at all flower developmental stages. Transient overexpression of CnFLS2 in the petals increased flavonol content. Furthermore, correlation analysis showed that the jasmonate (JA) pathways positively correlated with flavonol biosynthesis, and exogenous methyl jasmonate (MeJA) treatment promoted CnFLS2 expression and flavonol accumulation. CONCLUSIONS: Our findings showed that the JA-CnFLS2 module regulates flavonol biosynthesis during golden petal formation in C. nitidissima.


Assuntos
Camellia , Flavonóis , Flores , Proteínas de Plantas , Camellia/genética , Camellia/metabolismo , Camellia/crescimento & desenvolvimento , Flores/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flavonóis/metabolismo , Flavonóis/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Ciclopentanos/metabolismo , Transcriptoma , Pigmentação/genética , Oxilipinas/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Proteoma/metabolismo , Metaboloma , Multiômica , Oxirredutases
5.
BMC Genomics ; 25(1): 823, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223495

RESUMO

BACKGROUND: The Flavonoid 3'-hydroxylase gene(F3'H) is an important structural gene in the anthocyanin synthesis pathway of plants, which has been proven to be involved in the color formation of organs such as leaves, flowers, and fruits in many plants. However, the mechanism and function in barley are still unclear. RESULTS: In order to explore the molecular mechanism of the grain color formation of purple qingke, we used the cultivated qingke variety Nierumzha (purple grain) and the selected qingke variety Kunlun 10 (white grain) to conduct transcriptomic sequencing at the early milk, late milk and soft dough stage. Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct weighted gene co-expression network related to grain color formation, and three key modules (brown, yellow, and turquoise modules) related to purple grain of qingke were selected. F3'H (HORVU1Hr1G094880) was selected from the hub gene of the module for the yeast library, yeast two-hybrid (Y2H), subcellular localization and other studies. It was found that in purple qingke, HvnF3'H mainly distributed in the cytoplasm and cell membrane and interacted with several stress proteins such as methyltransferase protein and zinc finger protein. CONCLUSIONS: The results of this study provide reference for the regulation mechanism of anthocyanin-related genes in purple grain qingke.


Assuntos
Antocianinas , Sistema Enzimático do Citocromo P-450 , Regulação da Expressão Gênica de Plantas , Antocianinas/biossíntese , Antocianinas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Redes Reguladoras de Genes , Pigmentação/genética
6.
Sensors (Basel) ; 24(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39275428

RESUMO

Canopy imaging offers a non-destructive, efficient way to objectively measure canopy size, detect stress symptoms, and assess pigment concentrations. While it is faster and easier than traditional destructive methods, manual image analysis, including segmentation and evaluation, can be time-consuming. To make imaging more widely accessible, it's essential to reduce the cost of imaging systems and automate the analysis process. We developed a low-cost imaging system with automated analysis using an embedded microcomputer equipped with a monochrome camera and a filter for a total hardware cost of ~USD 500. Our imaging system takes images under blue, green, red, and infrared light, as well as chlorophyll fluorescence. The system uses a Python-based program to collect and analyze images automatically. The multi-spectral imaging system separates plants from the background using a chlorophyll fluorescence image, which is also used to quantify canopy size. The system then generates normalized difference vegetation index (NDVI, "greenness") images and histograms, providing quantitative, spatially resolved information. We verified that these indices correlate with leaf chlorophyll content and can easily add other indices by installing light sources with the desired spectrums. The low cost of the system can make this imaging technology widely available.


Assuntos
Clorofila , Processamento de Imagem Assistida por Computador , Folhas de Planta , Clorofila/análise , Processamento de Imagem Assistida por Computador/métodos , Pigmentação
7.
Theor Appl Genet ; 137(10): 223, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278978

RESUMO

KEY MESSAGE: Mutations in TaCHLI impact chlorophyll levels and yield-related traits in wheat. Natural variations in TaCHLI-7A/B influence plant productivity, offering potential for molecular breeding. Chlorophyll is essential for plant growth and productivity. The CHLI subunit of the magnesium chelatase protein plays a key role inserting magnesium into protoporphyrin IX during chlorophyll biosynthesis. Here, we identify a novel wheat mutant chlorophyll (chl) that exhibits yellow-green leaves, reduced chlorophyll levels, and increased carotenoid content, leading to an overall decline in yield-related traits. Map-based cloning reveals that the chl phenotype is caused by a point mutation (Asp186Asn) in the TaCHLI-7D gene, which encodes subunit I of magnesium chelatase. Furthermore, the three TaCHLI mutants: chl-7b-1 (Pro82Ser), chl-7b-2 (Ala291Thr), and chl-7d-1 (Gly357Glu), also showed significant reductions in chlorophyll content and yield-related traits. However, TaCHLI-7D overexpression in rice significantly decreased thousand kernel weight, yield per plant, and germination. Additionally, natural variations in TaCHLI-7A/B are significantly associated with flag leaf, spike exsertion length, and yield per plant. Notably, the favorable haplotype, TaCHLI-7B-HapII, which displayed higher thousand kernel weight and yield per plant, is positively selected in wheat breeding. Our study provides insights on the regulatory molecular mechanisms underpinning leaf color and chlorophyll biosynthesis, and highlights TaCHLI functions, which provide useful molecular markers and genetic resources for wheat breeding.


Assuntos
Clorofila , Liases , Mutação de Sentido Incorreto , Fenótipo , Folhas de Planta , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Clorofila/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Liases/genética , Liases/metabolismo , Metanossulfonato de Etila , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Mapeamento Cromossômico , Pigmentação/genética , Carotenoides/metabolismo , Clonagem Molecular , Melhoramento Vegetal
8.
Cells ; 13(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273046

RESUMO

One of the important genes for eyespot development in butterfly wings is Distal-less. Its function has been evaluated via several methods, including CRISPR/Cas9 genome editing. However, functional inhibition may be performed at the right time at the right place using a different method. Here, we used a novel protein delivery method for pupal wing tissues in vivo to inactivate a target protein, Distal-less, with a polyclonal anti-Distal-less antibody using the blue pansy butterfly Junonia orithya. We first demonstrated that various antibodies including the anti-Distal-less antibody were delivered to wing epithelial cells in vivo in this species. Treatment with the anti-Distal-less antibody reduced eyespot size, confirming the positive role of Distal-less in eyespot development. The treatment eliminated or deformed a parafocal element, suggesting a positive role of Distal-less in the development of the parafocal element. This result also suggested the integrity of an eyespot and its corresponding parafocal element as the border symmetry system. Taken together, these findings demonstrate that the antibody-mediated protein knockdown method is a useful tool for functional assays of proteins, such as Distal-less, expressed in pupal wing tissues, and that Distal-less functions for eyespots and parafocal elements in butterfly wing color pattern development.


Assuntos
Anticorpos , Borboletas , Proteínas de Insetos , Asas de Animais , Animais , Borboletas/metabolismo , Borboletas/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Anticorpos/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Pigmentação/genética , Técnicas de Silenciamento de Genes
9.
Sci Adv ; 10(37): eadp5574, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270029

RESUMO

Colorful flower patterns are key signals to attract pollinators. To produce such motifs, plants specify boundaries dividing petals into subdomains where cells develop distinctive pigmentations, shapes, and textures. While some transcription factors and biosynthetic pathways behind these characteristics are well studied, the upstream processes restricting their activities to specific petal regions remain enigmatic. Here, we unveil that the petal surface of Hibiscus trionum, an emerging model featuring a bullseye on its corolla, is prepatterned as the bullseye boundary position is specified long before it becomes visible. Using a computational model, we explore how pattern proportions are maintained while petals experience a 100-fold size increase. Exploiting transgenic lines and natural variants, we show that plants can regulate boundary position during the prepatterning phase or modulate growth on either side of this boundary later in development to vary bullseye proportions. Such modifications are functionally relevant, as buff-tailed bumblebees can reliably identify food sources based on bullseye size and prefer certain pattern proportions.


Assuntos
Flores , Hibiscus , Polinização , Hibiscus/fisiologia , Hibiscus/metabolismo , Flores/metabolismo , Flores/genética , Animais , Abelhas/fisiologia , Pigmentação , Regulação da Expressão Gênica de Plantas
10.
Theor Appl Genet ; 137(10): 225, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287784

RESUMO

KEY MESSAGE: We identified a 580 bp deletion of CmaKNAT6 coding region influences peel colour of mature Cucurbita maxima fruit. Peel colour is an important agronomic characteristic affecting commodity quality in Cucurbit plants. Genetic mapping of fruit peel colour promotes molecular breeding and provides an important basis for understanding the regulatory mechanism in Cucurbit plants. In the present study, the Cucurbita maxima inbred line '9-6' which has a grey peel colour and 'U3-3-44' which has a dark green peel colour in the mature fruit stage, were used as plant materials. At 5-40 days after pollination (DAP), the contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids in the 'U3-3-44' peels were significantly greater than those in the '9-6' peels. In the epicarp of the '9-6' mature fruit, the presence of nonpigmented cell layers and few chloroplasts in each cell in the pigmented layers were observed. Six generations derived by crossing '9-6' and 'U3-3-44' were constructed, and the dark green peel was found to be controlled by a single dominant locus, which was named CmaMg (mature green peel). Through bulked-segregant analysis sequencing (BSA-seq) and insertion-deletion (InDel) markers, CmaMg was mapped to a region of approximately 449.51 kb on chromosome 11 using 177 F2 individuals. Additionally, 1703 F2 plants were used for fine mapping to compress the candidate interval to a region of 32.34 kb. Five coding genes were in this region, and CmaCh11G000900 was identified as a promising candidate gene according to the reported function, sequence alignment, and expression analyses. CmaCh11G000900 (CmaKNAT6) encodes the homeobox protein knotted-1-like 6 and contains 4 conserved domains. CmaKNAT6 of '9-6' had a 580 bp deletion, leading to premature transcriptional termination. The expression of CmaKNAT6 tended to increase sharply during the early fruit development stage but decrease gradually during the late period of fruit development. Allelic diversity analysis of pumpkin germplasm resources indicated that the 580 bp deletion in the of CmaKNAT6 coding region was associated with peel colour. Subcellular localization analysis indicated that CmaKNAT6 is a nuclear protein. Transcriptomic analysis of the inbred lines '9-6' and 'U3-3-44' indicated that genes involved in chlorophyll biosynthesis were more enriched in 'U3-3-44' than in '9-6'. Additionally, the expression of transcription factor genes that positively regulate chlorophyll synthesis and light signal transduction pathways was upregulated in 'U3-3-44'. These results lay a foundation for further studies on the genetic mechanism underlying peel colour and for optimizing peel colour-based breeding strategies for C. maxima.


Assuntos
Mapeamento Cromossômico , Cucurbita , Frutas , Perfilação da Expressão Gênica , Pigmentação , Cucurbita/genética , Cucurbita/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Regulação da Expressão Gênica de Plantas , Clorofila/metabolismo , Genes de Plantas , Carotenoides/metabolismo
11.
Planta ; 260(4): 97, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278990

RESUMO

MAIN CONCLUSION: Microscopic analyses and chemical profiling demonstrate that the white rind phenotype in melon fruit is associated with the accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters. Serving as an indicator of quality, the rind (or external) color of fruit directly affects consumer choice. A fruit's color is influenced by factors such as the levels of pigments and deposited epicuticular waxes. The latter produces a white-grayish coating often referred to as "wax bloom". Previous reports have suggested that some melon (Cucumis melo L.) accessions may produce wax blooms, where a dominant white rind color trait was genetically mapped to a major locus on chromosome 7 and suggested to be inherited as a single gene named Wi. We here provide the first direct evidence of the contribution of epicuticular waxes to the dominant white rind trait in melon fruit. Our light and electron microscopy and gas chromatography-mass spectrometry (GC-MS) comparative analysis of melon accessions with white or green rinds reveals that the rind of melon fruit is rich in epicuticular waxes. These waxes are composed of various biochemical classes, including fatty acids, fatty alcohols, aldehydes, fatty amides, n-alkanes, tocopherols, triterpenoids, and wax esters. We show that the dominant white rind phenotype in melon fruit is associated with increased accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters, which are linked with the deposition of crystal-like wax platelets on their surfaces. Together, this study broadens the understanding of natural variation in an important quality trait of melon fruit and promotes the future identification of the causative gene for the dominant white rind trait.


Assuntos
Frutas , Ceras , Cor , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Frutas/genética , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Fenótipo , Pigmentação/genética , Ceras/metabolismo , Ceras/química
13.
Proc Biol Sci ; 291(2028): 20240713, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106954

RESUMO

Aposematic coloration offers an opportunity to explore the molecular mechanisms underlying canalization. In this study, the role of epigenetic regulation underlying robustness was explored in the aposematic coloration of the milkweed bug, Oncopeltus fasciatus. Polycomb (Pc) and Enhancer of zeste (E(z)), which encode components of the Polycomb repressive complex 1 (PRC1) and PRC2, respectively, and jing, which encodes a component of the PRC2.2 subcomplex, were knocked down in the fourth instar of O. fasciatus. Knockdown of these genes led to alterations in scutellar morphology and melanization. In particular, when Pc was knocked down, the adults developed a highly melanized abdomen, head and forewings at all temperatures examined. In contrast, the E(z) and jing knockdown led to increased plasticity of the dorsal forewing melanization across different temperatures. Moreover, jing knockdown adults exhibited increased plasticity in the dorsal melanization of the head and the thorax. These observations demonstrate that histone modifiers may play a key role during the process of canalization to confer robustness in the aposematic coloration.


Assuntos
Heterópteros , Proteínas de Insetos , Pigmentação , Proteínas do Grupo Polycomb , Animais , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Heterópteros/fisiologia , Heterópteros/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Epigênese Genética , Técnicas de Silenciamento de Genes
14.
Curr Biol ; 34(15): R722-R723, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106826

RESUMO

Camouflage is vital for the survival of many prey species1,2, including ground-nesting birds3,4,5,6. Egg camouflage via background matching and disruptive coloration (high contrast markings that break up the body outline) is often behaviourally mediated by selecting substrates that enhance egg camouflage1,2,3,4,5,6. However, the mechanisms controlling this behaviour in birds have remained unknown. Several, not mutually exclusive, mechanisms have been suggested to control background choice for egg camouflage7. These include where individual background preferences are genetically linked to egg coloration, enabled through learning egg appearances from previous breeding attempts, or modified by imprinting on visual backgrounds during early life7, Here, using predator vision models, we compared the camouflage of Japanese quail (Coturnix japonica) eggs among females who were allowed to choose one of four coloured substrates on which to lay3. Birds were divided into experienced females who had been given the opportunity to observe the appearance of their eggs, versus naïve females breeding for the first time. Our experiment revealed that breeding experience leads to improved background choices made for egg background matching. However, substrate choice for disruptive coloration appeared genetically determined, as both bird groups chose backgrounds that enhanced egg disruptiveness regardless of experience. These mechanisms underpin behaviours that are likely essential for birds and other animals to optimise camouflage and avoid predation6.


Assuntos
Coturnix , Animais , Feminino , Coturnix/fisiologia , Óvulo/fisiologia , Comportamento de Nidação , Pigmentação , Comportamento de Escolha/fisiologia , Cor , Mimetismo Biológico , Aprendizagem/fisiologia
15.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125834

RESUMO

Methylation represents a crucial class of modification that orchestrates a spectrum of regulatory roles in plants, impacting ornamental characteristics, growth, development, and responses to abiotic stress. The establishment and maintenance of methylation involve the coordinated actions of multiple regulatory factors. Methyltransferases play a pivotal role by specifically recognizing and methylating targeted sites, which induces alterations in chromatin structure and gene expression, subsequently influencing the release of volatile aromatic substances and the accumulation of pigments in plant petals. In this paper, we review the regulatory mechanisms of methylation modification reactions and their effects on the changes in aromatic substances and pigments in plant petals. We also explore the potential of methylation modifications to unravel the regulatory mechanisms underlying aroma and color in plant petals. This aims to further elucidate the synthesis, metabolism, and regulatory mechanisms of various methylation modifications related to the aroma and color substances in plant petals, thereby providing a theoretical reference for improving the aroma and color of plant petals.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Odorantes , Flores/genética , Flores/metabolismo , Odorantes/análise , Plantas/metabolismo , Plantas/genética , Pigmentação/genética , Metilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Epigênese Genética , Cor , Metilação de DNA
16.
Zool Res ; 45(5): 1027-1036, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39147717

RESUMO

Glass catfish ( Kryptopterus vitreolus) are notable in the aquarium trade for their highly transparent body pattern. This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body, although certain black and silver pigments remain in the face and head. To date, however, the molecular mechanisms underlying this transparent phenotype remain largely unknown. To explore the genetic basis of this transparency, we constructed a chromosome-level haplotypic genome assembly for the glass catfish, encompassing 32 chromosomes and 23 344 protein-coding genes, using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines. Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene, encoding tyrosinase-related protein 1, rendering it a nonfunctional pseudogene. Notably, a synteny comparison with over 30 other fish species identified the loss of the endothelin-3 ( edn3b) gene in the glass catfish genome. To investigate the role of edn3b, we generated edn3b -/- mutant zebrafish, which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish. These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish. Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish. These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish, but also offer a valuable genetic resource for further research on pigmentation in various animal species.


Assuntos
Peixes-Gato , Genoma , Animais , Peixes-Gato/genética , Fenótipo , Cromossomos/genética , Pigmentação/genética
17.
Am Nat ; 204(3): 304-313, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39179230

RESUMO

AbstractIntraspecific variation in camouflage is common in animals. Sexual dimorphism in camouflage is less common and, where observed, attributed to trade-offs between natural selection for predator avoidance and sexual selection for conspicuous mating signals. Here we report on variation in putatively cryptic ventral hindwing patterns in the American snout butterfly, Libytheana carinenta. We use field surveys and crowdsourced data to characterize three morphs. One is found in both sexes, one is male specific, and one is female specific. The sex-specific morphs constitute a sexually dimorphic set whose frequencies change together in time. Field surveys indicate that butterflies in southern Arizona transition from midsummer dominance of the sexually monomorphic pattern to early-fall dominance of the sexually dimorphic set. Crowdsourced data indicate that the sexually dimorphic set dominates in early spring, transitioning later into a mixture of morphs dominated by the monomorphic pattern, with the dimorphic set rising in frequency again in late fall. We discuss this unique pattern of camouflage variation with respect to contemporary theory on animal coloration.


Assuntos
Borboletas , Pigmentação , Estações do Ano , Asas de Animais , Animais , Borboletas/anatomia & histologia , Borboletas/fisiologia , Asas de Animais/anatomia & histologia , Masculino , Feminino , Arizona , Caracteres Sexuais , Mimetismo Biológico
18.
Theor Appl Genet ; 137(9): 210, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39198268

RESUMO

KEY MESSAGE: Two allelic variants of Pp-A3 and Pp-B1 were identified in purple durum wheat. Molecular markers at both loci were developed and validated on an independent panel, offering a breakthrough for wheat improvement. Purple wheats are a class of cereals with pigmented kernels of particular interest for their antioxidant and anti-inflammatory properties. Although two complementary loci (Pp-B1 and Pp-A3), responsible for purple pericarp have been pinpointed in bread wheat (Triticum aestivum L.), in durum wheat (Triticum durum Desf.) the causative genes along with functional and non-functional alleles are still unknown. Here, using a quantitative trait loci (QTL) mapping approach on a RIL population derived from purple and non-purple durum wheat genotypes, we identified three major regions on chromosomes 2A, 3A, and 7B explaining the highest phenotypic variation (> 50%). Taking advantage of the Svevo genome, a MYB was reannotated on chromosome 7B and reported as a candidate for Pp-B1. An insertion of ~ 1.6 kb within the first exon led to a non-functional allele (TdPpm1b), whereas the functional allele (TdPpm1a) was characterized and released for the first time in durum wheat. Pp-A3 was instead identified as a duplicated gene, of which only one was functional. The promoter sequencing of the functional allele (TdPpb1a) revealed six 261-bp tandem repeats in purple durum wheat, whereas one unit (TdPpb1b) was found in the yellow once. Functional molecular markers at both loci were developed to precisely discriminate purple and not purple genotypes, representing a valuable resource for selecting superior purple durum lines at early growth stages. Overall, our results expand the understanding of the function of MYB and bHLH activators in durum wheat, paving new ways to explore cis-regulatory elements at the promoter level.


Assuntos
Alelos , Mapeamento Cromossômico , Genótipo , Fenótipo , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Marcadores Genéticos , Genes de Plantas , Pigmentação/genética , Cromossomos de Plantas/genética
19.
Sci Rep ; 14(1): 19655, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179757

RESUMO

The black soldier fly (BSF) Hermetia illucens (Diptera: Stratiomyidae) plays a significant role at the larval stage in the circular economy due to its ability to convert organic waste into valuable products for energy, food, feed, and agricultural applications. Many data are available on larval development and biomass generation, but basic research on this species is lacking and little is known about adult biology, in particular about the cues involved in sexual recognition. In the present study, using various instruments (stereomicroscope, scanning and transmission electron microscope, hyperspectral camera and spectrophotometer), wing ultrastructure of both sexes was analysed, reflectance and transmission spectra of the wings were measured and behavioural bioassays were carried out to measure male response to specific visual stimuli. The collected data showed the existence of sexual dimorphism in the wings of H. illucens due to iridescent structural colouration generated by a multilayer of melanin located in the dorsal lamina of the central part of the wing. Wing sexual dimorphism is particularly evident regarding the strong emission of blue light of female wings. Blue colour induces in males a strong motivation to mate. The obtained results can help to improve and optimize the breeding techniques of BSF.


Assuntos
Dípteros , Pigmentação , Caracteres Sexuais , Asas de Animais , Animais , Masculino , Feminino , Dípteros/fisiologia , Cor , Comportamento Sexual Animal/fisiologia
20.
Poult Sci ; 103(10): 104107, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094499

RESUMO

Plumage color is an intuitive external poultry characteristic with rich manifestations and complex genetic mechanisms. In our previous study, we observed that there were more dark variations in plumage color in the F2 population derived from the hybridization of 2 white duck varieties. Therefore, based on the statistics of plumage color of 308 F2 populations, we further used the resequencing data of these individuals to detect copy number variations (CNVs) in the whole genome and conducted genome-wide association studies (GWAS) to determine the genetic basis related to plumage color traits. The CNV detection revealed 9,337 CNVs, with an average length of 15,950 bp and a total length of 142.02 MB, accounting for approximately 12.91% of the reference genome. The CNV distribution on the chromosomes was relatively uniform, and the number of CNVs on each chromosome positively correlated with the length of the chromosome. In the pure black plumage group, 2,101 CNVs were only identified, and 1,714 were specifically identified in the pure white plumage group. Ten CNVs were randomly selected for validation using quantitative real-time PCR, and 9 CNVs had the same CNV types as predicted, with an accuracy of 90%. Based on GWAS, we identified 2 CNVs potentially associated with plumage color variations, with the associated CNV regions covering 9 genes. Enrichment analysis of these 9 candidate genes showed significant enrichment of 3 pathways (ribosome biogenesis in eukaryotes, RNA transport, and protein export) and 17 gene ontology terms. Among these, VWA5A can downregulate MITF by binding to the regulatory factors SOX10. The occurrence of CNV may indirectly contribute to duck plumage color variation by affecting the regulatory factors of the switch gene MITF in the melanogenesis pathway. These findings have improved the understanding of the genetic basis of duck plumage color variation and have been beneficial for developing and using plumage color traits in subsequent poultry breeding.


Assuntos
Variações do Número de Cópias de DNA , Patos , Plumas , Estudo de Associação Genômica Ampla , Pigmentação , Animais , Estudo de Associação Genômica Ampla/veterinária , Pigmentação/genética , Patos/genética , Patos/fisiologia , Masculino , Feminino , Cor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...