Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.005
Filtrar
1.
Lab Chip ; 24(12): 3183-3190, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38828904

RESUMO

hERG channel screening has been achieved based on electrical impedance tomography and extracellular voltage activation (EIT-EVA) to improve the non-invasive aspect of drug discovery. EIT-EVA screens hERG channels by considering the change in extracellular ion concentration which modifies the extracellular resistance in cell suspension. The rate of ion passing in cell suspension is calculated from the extracellular resistance Rex, which is obtained from the EIT measurement at a frequency of 500 kHz. In the experiment, non-invasive screening is applied by a novel integrated EIT-EVA printed circuit board (PCB) sensor to human embryonic kidney (HEK) 293 cells transfected with the human ether-a-go-go-related gene (hERG) ion channel, while the E-4031 antiarrhythmic drug is used for hERG channel inhibition. The extracellular resistance Rex of the HEK 293 cells suspension is measured by EIT as the hERG channels are activated by EVA over time. The Rex is reconstructed into extracellular conductivity distribution change Δσ to reflect the extracellular K+ ion concentration change Δc resulting from the activated hERG channel. Δc is increased rapidly during the hERG channel non-inhibition state while Δc is increased slower with increasing drug concentration cd. In order to evaluate the EIT-EVA system, the inhibitory ratio index (IR) was calculated based on the rate of Δc over time. Half-maximal inhibitory concentration (IC50) of 2.7 nM is obtained from the cd and IR dose-response relationship. The IR from EIT-EVA is compared with the results from the patch-clamp method, which gives R2 of 0.85. In conclusion, EIT-EVA is successfully applied to non-invasive hERG channel screening.


Assuntos
Impedância Elétrica , Canais de Potássio Éter-A-Go-Go , Humanos , Células HEK293 , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Tomografia/instrumentação , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Piperidinas/farmacologia , Piperidinas/química , Piridinas/farmacologia , Piridinas/química
2.
Nat Commun ; 15(1): 4787, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839843

RESUMO

Pure organic phosphorescence resonance energy transfer is a research hotspot. Herein, a single-molecule phosphorescence resonance energy transfer system with a large Stokes shift of 367 nm and near-infrared emission is constructed by guest molecule alkyl-bridged methoxy-tetraphenylethylene-phenylpyridines derivative, cucurbit[n]uril (n = 7, 8) and ß-cyclodextrin modified hyaluronic acid. The high binding affinity of cucurbituril to guest molecules in various stoichiometric ratios not only regulates the topological morphology of supramolecular assembly but also induces different phosphorescence emissions. Varying from the spherical nanoparticles and nanorods for binary assemblies, three-dimensional nanoplate is obtained by the ternary co-assembly of guest with cucurbit[7]uril/cucurbit[8]uril, accompanying enhanced phosphorescence at 540 nm. Uncommonly, the secondary assembly of ß-cyclodextrin modified hyaluronic acid and ternary assembly activates a single intramolecular phosphorescence resonance energy transfer process derived from phenyl pyridines unit to methoxy-tetraphenylethylene function group, enabling a near-infrared delayed fluorescence at 700 nm, which ultimately applied to mitochondrial targeted imaging for cancer cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ácido Hialurônico , Imidazóis , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Humanos , Ácido Hialurônico/química , Imidazóis/química , Transferência Ressonante de Energia de Fluorescência/métodos , Hidrocarbonetos Aromáticos com Pontes/química , Nanopartículas/química , Estilbenos/química , Piridinas/química , Células HeLa , Nanotubos/química , Mitocôndrias/metabolismo , Compostos Heterocíclicos com 2 Anéis , Compostos Macrocíclicos , Imidazolidinas
3.
Eur J Med Chem ; 274: 116557, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850857

RESUMO

Design and synthesis of novel 4-carboxamidopyrido[3,2-b]pyridine derivatives as novel rigid analogues of sorafenib are reported herein. The target compounds showed potent antiproliferative activities against a panel of NCI-60 cancer cell lines as well as hepatocellular carcinoma cell line. Compounds 8g and 9f were among the most promising derivatives in terms of effectiveness and safety. Therefore, they were further examined to demonstrate their ability to induce apoptosis and alter cell cycle progression in hepatocellular carcinoma cells. The most potent compounds were tested against a panel of kinases that indicated their selectivity against FMS kinase. Compounds 8g and 8h showed the most potent activities against FMS kinase with IC50 values of 21.5 and 73.9 nM, respectively. The two compounds were also tested in NanoBRET assay to investigate their ability to inhibit FMS kinase in cells (IC50 = 563 nM (8g) and 1347 nM (8h) vs. IC50 = 1654 nM for sorafenib). Furthermore, compounds 8g and 8h possess potent inhibitory activities against macrophages when investigated in bone marrow-derived macrophages (BMDM) assay (IC50 = 56 nM and 167 nM, respectively, 164 nM for sorafenib). The safety and selectivity of these compounds were confirmed when tested against normal cell lines. Their safety profile was further confirmed using hERG assay. In silico studies were carried out to investigate their binding modes in the active site of FMS kinase, and to develop a QSAR model for these new motifs.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Piridinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Animais , Simulação de Acoplamento Molecular , Camundongos
4.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891887

RESUMO

With projections suggesting an increase in the global use of neonicotinoids, contemporary farmers can get caught on the "pesticide treadmill", thus creating ecosystem side effects. The aim of this study was to investigate the sorption/desorption behavior of acetamiprid, imidacloprid, and thiacloprid that controls their availability to other fate-determining processes and thus could be useful in leveling the risk these insecticides or their structural analogues pose to the environment, animals, and human health. Sorption/desorption isotherms in four soils with different organic matter (OC) content were modelled by nonlinear equilibrium models: Freundlich's, Langmuir's, and Temkin's. Sorption/desorption parameters obtained by Freundlich's model were correlated to soil physico-chemical characteristics. Even though the OC content had the dominant role in the sorption of the three insecticides, the role of its nature as well as the chemical structure of neonicotinoids cannot be discarded. Insecticides sorbed in the glassy OC phase will be poorly available unlike those in the rubbery regions. Imidacloprid will fill the sorption sites equally in the rubbery and glassy phases irrespective of its concentration. The sorption of thiacloprid at low concentrations and acetamiprid at high concentrations is controlled by hydrophilic aromatic structures, "trapping" the insecticides in the pores of the glassy phase of OC.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Tiazinas , Neonicotinoides/química , Inseticidas/química , Nitrocompostos/química , Tiazinas/química , Adsorção , Solo/química , Poluentes do Solo/química , Piridinas/química , Imidazóis/química
5.
J Inorg Biochem ; 257: 112553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759263

RESUMO

The present work demonstrates the synthesis, structural diversity and coordination behavior of some selected new Ni(II)-Tpy complexes. The structural analysis revealed the coordination of the selected terpyridine ligands with the core metal atom in two different modes via dimeric species (1:1 fashion) through the Cl-bridging and a bis(Tpy)-Ni complex (2:1 fashion). Perhaps the most striking manifestations of these Ni(II)-Tpy complexes are BSA/DNA binding ability and anticancer activity. In addition, the cytotoxicity studies of Tpy ligand (4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 5-methylthiophene-2-carboxylate) and the Ni(II) complexes were carried out using lung cancer cell line (A549), breast cancer cell line (MCF-7) and normal cell line (Vero cell). The cytotoxicity results were compared with the cisplatin control group. Notably, bis-terpyridyl complex 3C (R = 4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 4-isopropoxybenzoate) demonstrates better activity with the IC50 value of 23.13 ± 3 µm for A549 and 22.7 ± 3 for MCF-7. The DFT calculations reveal the significant energy differences of HOMO and LUMO for the ligands and their corresponding Ni(II) complexes. The Tpy ligands and Ni(II)-Tpy complexes were investigated for BSA binding and further all the Ni(II) complexes were analyzed for DNA binding studies.


Assuntos
Antineoplásicos , Complexos de Coordenação , DNA , Níquel , Piridinas , Soroalbumina Bovina , Humanos , Níquel/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , DNA/metabolismo , DNA/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Piridinas/química , Piridinas/farmacologia , Células A549 , Células MCF-7 , Animais , Bovinos
6.
Cell Chem Biol ; 31(5): 962-972.e4, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759620

RESUMO

The Nod-like receptor protein 3 (NLRP3) inflammasome is activated by stimuli that induce perturbations in cell homeostasis, which commonly converge on cellular potassium efflux. NLRP3 has thus emerged as a sensor for ionic flux. Here, we identify forchlorfenuron (FCF) as an inflammasome activator that triggers NLRP3 signaling independently of potassium efflux. FCF triggers the rearrangement of septins, key cytoskeletal proteins that regulate mitochondrial function. We report that FCF triggered the rearrangement of SEPT2 into tubular aggregates and stimulated SEPT2-independent NLRP3 inflammasome signaling. Similar to imiquimod, FCF induced the collapse of the mitochondrial membrane potential and mitochondrial respiration. FCF thereby joins the imidazoquinolines as a structurally distinct class of molecules that triggers NLRP3 inflammasome signaling independent of potassium efflux, likely by inducing mitochondrial damage.


Assuntos
Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Compostos de Fenilureia , Potássio , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , Humanos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/química , Animais , Camundongos , Septinas/metabolismo , Inflamassomos/metabolismo , Piridinas/farmacologia , Piridinas/química , Camundongos Endogâmicos C57BL , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Talanta ; 275: 126167, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710128

RESUMO

The expression of metabotropic glutamate receptor 5 (mGluR5) is subject to developmental regulation and undergoes significant changes in neuropsychiatric disorders and diseases. Visualizing mGluR5 by fluorescence imaging is a highly desired innovative technology for biomedical applications. Nevertheless, there are substantial problems with the chemical probes that are presently accessible. In this study, we have successfully developed a two-photon fluorogenic probe, mGlu-5-TP, based on the structure of mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP). Due to this antagonist-based probe selectively recognizes mGluR5, high expression of mGluR5 on living SH-SY5Y human neuroblastoma cells has been detected during intracellular inflammation triggered by lipopolysaccharides (LPS). Of particular significance, the probe can be employed along with two-photon fluorescence microscopy to enable real-time visualization of the mGluR5 in Aß fiber-treated neuronal cells, thereby establishing a connection to the progression of Alzheimer's disease (AD). These results revealed that the probe can be a valuable imaging tool for studying mGluR5-related diseases in the nervous system.


Assuntos
Corantes Fluorescentes , Neurônios , Piridinas , Receptor de Glutamato Metabotrópico 5 , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Neurônios/metabolismo , Piridinas/química , Piridinas/farmacologia , Linhagem Celular Tumoral , Lipopolissacarídeos/farmacologia , Fótons , Imagem Óptica , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/análise
8.
J Hazard Mater ; 472: 134569, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743981

RESUMO

Recently, a new group of halopyridinol disinfection byproducts (DBPs) was reported in drinking water. The in vivo developmental and acute toxicity assays have shown that they were more toxic than a few commonly known aliphatic DBPs such as bromoform and iodoacetic acid. However, many pyridinol DBPs with the same main structures but different halogen substitutions were still unknown due to complicated water quality conditions and various disinfection methods applied in drinking water treatment plants. Studies on their transformation mechanisms in drinking water disinfection were quite limited. In this study, comprehensive detection and identification of halopyridinols were conducted, and five new halopyridinols were first reported, including 2-chloro-3-pyridinol, 2,6-dichloro-3-pyridinol, 2-bromo-5-chloro-3-pyridinol, 2,4,6-trichloro-3-pyridinol and 2,5,6-trichloro-3-pyridinol. Formation conditions and mechanisms of the halopyridinols were explored, and results showed that chlorination promoted their formation compared with chloramination. Halopyridinols were intermediate DBPs that could undergo further transformation/degradation with increasing contact time, disinfectant dose, bromide concentration, and pH. The in vitro cytotoxicity of the halopyridinols was evaluated using human hepatocellular carcinoma cells. Results showed that the cytotoxicity of 3,5,6-trichloro-2-pyridinol was the highest (EC50 = 474.3 µM), which was 13.0 and 1.6 times higher than that of 2-bromo-3-pyridinol (EC50 = 6214.5 µM) and tribromomethane (EC50 = 753.6 µM), respectively.


Assuntos
Desinfetantes , Desinfecção , Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/química , Humanos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Purificação da Água/métodos , Desinfetantes/toxicidade , Desinfetantes/química , Halogenação , Piridinas/toxicidade , Piridinas/química , Sobrevivência Celular/efeitos dos fármacos
9.
J Am Chem Soc ; 146(21): 14633-14644, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752889

RESUMO

Macrocyclic peptides (MPs) are a class of compounds that have been shown to be particularly well suited for engaging difficult protein targets. However, their utility is limited by their generally poor cell permeability and bioavailability. Here, we report an efficient solid-phase synthesis of novel MPs by trapping a reversible intramolecular imine linkage with a 2-formyl- or 2-keto-pyridine to create an imidazopyridinium (IP+)-linked ring. This chemistry is useful for the creation of macrocycles of different sizes and geometries, including head-to-side and side-to-side chain configurations. Many of the IP+-linked MPs exhibit far better passive membrane permeability than expected for "beyond Rule of 5" molecules, in some cases exceeding that of much lower molecular weight, traditional drug molecules. We demonstrate that this chemistry is suitable for the creation of libraries of IP+-linked MPs and show that these libraries can be mined for protein ligands.


Assuntos
Imidazóis , Imidazóis/química , Imidazóis/síntese química , Permeabilidade da Membrana Celular , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Piridinas/química , Piridinas/síntese química , Estrutura Molecular
10.
Sci Rep ; 14(1): 11118, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750062

RESUMO

This study focused on developing novel pyridine-3-carboxamide analogs to treat bacterial wilt in tomatoes caused by Ralstonia solanacearum. The analogs were synthesized through a multistep process and their structures confirmed using spectroscopy. Molecular docking studies identified the most potent analog from the series. A specific analog, compound 4a, was found to significantly enhance disease resistance in tomato plants infected with R. solanacearum. The structure-activity relationship analysis showed the positions and types of substituents on the aromatic rings of compounds 4a-i strongly influenced their biological activity. Compound 4a, with a chloro group at the para position on ring C and hydroxyl group at the ortho position on ring A, was exceptionally effective against R. solanacearum. When used to treat seeds, the analogs displayed remarkable efficacy, especially compound 4a which had specific activity against bacterial wilt pathogens. Compound 4a also promoted vegetative and reproductive growth of tomato plants, increasing seed germination and seedling vigor. In plants mechanically infected with bacteria, compound 4a substantially reduced the percentage of infection, pathogen quantity in young tissue, and disease progression. The analogs were highly potent due to their amide linkage. Molecular docking identified the best compounds with strong binding affinities. Overall, the strategic design and synthesis of these pyridine-3-carboxamide analogs offers an effective approach to targeting and controlling R. solanacearum and bacterial wilt in tomatoes.


Assuntos
Simulação de Acoplamento Molecular , Doenças das Plantas , Piridinas , Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/efeitos dos fármacos , Ralstonia solanacearum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Piridinas/farmacologia , Piridinas/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Resistência à Doença
11.
J Phys Chem B ; 128(19): 4577-4589, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38696590

RESUMO

The binding affinity of nicotinoids to the binding residues of the α4ß2 variant of the nicotinic acetylcholine receptor (nAChR) was identified as a strong predictor of the nicotinoid's addictive character. Using ab initio calculations for model binding pockets of increasing size composed of 3, 6, and 14 amino acids (3AA, 6AA, and 14AA) that are derived from the crystal structure, the differences in binding affinity of 6 nicotinoids, namely, nicotine (NIC), nornicotine (NOR), anabasine (ANB), anatabine (ANT), myosmine (MYO), and cotinine (COT) were correlated to their previously reported doses required for increases in intracranial self-stimulation (ICSS) thresholds, a metric for their addictive function. By employing the many-body decomposition, the differences in the binding affinities of the various nicotinoids could be attributed mainly to the proton exchange energy between the pyridine and non-pyridine rings of the nicotinoids and the interactions between them and a handful of proximal amino acids, namely Trp156, Trpß57, Tyr100, and Tyr204. Interactions between the guest nicotinoid and the amino acids of the binding pocket were found to be mainly classical in nature, except for those between the nicotinoid and Trp156. The larger pockets were found to model binding structures more accurately and predicted the addictive character of all nicotinoids, while smaller models, which are more computationally feasible, would only predict the addictive character of nicotinoids that are similar to nicotine. The present study identifies the binding affinity of the guest nicotinoid to the host binding pocket as a strong descriptor of the nicotinoid's addiction potential, and as such it can be employed as a fast-screening technique for the potential addiction of nicotine analogs.


Assuntos
Encéfalo , Receptores Nicotínicos , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Humanos , Sítios de Ligação , Encéfalo/metabolismo , Nicotina/química , Nicotina/análogos & derivados , Nicotina/metabolismo , Anabasina/química , Anabasina/metabolismo , Anabasina/análogos & derivados , Modelos Moleculares , Ligação Proteica , Piridinas/química , Piridinas/metabolismo , Cotinina/química , Cotinina/metabolismo , Cotinina/análogos & derivados , Alcaloides
12.
Anal Chem ; 96(19): 7634-7642, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691624

RESUMO

Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.


Assuntos
Metabolômica , Software , Humanos , Metabolômica/métodos , Neoplasias Pulmonares/metabolismo , Piridinas/química
13.
Molecules ; 29(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731639

RESUMO

The cyclometalated terpyridine complexes [Ru(η2-OAc)(NC-tpy)(PP)] (PP = dppb 1, (R,R)-Skewphos 4, (S,S)-Skewphos 5) are easily obtained from the acetate derivatives [Ru(η2-OAc)2(PP)] (PP = dppb, (R,R)-Skewphos 2, (S,S)-Skewphos 3) and tpy in methanol by elimination of AcOH. The precursors 2, 3 are prepared from [Ru(η2-OAc)2(PPh3)2] and Skewphos in cyclohexane. Conversely, the NNN complexes [Ru(η1-OAc)(NNN-tpy)(PP)]OAc (PP = (R,R)-Skewphos 6, (S,S)-Skewphos 7) are synthesized in a one pot reaction from [Ru(η2-OAc)2(PPh3)2], PP and tpy in methanol. The neutral NC-tpy 1, 4, 5 and cationic NNN-tpy 6, 7 complexes catalyze the transfer hydrogenation of acetophenone (S/C = 1000) in 2-propanol with NaOiPr under light irradiation at 30 °C. Formation of (S)-1-phenylethanol has been observed with 4, 6 in a MeOH/iPrOH mixture, whereas the R-enantiomer is obtained with 5, 7 (50-52% ee). The tpy complexes show cytotoxic activity against the anaplastic thyroid cancer 8505C and SW1736 cell lines (ED50 = 0.31-8.53 µM), with the cationic 7 displaying an ED50 of 0.31 µM, four times lower compared to the enantiomer 6.


Assuntos
Antineoplásicos , Piridinas , Rutênio , Humanos , Catálise , Rutênio/química , Linhagem Celular Tumoral , Piridinas/química , Piridinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Estrutura Molecular , Processos Fotoquímicos
14.
Curr Pharm Des ; 30(4): 255-277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711394

RESUMO

BACKGROUND: The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE: The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS: A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION: Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.


Assuntos
Antineoplásicos , Neoplasias , Piridinas , Pirróis , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Animais
15.
Inorg Chem ; 63(20): 9058-9065, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38720438

RESUMO

Nitrofurans are important synthetic broad-spectrum antibacterial drugs with the basic structure of 5-nitrofuran. Due to their toxicity, it is essential to develop a sensitive sensor with strong anti-interference capabilities for their detection. In this work, two {P4Mo6O31}12--based compounds, [H4(HPTTP)]2{CuI[Mo12O24(OH)6(PO4)3(HPO4)(H2PO4)4]}·xH2O (x = 13 for (1), 7 for (2); HPTTP = 4,4',4″,4‴-(1H-pyrrole-2,3,4,5-tetrayl)tetrapyridine), exhibiting similar coordination but distinct stacking modes. Both compounds were synthesized and used for the electrochemical detection of nitrofuran antibiotics. The tetrapyridine-based ligand was generated in situ during assembly, and its potential mechanism was discussed. Composite electrode materials, formed by mixing graphite powder with compounds 1-2 and physically grinding them, proved to be highly effective in the electrochemical trace detection of furazolidone (FZD) and furaltadone hydrochloride (FTD·HCl) under optimal conditions. Besides, the possible electrochemical detection mechanisms of two nitro-antibiotics were studied.


Assuntos
Antibacterianos , Complexos de Coordenação , Cobre , Nitrofuranos , Polímeros , Antibacterianos/química , Antibacterianos/análise , Ligantes , Nitrofuranos/análise , Nitrofuranos/química , Cobre/química , Cobre/análise , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Polímeros/química , Molibdênio/química , Piridinas/química , Estrutura Molecular , Técnicas Eletroquímicas , Modelos Moleculares
16.
J Agric Food Chem ; 72(20): 11360-11368, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720533

RESUMO

In this study, a series of acrylamide derivatives containing trifluoromethylpyridine or piperazine fragments were rationally designed and synthesized. Subsequently, the in vitro antifungal activities of all of the synthesized compounds were evaluated. The findings revealed that compounds 6b, 6c, and 7e exhibited >80% antifungal activity against Phomopsis sp. (Ps) at the concentration of 50 µg/mL. Furthermore, the EC50 values for compounds 6b, 6c, and 7e against Ps were determined to be 4.49, 6.47, and 8.68 µg/mL, respectively, which were better than the positive control with azoxystrobin (24.83 µg/mL). At the concentration of 200 µg/mL, the protective activity of compound 6b against Ps reached 65%, which was comparable to that of azoxystrobin (60.9%). Comprehensive mechanistic studies, including morphological studies with fluorescence microscopy (FM), cytoplasmic leakage, and enzyme activity assays, indicated that compound 6b disrupts cell membrane integrity and induces the accumulation of defense enzyme activity, thereby inhibiting mycelial growth. Therefore, compound 6b serves as a valuable candidate for the development of novel fungicides for plant protection.


Assuntos
Acrilamida , Desenho de Fármacos , Fungicidas Industriais , Piridinas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Acrilamida/química , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Relação Estrutura-Atividade , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Piperazina/química , Piperazina/farmacologia , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Estrutura Molecular , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia
17.
J Med Chem ; 67(10): 7954-7972, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38703119

RESUMO

To discover potential sterol 14α-demethylase (CYP51) inhibitors, thirty-four unreported 4H-pyrano[3,2-c]pyridine derivatives were designed and synthesized. The assay results indicated that most compounds displayed significant fungicidal activity against Sclerotinia sclerotiorum, Colletotrichum lagenarium, Botrytis cinerea, Penicillium digitatum, and Fusarium oxysporum at 16 µg/mL. The half maximal effective concentration (EC50) values of compounds 7a, 7b, and 7f against B. cinerea were 0.326, 0.530, and 0.610, respectively. Namely, they had better antifungal activity than epoxiconazole (EC50 = 0.670 µg/mL). Meanwhile, their half maximal inhibitory concentration (IC50) values against CYP51 were 0.377, 0.611, and 0.748 µg/mL, respectively, representing that they also possessed better inhibitory activities than epoxiconazole (IC50 = 0.802 µg/mL). The fluorescent quenching tests of proteins showed that 7a and 7b had similar quenching patterns to epoxiconazole. The molecular dynamics simulations indicated that the binding free energy of 7a and epoxiconazole to CYP51 was -35.4 and -27.6 kcal/mol, respectively.


Assuntos
Inibidores de 14-alfa Desmetilase , Antifúngicos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Piridinas , Esterol 14-Desmetilase , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Piridinas/farmacologia , Piridinas/síntese química , Piridinas/química , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Fusarium/efeitos dos fármacos , Penicillium , Ascomicetos/efeitos dos fármacos , Colletotrichum/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
18.
Dalton Trans ; 53(20): 8692-8708, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38700377

RESUMO

Selective recognition of fructosyl amino acids in water by arylboronic acid-based receptors is a central field of modern supramolecular chemistry that impacts biological and medicinal chemistry. Fructosyl valine (FV) and fructosyl glycyl histidine (FGH) occur as N-terminal moieties of human glycated hemoglobin; therefore, the molecular design of biomimetic receptors is an attractive, but very challenging goal. Herein, we report three novel cationic Zn-terpyridine complexes bearing a fluorescent N-quinolinium nucleus covalently linked to three different isomers of strongly acidified phenylboronic acids (ortho-, 2Zn; meta-, 3Zn and para-, 4Zn) for the optical recognition of FV, FGH and comparative analytes (D-fructose, Gly, Val and His) in pure water at physiological pH. The complexes were designed to act as fluorescent receptors using a cooperative action of boric acid and a metal chelate. Complex 3Zn was found to display the most acidic -B(OH)2 group (pKa = 6.98) and exceptionally tight affinity for FV (K = 1.43 × 105 M-1) with a strong quenching analytical response in the micromolar concentration range. The addition of fructose and the other amino acids only induced moderate optical changes. On the basis of several spectroscopic tools (1H, 11B NMR, UV-Vis, and fluorescence titrations), ESI mass spectrometry, X-ray crystal structure, and DFT calculations, the interaction mode between 3Zn and FV is proposed in a 1 : 1 model through a cooperative two-point recognition involving a sp3 boronate-diol esterification with simultaneous coordination bonding of the carboxylate group of Val to the Zn atom. Fluorescence quenching is attributed to a static complexation photoinduced electron transfer mechanism as evidenced by lifetime experiments. The addition of FGH to 3Zn notably enhanced its emission intensity with micromolar affinity, but with a lower apparent binding constant than that observed for FV. FGH interacts with 3Zn through boronate-diol complexation and coordination of the imidazole ring of His. DFT-optimized structures of complexes 3Zn-FV and 3Zn-FGH show a picture of binding which shows that the Zn-complex has a suitable (B⋯Zn) distance to the two-point recognition with these analytes. Molecular recognition of fructosyl amino acids by transition-metal-based receptors has not been explored until now.


Assuntos
Ácidos Borônicos , Complexos de Coordenação , Corantes Fluorescentes , Piridinas , Água , Zinco , Zinco/química , Ácidos Borônicos/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Piridinas/química , Água/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Valina/química , Estrutura Molecular , Histidina/química
19.
Int J Biol Macromol ; 270(Pt 2): 132477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772459

RESUMO

KRASG12D are the most prevalent oncogenic mutations and a promising target for solid tumor therapies. However, its inhibition exhibits tremendous challenge due to the necessity of high binding affinity to obviate the need for covalent binders. Here we report the evidence of a novel class of Imidazo[1,2-a]pyridine derivative as potentially significant novel inhibitors of KRASG12D, discovered through extensive ligand-based screening against 2-[(2R)-piperidin-2-yl]-1H-indole, an important scaffold for KRASG12D inhibition via switch-I/II (S-I/II) pocket. The proposed compounds exhibited similar binding affinities and overlapped pose configurations to 2-[(2R)-piperidin-2-yl]-1H-indole, serving as a reliable starting point for drug discovery. Comparative free energy profiles demonstrated that C4 [2-methyl-3-((5-phenyl-1H-1,2,4-triazol-3-yl)methyl)imidazo[1,2-a]pyridine] effectively shifted the protein to a stable low-energy conformation via a prominent transition state. The conformational changes across the transition revealed the conformational shift of switch-I and II to a previously known off-like conformation of inactive KRASG12D with rmsd of 0.91 Å. These conformations were even more prominent than the privileged scaffold 2-[(2R)-piperidin-2-yl]-1H-indole. The representative structure overlay of C4 and another X-ray crystallography solved BI-2852 bound inactive KRASG12D revealed that Switch-I and II exhibited off-like conformations. The cumulative variance across the first eigenvalue that accounted for 57 % of the collective variance validated this on-to-off transition. In addition, the relative interaction of C4 binding showed consistent patterns with BI-2852. Taken together, our results support the inhibitory activity of [2-methyl-3-((5-phenyl-1H-1,2,4-triazol-3-yl)methyl)imidazo[1,2-a]pyridine] by shifting active KRASG12D to an inactive conformation.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Piridinas , Piridinas/química , Piridinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Humanos , Imidazóis/química , Imidazóis/farmacologia , Conformação Proteica , Simulação de Acoplamento Molecular , Ligação Proteica , Mutação
20.
Langmuir ; 40(22): 11713-11722, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38775965

RESUMO

Ionogels have emerged as a promising approach because they combine the advantageous properties of ionic liquids and gels. Herein, a novel gelator bearing terpyridine and imidazolium salt units was designed and synthesized, which assembled into ionogels in three ionic liquids by a heating-cooling procedure. The properties of ionogels were characterized by FT-IR, UV-vis spectroscopy, POM, XRD, and rheology, and resonance light scattering and opacity measurements were conducted to investigate the gelation kinetics. Furthermore, the ionogels incorporating pH-sensitive dyes (BTB and MR) were exploited as colorimetric sensor to monitor total volatile basic nitrogen (TVB-N) of meat at -4 °C, which can easily and reliably estimate the quality of meat by naked eye recognition, and the results demonstrated a positive correlation between the color variation and TVB-N levels. Notably, the hydrophobic ionogel indicators are more suitable for potential application at high humidity thanks to their antiswelling advantage, which could prevent the inaccurate information produced by hydrogel indicators. In addition, the ionogels could be reused up to three times as colorimetric indicators, suggesting potential applications and competitiveness. Our research sheds new light on the novel application of ionogels in the food industry.


Assuntos
Géis , Imidazóis , Piridinas , Imidazóis/química , Piridinas/química , Animais , Géis/química , Suínos , Colorimetria/métodos , Sais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA