Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 879
Filtrar
1.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999047

RESUMO

Monoamine oxidase inhibitors (MAOIs) have been crucial in the search for anti-neurodegenerative medications and continued to be a vital source of molecular and mechanistic diversity. Therefore, the search for selective MAOIs is one of the main areas of current drug development. To increase the effectiveness and safety of treating Parkinson's disease, new scaffolds for reversible MAO-B inhibitors are being developed. A total of 24 pyridazinobenzylpiperidine derivatives were synthesized and evaluated for MAO. Most of the compounds showed a higher inhibition of MAO-B than of MAO-A. Compound S5 most potently inhibited MAO-B with an IC50 value of 0.203 µM, followed by S16 (IC50 = 0.979 µM). In contrast, all compounds showed weak MAO-A inhibition. Among them, S15 most potently inhibited MAO-A with an IC50 value of 3.691 µM, followed by S5 (IC50 = 3.857 µM). Compound S5 had the highest selectivity index (SI) value of 19.04 for MAO-B compared with MAO-A. Compound S5 (3-Cl) showed greater MAO-B inhibition than the other derivatives with substituents of -Cl > -OCH3 > -F > -CN > -CH3 > -Br at the 3-position. However, the 2- and 4-position showed low MAO-B inhibition, except S16 (2-CN). In addition, compounds containing two or more substituents exhibited low MAO-B inhibition. In the kinetic study, the Ki values of S5 and S16 for MAO-B were 0.155 ± 0.050 and 0.721 ± 0.074 µM, respectively, with competitive reversible-type inhibition. Additionally, in the PAMPA, both lead compounds demonstrated blood-brain barrier penetration. Furthermore, stability was demonstrated by the 2V5Z-S5 complex by pi-pi stacking with Tyr398 and Tyr326. These results suggest that S5 and S16 are potent, reversible, selective MAO-B inhibitors that can be used as potential agents for the treatment of neurological disorders.


Assuntos
Inibidores da Monoaminoxidase , Monoaminoxidase , Piperidinas , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/síntese química , Monoaminoxidase/metabolismo , Piperidinas/farmacologia , Piperidinas/química , Humanos , Relação Estrutura-Atividade , Piridazinas/química , Piridazinas/farmacologia , Piridazinas/síntese química , Simulação de Acoplamento Molecular , Estrutura Molecular
2.
J Med Chem ; 67(13): 11103-11124, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38907711

RESUMO

A hit-to-lead campaign pursuing the identification of novel inhalant small-molecule phosphatidylinositol 3-kinase (PI3K) inhibitors for the treatment of inflammatory respiratory diseases is disclosed. A synthetically versatile pyridazin-3(2H)-one scaffold was designed, and three exit vectors on the core moiety were used to explore chemical diversity and optimize pharmacological and absorption, distribution, metabolism, and excretion (ADME) properties. Desired modulation of PI3Kδ selectivity and cellular potency as well as ADME properties in view of administration by inhalation was achieved. Intratracheal administration of lead compound 26 resulted in a promising pharmacokinetic profile, thus demonstrating that the optimization strategy of in vitro profiles successfully translated to an in vivo setting.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Piridazinas , Animais , Humanos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Administração por Inalação , Piridazinas/química , Piridazinas/farmacologia , Piridazinas/farmacocinética , Piridazinas/síntese química , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Relação Estrutura-Atividade , Descoberta de Drogas , Ratos , Camundongos , Masculino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/administração & dosagem
3.
Eur J Med Chem ; 275: 116565, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878518

RESUMO

Transient receptor potential canonical 5 (TRPC5) is a calcium-permeable non-selective cation channel involved in various pathophysiological processes, including renal injury. Recently, GFB-887, an investigational pyridazinone TRPC5 inhibitor, demonstrated significant therapeutic potential in a Phase II clinical trial for focal segmental glomerulosclerosis (FSGS), a rare and severe form of chronic kidney disease (CKD). In the current study, based on the structure of GFB-887, we conducted extensive structural modification to explore novel TRPC5 inhibitors with desirable drug-like properties and robust nephroprotective efficacy. A series of pyridazinone derivatives featuring a novel tetrahydroimidazo[1,2-a]pyrazine scaffold were synthesized and their activities were evaluated in HEK-293 cells stably expressing TRPC5 using a fluorescence-based Ca2+ mobilization assay. Among these compounds, compound 12 is turned out to be a potent TRPC5 inhibitor with apparent affinity comparable to the parent compound GBF-887. Compound 12 is highly selective on TRPC4/5 over TRPC3/6/7 and hERG channels, along with acceptable pharmacokinetic properties and a favorable safety profile. More importantly, in a rat model of hypertension-induced renal injury, oral administration of compound 12 (10 mg/kg, BID) efficaciously reduced mean blood pressure, inhibited proteinuria, and protected podocyte damage. These findings further confirmed the potential of TRPC5 inhibitors on the CKD treatment and provided compound 12 to be a valuable tool for exploring TRPC4/5 pathophysiology.


Assuntos
Hipertensão , Pirazinas , Canais de Cátion TRPC , Animais , Humanos , Ratos , Pirazinas/química , Pirazinas/farmacologia , Pirazinas/síntese química , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/metabolismo , Células HEK293 , Relação Estrutura-Atividade , Masculino , Hipertensão/tratamento farmacológico , Descoberta de Drogas , Estrutura Molecular , Piridazinas/farmacologia , Piridazinas/química , Piridazinas/síntese química , Relação Dose-Resposta a Droga , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/síntese química , Ratos Sprague-Dawley , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química
4.
Bioorg Chem ; 148: 107411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733747

RESUMO

In a search for new anticancer agents with better activity and selectivity, the present work described the synthesis of several new series of sulfachloropyridazine hybrids with thiocarbamates 3a-e, thioureids 4a-h, 5a-e and 4-substituted sulfachloropyridazines 6a, b, 7a, b and 8. The synthesized compounds were screened in vitro against a panel of 60 cancer cell lines in one dose assay. The most potent derivatives 3a, 3c, 4c, 4d, 5e, 7a and 7b were tested for their antiangiogenic activity by measuring their ability to inhibit VEGFR-2. The most potent compounds in VEGFR-2 inhibitory assay were further evaluated for their ability to inhibit PDGFR. In addition, the ability of 4c compound to inhibit cell migration on HUVEC cells and cell cycle effect on UO-31 cells has been studied. The pro-apoptotic effect of compound 4c was studied by the evaluation of caspase-3, Bax and BCl-2. Alternatively, the IC50 of compounds 3a, 3c, 4c, 5e, 7a and 7b against certain human cancer cell lines were determined. Re-evaluation in combination with γ-radiation was carried out for compounds 4c, 5e and 7b to study the possible synergistic effect on cytotoxicity. Docking studies of the most active compounds were performed to give insights into the binding mode within VEGFR-2 active site.


Assuntos
Inibidores da Angiogênese , Antineoplásicos , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Relação Dose-Resposta a Droga , Piridazinas/farmacologia , Piridazinas/química , Piridazinas/síntese química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos
5.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513351

RESUMO

Secure and efficient treatment of diverse pain and inflammatory disorders is continually challenging. Although NSAIDs and other painkillers are well-known and commonly available, they are sometimes insufficient and can cause dangerous adverse effects. As yet reported, derivatives of pyrrolo[3,4-d]pyridazinone are potent COX-2 inhibitors with a COX-2/COX-1 selectivity index better than meloxicam. Considering that N-acylhydrazone (NAH) moiety is a privileged structure occurring in many promising drug candidates, we decided to introduce this pharmacophore into new series of pyrrolo[3,4-d]pyridazinone derivatives. The current paper presents the synthesis and in vitro, spectroscopic, and in silico studies evaluating the biological and physicochemical properties of NAH derivatives of pyrrolo[3,4-d]pyridazinone. Novel compounds 5a-c-7a-c were received with high purity and good yields and did not show cytotoxicity in the MTT assay. Their COX-1, COX-2, and 15-LOX inhibitory activities were estimated using enzymatic tests and molecular docking studies. The title N-acylhydrazones appeared to be promising dual COX/LOX inhibitors. Moreover, spectroscopic and computational methods revealed that new compounds form stable complexes with the most abundant plasma proteins-AAG and HSA, but do not destabilize their secondary structure. Additionally, predicted pharmacokinetic and drug-likeness properties of investigated molecules suggest their potentially good membrane permeability and satisfactory bioavailability.


Assuntos
Inibidores de Ciclo-Oxigenase , Hidrazonas , Inibidores de Lipoxigenase , Piridazinas , Pirróis , Hidrazonas/síntese química , Hidrazonas/química , Hidrazonas/farmacocinética , Hidrazonas/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacocinética , Inibidores de Ciclo-Oxigenase/farmacologia , Piridazinas/síntese química , Piridazinas/química , Piridazinas/farmacocinética , Piridazinas/farmacologia , Pirróis/síntese química , Pirróis/química , Pirróis/farmacocinética , Pirróis/farmacologia , Humanos , Fibroblastos , Simulação por Computador , Permeabilidade da Membrana Celular , Linhagem Celular
6.
Eur J Med Chem ; 241: 114626, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35939995

RESUMO

A series of hybrid anaplastic lymphoma kinase (ALK) inhibitors (Y1∼Y30) were designed by assembling aminoindazole of Entrectinib onto 2-position of 2,4-diarylaminopyrimidine (DAAP) fragment to serve as ATP dual-mimic agents. Under structure-based optimization, all conjugates were detected moderate to excellent cytotoxicity potency, among which the pyrrolidine analog Y28 exerted optimal antiproliferative effects on ALK-addicted cell lines with IC50 values below 20 nM. As a highly potent ALK inhibitor (ALKWT, IC50 = 1.6 nM), Y28 was also capable of suppressing ALK-resistant mutations including ALKL1196M (0.71 nM) and ALKG1202R (1.3 nM). Intriguingly, Y28 turned out to effectively inhibit colony formation and restrain cell migration of H2228 cells in a dose dependent manner. In addition, flow cytometric analysis indicated that Y28 could induce cell apoptosis and achieve cell cycle arrest in G2 phase. Notably, oral administration of Y28 at 50 mg/kg regressed tumor in the H2228 xenograft model with tumor growth inhibition value of 70.46%. Finally, the binding models of Y28 with ALKWT & ALKG1202R within the active site well established its mode of action and accounted for the superior activities as a promising antitumor candidate.


Assuntos
Antineoplásicos , Imidazóis/uso terapêutico , Neoplasias , Piridazinas/uso terapêutico , Trifosfato de Adenosina/farmacologia , Quinase do Linfoma Anaplásico , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Imidazóis/síntese química , Indóis , Mutação , Oligopeptídeos , Inibidores de Proteínas Quinases/química , Piridazinas/síntese química
7.
Molecules ; 26(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834071

RESUMO

A series of novel 3-phenoxy-4-(3-trifluoromethylphenyl)pyridazines 2-5 were designed, based on the structure of our previous lead compound 1 through the in silico structure-guided optimization approach. The results showed that some of these new compounds showed a good herbicidal activity at the rate of 750 g ai/ha by both pre- and post-emergence applications, especially compound 2a, which displayed a comparable pre-emergence herbicidal activity to diflufenican at 300-750 g ai/ha, and a higher post-emergence herbicidal activity than diflufenican at the rates of 300-750 g ai/ha. Additionally, 2a was safe to wheat by both pre- and post-emergence applications at 300 g ai/ha, showing the compound's potential for weed control in wheat fields. Our molecular simulation studies revealed the important factors involved in the interaction between 2a and Synechococcus PDS. This work provided a lead compound for weed control in wheat fields.


Assuntos
Proteínas de Bactérias , Inibidores Enzimáticos , Simulação de Dinâmica Molecular , Oxirredutases , Piridazinas , Synechococcus/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Piridazinas/síntese química , Piridazinas/química
8.
Bioorg Med Chem ; 52: 116504, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34814071

RESUMO

Pantothenate kinase (PANK) is the critical regulator of intracellular levels of coenzyme A and has emerged as an attractive target for treating neurological and metabolic disorders. This report describes the optimization, synthesis, and full structure-activity relationships of a new chemical series of pantothenate competitive PANK inhibitors. Potent drug-like molecules were obtained by optimizing a high throughput screening hit, using lipophilic ligand efficiency (LipE) derived from human PANK3 IC50 values to guide ligand development. X-ray crystal structures of PANK3 with index inhibitors from the optimization were determined to rationalize the emerging structure activity relationships. The analysis revealed a key bidentate hydrogen bonding interaction between pyridazine and R306' as a major contributor to the LipE gain observed in the optimization. A tractable series of PANK3 modulators with nanomolar potency, excellent LipE values, desirable physicochemical properties, and a well-defined structural binding mode was produced from this study.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piridazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Ligantes , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
9.
ChemMedChem ; 16(23): 3600-3614, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34665510

RESUMO

Leishmaniasis and Chagas diseases are two of the most important parasitic diseases in the world. Both belong to the category of Neglected Tropical Diseases, and they cannot be prevented by vaccination. Their treatments are founded in outdated drugs that possess many pernicious side-effects and they're not easy to administer. With the aim of discovering new compounds that could serve as anti-trypanosomal drugs, an antiparasitic study of a synthetic compound family has been conducted. A series of new 1,4-bis(alkylamino)- and 1-alkylamino-4-chloroazine and benzoazine derivatives 1-4 containing imidazole rings have been synthesized and identified. Their structures showed a possible interest based on previous work. Their in vitro anti-Leishmania infantum, anti-L. braziliensis, anti-L. donovani and anti-T. cruzi activity were tested, as well as the inhibition of Fe-SOD enzymes. It was found that some of them exhibited quite relevant values indicative of being worthy of future more detailed studies, as most of them showed activity to more than only one parasite species, especially compound 3 c was active for the three studied Leishmania species and also for T. cruzi, which is a very interesting trait as it covers a wide spectrum.


Assuntos
Imidazóis/farmacologia , Ftalazinas/farmacologia , Piridazinas/farmacologia , Tripanossomicidas/farmacologia , Animais , Chlorocebus aethiops , Imidazóis/síntese química , Imidazóis/toxicidade , Leishmania braziliensis/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Ftalazinas/síntese química , Ftalazinas/toxicidade , Piridazinas/síntese química , Piridazinas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
10.
Eur J Med Chem ; 226: 113867, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607244

RESUMO

Imidazo[1,2-b]pyridazine scaffold represents an important class of heterocyclic nucleus which provides various bioactives molecules. Among them, the successful kinase inhibitor ponatinib led to a resurgence of interest in exploring new imidazo[1,2-b]pyridazine-containing derivatives for their putative therapeutic applications in medicine. This present review intends to provide a state-of-the-art of this framework in medicinal chemistry from 1966 to nowadays, unveiling different aspects of its structure-activity relationships (SAR). This extensive literature surveil may guide medicinal chemists for the quest of novel imidazo[1,2-b]pyridazine compounds with enhanced pharmacokinetics profile and efficiency.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Piridazinas/farmacologia , Anti-Infecciosos/química , Anti-Inflamatórios/química , Antineoplásicos/química , Química Farmacêutica , Humanos , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química
11.
Eur J Med Chem ; 226: 113812, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536673

RESUMO

Chemokine receptor 2 (CXCR2) is the receptor of glutamic acid-leucine-arginine sequence-contained chemokines CXCs (ELR+ CXCs). In recent years, CXCR2-target treatment strategy has come a long way in cancer therapy. CXCR2 antagonists could block CXCLs/CXCR2 axis, and are widely used in regulating immune cell migration, tumor metastasis, apoptosis and angiogenesis. Herein, two series of new CXCR2 small-molecule inhibitors, including 1,2,4-triazol-3-one derivatives 1-11 and pyridazinone derivatives 12-22 were designed and synthesized based on the proof-to-concept. The pyridazinone derivative 18 exhibited good CXCR2 antagonistic activity (69.4 ± 10.5 %Inh at 10 µM) and demonstrated its significant anticancer metastasis activity in MDA-MB-231 cells and remarkable anti-angiogenesis activity in HUVECs. Furthermore, noteworthy was that 18 exhibited an obvious synergistic effect with Sorafenib in anti-proliferation assay in MDA-MB-231 cells. Moreover, 18 showed a distinct reduction of the phosphorylation levels of both PI3K and AKT proteins in MDA-MB-231 cells, and also affected the expression levels of other PI3K/AKT signaling pathway-associated proteins. The molecular docking studies of 18 with CXCR2 also verified the rationality of our design strategy. All of these results revealed pyridazinone derivative 18 as a promising CXCR2 antagonist for future cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Piridazinas/farmacologia , Receptores de Interleucina-8B/antagonistas & inibidores , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Receptores de Interleucina-8B/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
12.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500749

RESUMO

Imidazo[1,2-b]pyridazine compounds are a new class of promising lead molecules to which we have incorporated polar nitro and amino moieties to increase the scope of their biological activity. Two of these substituted 3-nitro-6-amino-imidazo[1,2-b]pyridazine compounds (5c and 5h) showed potent acetylcholinesterase (AChE) inhibitory activity (IC50 40-50 nM), which we have previously reported. In this study, we wanted to test the biological efficacy of these compounds. Cytotoxicity assays showed that compound 5h mediated greater cell death with over 43% of cells dead at 100 µM and activation of caspase 3-mediated apoptosis. On the other hand, compound 5c mediated a dose-dependent decrease in cell proliferation. Both compounds showed cell cycle arrest in the G0/G1 phase and reduced cellular ATP levels leading to activation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced mitochondrial oxidative stress. It has to be noted that all these effects were observed at doses beyond 10 µM, 200-fold above the IC50 for AChE inhibition. Both compounds also inhibited bacterial lipopolysaccharide-mediated cyclooxygenase-2 and nitric oxide release in primary rat microglial cells. These results suggested that the substituted imidazo (1,2-b) pyridazine compounds, which have potent AChE inhibitory activity, were also capable of antiproliferative, anti-migratory, and anti-inflammatory effects at higher doses.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Colinesterase/farmacologia , Neuroblastoma/tratamento farmacológico , Piridazinas/farmacologia , Acetilcolinesterase/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
J Med Chem ; 64(15): 11148-11168, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342224

RESUMO

PRMT5 and its substrate adaptor proteins (SAPs), pICln and Riok1, are synthetic lethal dependencies in MTAP-deleted cancer cells. SAPs share a conserved PRMT5 binding motif (PBM) which mediates binding to a surface of PRMT5 distal to the catalytic site. This interaction is required for methylation of several PRMT5 substrates, including histone and spliceosome complexes. We screened for small molecule inhibitors of the PRMT5-PBM interaction and validated a compound series which binds to the PRMT5-PBM interface and directly inhibits binding of SAPs. Mode of action studies revealed the formation of a covalent bond between a halogenated pyridazinone group and cysteine 278 of PRMT5. Optimization of the starting hit produced a lead compound, BRD0639, which engages the target in cells, disrupts PRMT5-RIOK1 complexes, and reduces substrate methylation. BRD0639 is a first-in-class PBM-competitive inhibitor that can support studies of PBM-dependent PRMT5 activities and the development of novel PRMT5 inhibitors that selectively target these functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Descoberta de Drogas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Piridazinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína-Arginina N-Metiltransferases/metabolismo , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
14.
Bioorg Chem ; 115: 105203, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371375

RESUMO

A novel class of potential MAO-B inhibitors was designed and synthesized in good yield by combining the pyridazinone moiety with the dithiocarbamate framework, two relevant pharmacophores for drug discovery. The biological results obtained for the different pyridazinone/dithiocarbamate hybrids (compounds 8-14) indicated that most of them reversibly and selectively inhibit the hMAO-B in vitro with IC50 values in the µM range and exhibit not significant cellular toxicity. The analogues 9a1, 11a1, 12a2, 12b1 and 12b2, which present the dithiocarbamate fragment derivatized with a piperidin-1-yl or pyrrolidin-1-yl group and placed at C3 or C4 of the diazine ring, were the most attractive compounds of these series. Molecular modeling studies were performed to analyze the binding mode to the enzyme and the structure activity relationships of the titled compounds, as well as to predict their drug-like properties.


Assuntos
Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Piridazinas/farmacologia , Tiocarbamatos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade , Tiocarbamatos/química
15.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299535

RESUMO

Pyridazine and thiazole derivatives have various biological activities such as antimicrobial, analgesic, anticancer, anticonvulsant, antitubercular and other anticipated biological properties. Chitosan can be used as heterogeneous phase transfer basic biocatalyst in heterocyclic syntheses. Novel 1-thiazolyl-pyridazinedione derivatives were prepared via multicomponent synthesis under microwave irradiation as ecofriendly energy source and using the eco-friendly naturally occurring chitosan basic catalyst with high/efficient yields and short reaction time. All the prepared compounds were fully characterized by spectroscopic methods, and their in vitro biological activities were investigated. The obtained results were compared with those of standard antibacterial/antifungal agents. DFT calculations and molecular docking studies were used to investigate the electronic properties and molecular interactions with specific microbial receptors.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Piridazinas/síntese química , Tiazóis/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Técnicas de Química Combinatória , Farmacorresistência Bacteriana , Fungos/efeitos dos fármacos , Humanos , Micro-Ondas , Simulação de Acoplamento Molecular , Micoses/tratamento farmacológico , Piridazinas/química , Piridazinas/farmacologia , Tiazóis/química , Tiazóis/farmacologia
16.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199610

RESUMO

During the last few decades, pyridazine derivatives have emerged as privileged structures in heterocyclic chemistry, both because of their excellent chemistry and because of their potential applications in medicinal chemistry and optoelectronics. This review is focused on the recent advances in [3 + n] cycloaddition reactions in the pyridazine series as well as their medicinal chemistry and optoelectronic applications over the last ten years. The stereochemistry and regiochemistry of the cycloaddition reactions are discussed. Applications in optoelectronics (in particular, as fluorescent materials and sensors) and medicinal chemistry (in particular, antimicrobials and anticancer) are also reviewed.


Assuntos
Reação de Cicloadição/métodos , Piridazinas/síntese química , Piridazinas/farmacologia , Química Farmacêutica , Eletrônica , Humanos , Fenômenos Ópticos , Piridazinas/química , Estereoisomerismo
17.
Bioorg Med Chem ; 40: 116186, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971490

RESUMO

Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are located at the meeting-point of ERK and p38 MAPK signaling pathways, which can phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at the conserved serine 209 exclusively. MNKs modulate the translation of mRNA involved in tumor-associated signaling pathways. Consequently, selective inhibitors of MNK1/2 could reduce the level of phosphorylated eIF4E. Series of imidazopyrazines, imidazopyridazines and imidazopyridines derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against diffuse large B-cell lymphoma (DLBCL) cell lines. In particular, compound II-5 (MNK1 IC50 = 2.3 nM; MNK2 IC50 = 3.4 nM) exhibited excellent enzymatic inhibitory potency and proved to be the most potent compound against TMD-8 and DOHH-2 cell lines with IC50 value of 0.3896 µM and 0.4092 µM respectively. These results demonstrated that compound II-5 could be considered as a potential MNK1/2 inhibitor for further investigation.


Assuntos
Desenho de Fármacos , Imidazóis/farmacologia , Isoquinolinas/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Isoquinolinas/química , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
18.
Molecules ; 26(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920588

RESUMO

The synthesis of glycosides and modified nucleosides represents a wide research field in organic chemistry. The classical methodology is based on coupling reactions between a glycosyl donor and an acceptor. An alternative strategy for new C-nucleosides is used in this approach, which consists of modifying a pre-existent furyl aglycone. This approach is applied to obtain novel pyridazine C-nucleosides starting with 2- and 3-(ribofuranosyl)furans. It is based on singlet oxygen [4+2] cycloaddition followed by reduction and hydrazine cyclization under neutral conditions. The mild three-step one-pot procedure leads stereoselectively to novel pyridazine C-nucleosides of pharmacological interest. The use of acetyls as protecting groups provides an elegant direct route to a deprotected new pyridazine C-nucleoside.


Assuntos
Furanos/química , Nucleosídeos/química , Piridazinas/química , Terpenos/química , Química Orgânica/tendências , Glicosídeos/síntese química , Glicosídeos/química , Nucleosídeos/síntese química , Piridazinas/síntese química , Terpenos/síntese química
19.
Bioorg Med Chem Lett ; 43: 128054, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33895275

RESUMO

A convenient microwave-assisted one-pot four-component synthetic approach was developed en route to novel functionalized benzo[a]pyridazino[3,4-c]phenazine derivatives starting from 2-hydroxy-1,4-naphthoquinone, aromatic aldehydes, methyl hydrazine and o-phenylenediamine. Nine new derivatives were successfully synthesized and subsequently evaluated in terms of their biological profiles. The results revealed good cytotoxic activities of compounds 6a, 6h against KB, HepG2, Lu1 and MCF7 human cancer cell lines. Besides that, compound 6d exhibited promising antimicrobial activities toward Staphylococcuc aureus and Bacillus subtilis bacterial strains with IC50 < 6 µM.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Fenazinas/farmacologia , Piridazinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenazinas/síntese química , Fenazinas/química , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
20.
Bioorg Chem ; 107: 104522, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33317838

RESUMO

A potential microtubule destabilizing series of new thirty-five Pyrrol-2-one, Pyridazin-3(2H)-one and Pyridazin-3(2H)-one/oxime derivatives has been synthesized and tested for their antiproliferative activity against a panel of 60 human cancer cell lines. Compounds IVc, IVg and IVf showed a broad spectrum of growth inhibitory activity against cancer cell lines representing renal, cancer of lung, colon, central nervous system, ovary, and kidney. Among them, compound IVg was found to have broad spectrum anti-tumor activity against the tested nine tumor subpanels with selectivity ratios ranging between 0.21 and 3.77 at the GI50 level. In vitro assaying revealed tubulin polymerization inhibition by all active compounds IVc, IVg and IVf. The results of the docking study revealed nice fitting of compounds IVc, IVf, and IVg into CA-4 binding site in tubulin. The three compounds exhibited high binding affinities (ΔGb = -12.49 to -12.99 kcal/mol) toward tubulin compared to CA-4 (-8.87 kcal/mol). Investigation of the binding modes of the three compounds IVc, IVf, and IVg revealed that they interacted mainly hydrophobically with tubulin and similar binding orientations to that of CA-4. These observations suggest that tubulin is a possible target for these compounds.


Assuntos
Antineoplásicos/farmacologia , Piridazinas/farmacologia , Pirróis/farmacologia , Moduladores de Tubulina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Piridazinas/síntese química , Piridazinas/metabolismo , Pirróis/síntese química , Pirróis/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...