Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 246: 107795, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38849008

RESUMO

Amphotericin B (AmB) induced liver and kidney injury is often responsible for hepatic and renal dysfunction. Therefore, the protection strategy on liver and renal functions in patients treated with AmB should be emphasized. In this paper, diammonium glycyrrhizinate (DG) and piperazine ferulate (PF) were taken as the research object to study its hepatoprotective and neuroprotective effect on AmB-induced liver and kidney damage in vitro and in vivo. The microplate method and ELISA kits were employed for the biochemical detection in the serum and urine of mice. Flow cytometric analysis and western blotting analysis were conducted to study the mechanism of DG and PF. Our results confirmed the prevention capacity of DG and PF on AmB-induced liver and kidney injury through the alleviation of pathological changes and enzyme reducing action. Furthermore, DG and PF suppressed ROS-mediated mitochondrial apoptosis in AmB-treated mice and cells through Caspase pathway and Caspase-independent AIF pathway. In summary, DG and PF could protect AmB-induced hepatotoxicity and nephrotoxicity by disrupting oxidative stress and apoptosis.


Assuntos
Anfotericina B , Apoptose , Doença Hepática Induzida por Substâncias e Drogas , Ácido Glicirrízico , Fármacos Neuroprotetores , Animais , Apoptose/efeitos dos fármacos , Camundongos , Ácido Glicirrízico/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Anfotericina B/toxicidade , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Rim/efeitos dos fármacos , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Piperazinas/farmacologia , Piperazina/farmacologia , Substâncias Protetoras/farmacologia
2.
J Pharm Biomed Anal ; 246: 116202, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820833

RESUMO

Recently, pharmaceutical research has been focused on the design of new antibacterial drugs with higher selectivity towards several strains. Major issues concern the possibility to obtain compounds with fewer side effects, at the same time effectively overcoming the problem of antimicrobial resistance. Several solutions include the synthesis of new pharmacophores starting from piperazine or morpholine core units. Mass spectrometry-based techniques offer important support for the structural characterization of newly synthesized compounds to design safer and more effective drugs for various medical conditions. Here, two new piperazine derivatives and four new morpholine derivatives were synthesized and structurally characterized through a combined approach of Fourier transform-ion cyclotron resonance (FT-ICR) and Linear Trap Quadrupole (LTQ) mass spectrometry. The support of both high-resolution and low-resolution mass spectrometric data namely accurate mass measurements, isotopic distribution and MSn spectra, was crucial to confirm the success of the synthesis. These compounds were further evaluated for inhibitory activity against a total of twenty-nine Gram-positive and Gram-negative bacteria to determine the action spectrum and the antimicrobial effectiveness. Results demonstrated compounds' antimicrobial activity against many tested bacterial species, providing an inhibitory effect linked to different chemical structure and suggesting that the new-synthesized derivatives could be considered as promising antimicrobial agents.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Morfolinas , Piperazinas , Morfolinas/farmacologia , Morfolinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/análise , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana/métodos , Piperazinas/farmacologia , Piperazinas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Espectrometria de Massas/métodos , Bactérias Gram-Positivas/efeitos dos fármacos , Relação Estrutura-Atividade , Piperazina/farmacologia , Piperazina/química
3.
Eur J Med Chem ; 272: 116497, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759453

RESUMO

A series of combretastatin A-4 (CA-4) derivatives were designed and synthesized, which contain stilbene core structure with different linker, predominantly piperazine derivatives. These compounds were evaluated for their cytotoxic activities against four cancer cell lines, HCT116, A549, AGS, and SK-MES-1. Among them, compound 13 displayed the best effectiveness with IC50 values of 0.227 µM and 0.253 µM against HCT116 and A549 cells, respectively, showing low toxicity to normal cells. Mechanistic studies showed that 13 inhibited HCT116 proliferation via arresting cell cycle at the G2/M phase through disrupting the microtubule network and inducing autophagy in HCT116 cells by regulating the expression levels of autophagy-related proteins. In addition, 13 displayed antiproliferative activities against A549 cells through blocking the cell cycle and inducing A549 cells apoptosis. Because of the poor water solubility of 13, four carbohydrate conjugates were synthesized which exhibited better water solubility. Further investigations revealed that 13 showed positive effects in vivo anticancer study with HCT116 xenograft models. These data suggest that 13 could be served as a promising lead compound for further development of anti-colon carcinoma agent.


Assuntos
Antineoplásicos , Autofagia , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Polimerização , Estilbenos , Tubulina (Proteína) , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estilbenos/farmacologia , Estilbenos/química , Estilbenos/síntese química , Tubulina (Proteína)/metabolismo , Animais , Polimerização/efeitos dos fármacos , Estrutura Molecular , Células HCT116 , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Camundongos , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Camundongos Nus , Piperazina/química , Piperazina/farmacologia , Piperazina/síntese química , Camundongos Endogâmicos BALB C
4.
J Agric Food Chem ; 72(20): 11360-11368, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720533

RESUMO

In this study, a series of acrylamide derivatives containing trifluoromethylpyridine or piperazine fragments were rationally designed and synthesized. Subsequently, the in vitro antifungal activities of all of the synthesized compounds were evaluated. The findings revealed that compounds 6b, 6c, and 7e exhibited >80% antifungal activity against Phomopsis sp. (Ps) at the concentration of 50 µg/mL. Furthermore, the EC50 values for compounds 6b, 6c, and 7e against Ps were determined to be 4.49, 6.47, and 8.68 µg/mL, respectively, which were better than the positive control with azoxystrobin (24.83 µg/mL). At the concentration of 200 µg/mL, the protective activity of compound 6b against Ps reached 65%, which was comparable to that of azoxystrobin (60.9%). Comprehensive mechanistic studies, including morphological studies with fluorescence microscopy (FM), cytoplasmic leakage, and enzyme activity assays, indicated that compound 6b disrupts cell membrane integrity and induces the accumulation of defense enzyme activity, thereby inhibiting mycelial growth. Therefore, compound 6b serves as a valuable candidate for the development of novel fungicides for plant protection.


Assuntos
Acrilamida , Desenho de Fármacos , Fungicidas Industriais , Piridinas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Acrilamida/química , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Relação Estrutura-Atividade , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Piperazina/química , Piperazina/farmacologia , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Estrutura Molecular , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia
5.
Biomed Pharmacother ; 174: 116484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565058

RESUMO

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Peptídeos beta-Amiloides , Benzotiazóis , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzotiazóis/farmacologia , Benzotiazóis/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Peptídeos beta-Amiloides/metabolismo , Acetilcolinesterase/metabolismo , Camundongos , Masculino , Humanos , Piperazinas/farmacologia , Piperazinas/química , Escopolamina , Piperazina/farmacologia , Piperazina/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos
6.
Bioorg Med Chem ; 104: 117698, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552597

RESUMO

Serotonin reuptake inhibition combined with the action targeting 5-hydroxytryptamine receptor subtypes can serve as a potential target for the development of antidepressant drugs. Herein a series of new aralkyl piperazines and piperidines were designed and synthesized by the structural modifications of the previously discovered aralkyl piperidine compound 1, targeting SSRI/5-HT1A/5-HT7. The results exhibited that compound 5a showed strong binding to 5-HT1A and 5-HT7 (Ki of 0.46 nM, 2.7 nM, respectively) and a high level of serotonin reuptake inhibition (IC50 of 1.9 nM), all of which were significantly elevated compared to 1. In particular, compound 5a showed weaker inhibitory activity against hERG than 1, and demonstrated good stability in liver microsomes in vitro. The preliminary screening using FST indicated that orally administered 5a, at a high dose, could reduce immobility time in mice markedly, indicating potential antidepressant activity.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Camundongos , Animais , Piperazina/farmacologia , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Piperidinas/farmacologia , Piperazinas/química , Receptor 5-HT1A de Serotonina
7.
Drug Dev Res ; 85(1): e22153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349258

RESUMO

An innovative series of N-substituted piperazine-linked imidazothiazole derivatives 7(a-x) were synthesized, and their antitubercular effectiveness was evaluated. A three-step reaction sequence involving the condensation of 1,3-dichloroacetone and thiourea, coupling with substituted piperazines to give the intermediates 5(a-d) and cyclization with substituted α-bromoacetophenones produced the desired imidazothiazole derivatives 7(a-x) in excellent yields. In vitro screening of new derivatives against Mycobacterium tuberculosis H37Rv resulted in 7k (minimum inhibitory concentration [MIC]: 0.78 µg/mL) and 7g and 7h (MIC: 1.56 µg/mL) as potent hit compounds. Further, the docking studies of the promising compounds 7k, 7g, and 7h revealed that the best molecular interactions are with the DprE1 in complex with sulfonyl PBTZ of M. tuberculosis as the target protein (PDB ID: 6G83).


Assuntos
Mycobacterium tuberculosis , Piperazina/farmacologia , Piperazinas/farmacologia , Antituberculosos/farmacologia , Tiazóis/farmacologia
8.
Bioorg Chem ; 143: 107082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199142

RESUMO

The multi-target directed ligand (MTDL) discovery has been gaining immense attention in the development of therapeutics for Alzheimer's disease (AD). The strategy has been evolved as an auspicious approach suitable to combat the heterogeneity and the multifactorial nature of AD. Therefore, multi-targetable chalcone derivatives bearing N-aryl piperazine moiety were designed, synthesized, and evaluated for the treatment of AD. All the synthesized compounds were screened for thein vitro activityagainst acetylcholinesterase (AChE), butylcholinesterase (BuChE), ß-secretase-1 (BACE-1), and inhibition of amyloid ß (Aß) aggregation. Amongst all the tested derivatives, compound 41bearing unsubstituted benzylpiperazine fragment and para-bromo substitution at the chalcone scaffold exhibited balanced inhibitory profile against the selected targets. Compound 41 elicited favourable permeation across the blood-brain barrier in the PAMPA assay. The molecular docking and dynamics simulation studies revealed the binding mode analysis and protein-ligand stability ofthe compound with AChE and BACE-1. Furthermore,itameliorated cognitive dysfunctions and signified memory improvement in thein-vivobehavioural studies (scopolamine-induced amnesia model). Theex vivobiochemical analysis of mice brain homogenates established the reduced AChE and increased ACh levels. The antioxidant activity of compound 41 was accessed with the determination of catalase (CAT) and malondialdehyde (MDA) levels. The findings suggested thatcompound 41, containing a privileged chalcone scaffold, can act as a lead molecule for developing AD therapeutics.


Assuntos
Doença de Alzheimer , Chalcona , Chalconas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Chalconas/química , Acetilcolinesterase/metabolismo , Piperazina/farmacologia , Simulação de Acoplamento Molecular , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Piperazinas/farmacologia , Relação Estrutura-Atividade , Desenho de Fármacos
9.
Pest Manag Sci ; 80(3): 1026-1038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37842924

RESUMO

BACKGROUND: Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS: Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 µg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 µg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 µg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 µg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION: Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.


Assuntos
Oryza , Quinazolinas , Vírus do Mosaico do Tabaco , Xanthomonas , Ribavirina/metabolismo , Ribavirina/farmacologia , Simulação de Acoplamento Molecular , Piperazina/metabolismo , Piperazina/farmacologia , Proteômica , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antivirais/farmacologia , Doenças das Plantas , Relação Estrutura-Atividade
10.
Eur J Med Chem ; 264: 115969, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039787

RESUMO

The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/química , Piperazina/farmacologia , Triazóis/química , Cloroquina/farmacologia , Malária/tratamento farmacológico , Plasmodium falciparum , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico
11.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069364

RESUMO

Breast cancer is the most common type of cancer in women. Although current treatments can increase patient survival, they are rarely curative when the disease is advanced (metastasis). Therefore, there is an urgent need to develop new cytotoxic drugs with a high selectivity toward cancer cells. Since repurposing approved drugs for cancer therapy has been a successful strategy in recent years, in this study, we screened a library of antiviral piperazine-derived compounds as anticancer agents. The compounds included a piperazine ring and aryl urea functions, which are privileged structures present in several anti-breast cancer drugs. The selective cytotoxic activity of a set of thirty-four 4-acyl-2-substituted piperazine urea derivatives against MCF7 breast cancer cells and MCF 10A normal breast cells was determined. Compounds 31, 32, 35, and 37 showed high selective anticancer activity against breast cancer cells and were also tested against another common type of cancer, non-small cell lung cancer (A549 lung cancer cells versus MRC-5 lung normal cells). Compounds 35 and 37 also showed selectivity against lung cancer cells. These results suggest that compounds 35 and 37 may be promising hit compounds for the development of new anticancer agents.


Assuntos
Antineoplásicos , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Reposicionamento de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Piperazina/farmacologia , Piperazina/química , Ureia/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular , Células MCF-7
12.
Microb Pathog ; 184: 106369, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778705

RESUMO

Historically, the piperazine moiety has been demonstrated to possess pharmacophoric properties, and has subsequently been incorporated in many drugs that have antitumor, antimalarial, antiviral, antibacterial and antifungal properties. Derivatives of eugenol and dihydroeugenol have also been reported as being bioactive compounds. This study reports the synthesis of a range of eugenol/dihydroeugenol - piperazine derivatives which have been tested as antimicrobial compounds against Gram positive, Gram negative and rapid-growing mycobacteria (RGM). The rationale employed in the design of the structural pattern of these new derivatives, provides useful insights into the structure-activity relationships (SAR) of the series. Antimicrobial activity tests were extremely encouraging, with the majority of the synthesised compounds being more active than eugenol and dihydroeugenol starting materials. The antimicrobial potential was most notable against the Gram-negative species K. pneumoniae and P. aeruginosa, but there was also significant performance against the Gram-positive strains S. epidermidis and S. aureus and the Rapidly Growing Mycobacteria (RGM) strains tested. Tests using the synthesised compounds against multidrug-resistance clinical (MDR) isolates also showed high activity. The biofilm inhibition tests using M. fortuitum showed that all evaluated derivatives were able to inhibit biofilm formation even at low concentrations. In terms of structural-activity relationships; the results generated by this study demonstrate that the compounds with bulky substituents on the piperazine subunit were much more active than those with less bulky groups, or no groups. Importantly, the derivatives with a sulfonamide side chain were the most potent compounds. A further observation was that those compounds with a para-substituted benzenesulfonamide ring stand out, regardless of whether this substituent is a donor or an electron-withdrawing group.


Assuntos
Anti-Infecciosos , Eugenol , Eugenol/farmacologia , Piperazina/farmacologia , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Micobactérias não Tuberculosas
13.
Arch Pharm (Weinheim) ; 356(11): e2300336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37612782

RESUMO

This study describes the synthesis, in vitro urease inhibition, and molecular docking studies of benzimidazolone derivatives incorporating the piperazine, triazole, thiadiazole, furan, thiophene, and thiosemicarbazide moieties. All newly synthesized compounds demonstrated varying degrees of urease inhibitory activity, with IC50 values ranging between 0.64 ± 0.099 and 0.11 ± 0.017 µM, when compared with the standard drug thiourea (IC50 value of 0.51 ± 0.028 µM). To confirm the experimental urease inhibition results and elucidate the mode of interaction of the synthesized compounds with the binding site of the urease enzyme, molecular docking studies were performed using the Schrödinger Suite package. Molecular docking studies showed that compounds with high in vitro urease inhibition interacted with key residues of the urease active site such as His221, Glu222, Asp223, His322, Arg338, and Ni2+ cations via hydrogen bonding, metal coordination, salt bridge, π-π stacking, and π-cation interactions.


Assuntos
Tiadiazóis , Urease , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Piperazina/farmacologia , Tiadiazóis/farmacologia , Tiadiazóis/química , Triazóis/farmacologia , Inibidores Enzimáticos/farmacologia
14.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298744

RESUMO

In this study, a series of novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives were designed and synthesized based on compounds previously reported, and their antibacterial activity was investigated. Then their antibacterial activity was investigated for the first time. Preliminary screening results showed that all these compounds exhibited antibacterial activity against gram-positive bacteria, including 7 drug-sensitive strains and 4 drug-resistant strains, among which compound 7j exhibited an 8-fold stronger inhibitory effect than linezolid, with a minimum inhibitory concentration (MIC) value of 0.25 µg/mL. Further molecular docking studies predicted the possible binding mode between active compound 7j and the target. Interestingly, these compounds could not only hamper the formation of biofilms, but also have better safety, as confirmed by cytotoxicity experiments. All these results indicate that these 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives have the potential to be developed into novel candidates for the treatment of gram-positive bacterial infections.


Assuntos
Oxazolidinonas , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Oxindóis/farmacologia , Simulação de Acoplamento Molecular , Piperazina/farmacologia , Antibacterianos/química , Bactérias Gram-Positivas , Pirimidinas/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Estrutura Molecular
15.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240044

RESUMO

Fibroblast activation proteins (FAP) are overexpressed in the tumor stroma and have received attention as target molecules for radionuclide therapy. The FAP inhibitor (FAPI) is used as a probe to deliver nuclides to cancer tissues. In this study, we designed and synthesized four novel 211At-FAPI(s) possessing polyethylene glycol (PEG) linkers between the FAP-targeting and 211At-attaching moieties. 211At-FAPI(s) and piperazine (PIP) linker FAPI exhibited distinct FAP selectivity and uptake in FAPII-overexpressing HEK293 cells and the lung cancer cell line A549. The complexity of the PEG linker did not significantly affect selectivity. The efficiencies of both linkers were almost the same. Comparing the two nuclides, 211At was superior to 131I in tumor accumulation. In the mouse model, the antitumor effects of the PEG and PIP linkers were almost the same. Most of the currently synthesized FAPI(s) contain PIP linkers; however, in our study, we found that PEG linkers exhibit equivalent performance. If the PIP linker is inconvenient, a PEG linker is expected to be an alternative.


Assuntos
Fibroblastos , Polietilenoglicóis , Humanos , Animais , Camundongos , Células HEK293 , Piperazina/farmacologia , Polietilenoglicóis/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio
16.
Biochem Biophys Res Commun ; 668: 49-54, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244034

RESUMO

Salmonella is a widespread foodborne pathogen that can exhibit multidrug resistance (MDR; resistance to ≥3 antimicrobial classes). Therefore, the development of new preventative measures against MDR Salmonella is highly important. Bacterial antibiotic resistance is commonly mediated by efflux pumps. In this study, two compounds that block efflux pump activity, 1-(1-Naphthylmethyl)-Piperazine (NMP) and Phenylalanine-arginine ß-naphthylamide (PaßN), were tested with the antibiotic tetracycline to determine if a synergistic reduction in resistance could be achieved in tetracycline-resistant Salmonella. The efflux pump inhibitors (EPIs) reduced Salmonella resistance to tetracycline by 16 to 32-fold in several tetracycline resistant isolates. For example, the tetracycline minimum inhibitory concentration (MIC) for MDR Salmonella enterica serovar I 4,[5],12:i:- USDA15WA-1 (SX 238) was 256 µg/mL. However, in the presence of NMP (250 µg/mL), the MIC dropped to 8 µg/mL which is below the Clinical Laboratory Standards Institute (CLSI) breakpoint for tetracycline resistance in Salmonella (≥16 µg/mL). Confocal and transmission electron microscopy revealed NMP-mediated damage to Salmonella membranes at a higher concentration (1000 µg/mL), implying that the EPI disrupts membrane morphology which can lead to cell death; however, this effect was dependent on NMP concentration, as NMP blocked efflux activity with less of a membrane-disrupting effect at a lower concentration (250 µg/mL). These findings suggest that the use of EPIs can reduce the MIC of tetracycline and restore the effectiveness of the antibiotic against tetracycline-resistant Salmonella.


Assuntos
Anti-Infecciosos , Piperazinas , Piperazina/farmacologia , Piperazinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Membrana Transportadoras , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Salmonella , Tetraciclinas/farmacologia , Testes de Sensibilidade Microbiana
17.
Carbohydr Res ; 529: 108846, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245419

RESUMO

To imbibe the aim of synthesizing water-soluble and biocompatible motif, a click-inspired piperazine glycoconjugate has been devised up. In this report, we present a focused approach to design and synthesis of versatile sugar-appended triazoles through 'Click Chemistry' along with their pharmacological studies on cyclin-dependent kinases (CDKs) and cell cytotoxicity on cancer cells using in silico and in vitro approaches, respectively. The study has inclusively recognized the galactose- and mannose-derived piperazine conjugates as the promising motifs. The findings suggested that the galactosyl bis-triazolyl piperazine analogue 10b is the most CDK interactive derivative and also possess significant anticancer activity.


Assuntos
Antineoplásicos , Açúcares , Piperazina/farmacologia , Química Click , Glicoconjugados , Galactose , Antineoplásicos/farmacologia
18.
Future Med Chem ; 15(8): 679-697, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37170810

RESUMO

Aim: The objective of the present study is to design and synthesize diverse piperazine-1,2,3-triazole scaffolds as key pharmacophores possessing antimicrobial/anticancer activities. Materials & methods: Twenty-four scaffolds were synthesized via a click-inspired synthetic protocol and were assayed for anticancer activity using the methyl thiazolyl tetrazolium assay and for antimicrobial potency by serial dilution. Results: Among all the tested 1,2,3-triazole scaffolds, compounds 7i (IC50: 5.22 ± 0.05 µM) and 7a (IC50: 5.34 ± 0.13 µM) exhibited good anticancer activity, and 7x also showed notable antimicrobial activity. Molecular docking studies of potent analogs 7i and 7a were performed to provide an insight into their binding interactions. Conclusion: Compound 7x is considered a valuable lead compound for further optimization of anticancer and antimicrobial agents.


Assuntos
Anti-Infecciosos , Antineoplásicos , Simulação de Acoplamento Molecular , Triazóis/química , Piperazina/farmacologia , Anti-Infecciosos/química , Relação Estrutura-Atividade , Antineoplásicos/química , Estrutura Molecular
19.
J Enzyme Inhib Med Chem ; 38(1): 2209828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37184096

RESUMO

Schizophrenia is a chronic mental disorder that is not satisfactorily treated with available antipsychotics. The presented study focuses on the search for new antipsychotics by optimising the compound D2AAK3, a multi-target ligand of G-protein-coupled receptors (GPCRs), in particular D2, 5-HT1A, and 5-HT2A receptors. Such receptor profile may be beneficial for the treatment of schizophrenia. Compounds 1-16 were designed, synthesised, and subjected to further evaluation. Their affinities for the above-mentioned receptors were assessed in radioligand binding assays and efficacy towards them in functional assays. Compounds 1 and 10, selected based on their receptor profile, were subjected to in vivo tests to evaluate their antipsychotic activity, and effect on memory and anxiety processes. Molecular modelling was performed to investigate the interactions of the studied compounds with D2, 5-HT1A, and 5-HT2A receptors on the molecular level. Finally, X-ray study was conducted for compound 1, which revealed its stable conformation in the solid state.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Piperazina/farmacologia , Dopamina/uso terapêutico , Ligantes , Indazóis , Serotonina/uso terapêutico , Receptores de Serotonina , Antipsicóticos/farmacologia , Antipsicóticos/química , Receptor 5-HT1A de Serotonina/uso terapêutico
20.
Bioorg Med Chem Lett ; 89: 129320, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37156392

RESUMO

Herein, a series of novel indole-piperazine derivatives were synthesized. Bioassay results showed the title compounds exhibited moderate to good bacteriostatic efficacy against the test Gram-positive bacteria and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Among theses compounds, three remarkable compounds 8f, 9a, and 9h exhibited superior in vitro antibacterial profiles for anti- S. aureus and anti-MRSA to that of gentamicin. Hit compound 9a manifested a rapid bactericidal kinetic effect on MRSA, with no resistance observed after 19 days of sequential passaging. And 8 µg/mL of compound 9a displayed considerable post antibacterial effects to that of ciprofloxacin at the concentration of 2 µg/mL. Cytotoxic and ADMET studies indicated, to some extent, compounds 8f, 9a, and 9h were up to the standard for antibacterial drugs. These results suggest that indole/piperazine derivatives based on the title compounds can serve as a new scaffold for antimicrobial development.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Staphylococcus aureus , Piperazina/farmacologia , Testes de Sensibilidade Microbiana , Indóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...