Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
BMC Plant Biol ; 24(1): 835, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243061

RESUMO

Salinity is the major abiotic stress among others that determines crop productivity. The primary goal is to examine the impact of Zinc Oxide Nanoparticles (ZnO NPs) on the growth, metabolism, and defense systems of pea plants in simulated stress conditions. The ZnO NPs were synthesized via a chemical process and characterized by UV, XRD, and SEM. The ZnO NPs application (50 and 100) ppm and salt (50 mM and 100 mM) concentrations were carried out individually and in combination. At 50 ppm ZnO NPs the results revealed both positive and negative effects, demonstrating an increase in the root length and other growth parameters, along with a decrease in Malondialdehyde (MDA) and hydrogen peroxide concentrations. However, different concentrations of salt (50 mM and 100 mM) had an overall negative impact on all assessed parameters. In exploring the combined effects of ZnO NPs and salt, various concentrations yielded different outcomes. Significantly, only 50 mM NaCl combined with 50 ppm ZnO NPs demonstrated positive effects on pea physiology, leading to a substantial increase in root length and improvement in other physiological parameters. Moreover, this treatment resulted in decreased levels of MAD, Glycine betaine, and hydrogen peroxide. Conversely, all other treatments exhibited negative effects on the assessed parameters, possibly due to the high concentrations of both stressors. The findings offered valuble reference data for research on the impact of salinity on growth parameters of future agriculture crop.


Assuntos
Pisum sativum , Estresse Salino , Óxido de Zinco , Óxido de Zinco/farmacologia , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/fisiologia , Pisum sativum/metabolismo , Estresse Salino/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Malondialdeído/metabolismo , Peróxido de Hidrogênio/metabolismo , Nanopartículas Metálicas , Nanopartículas , Salinidade
2.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201298

RESUMO

Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.


Assuntos
Cloreto de Cálcio , Regulação da Expressão Gênica de Plantas , Gravitropismo , Peróxido de Hidrogênio , Pisum sativum , Raízes de Plantas , Peróxido de Hidrogênio/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Gravitropismo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Cloreto de Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transcriptoma , Lignina/metabolismo , Amido/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Physiol Plant ; 176(4): e14425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982330

RESUMO

Flowering plants adjust their reproductive period to maximize the success of the offspring. Monocarpic plants, those with a single reproductive cycle that precedes plant senescence and death, tightly regulate both flowering initiation and flowering cessation. The end of the flowering period involves the arrest of the inflorescence meristem activity, known as proliferative arrest, in what has been interpreted as an evolutionary adaptation to maximize the allocation of resources to seed production and the viability of the progeny. Factors influencing proliferative arrest were described for several monocarpic plant species many decades ago, but only in the last few years studies performed in Arabidopsis have allowed to approach proliferative arrest regulation in a comprehensive manner by studying the physiology, hormone dynamics, and genetic factors involved in its regulation. However, these studies remain restricted to Arabidopsis and there is a need to expand our knowledge to other monocarpic species to propose general mechanisms controlling the process. In this work, we have characterized proliferative arrest in Pisum sativum, trying to parallel available studies in Arabidopsis to maximize this comparative framework. We have assessed quantitatively the role of fruits/seeds in the process, the influence of the positional effect of these fruits/seeds in the behavior of the inflorescence meristem, and the transcriptomic changes in the inflorescence associated with the arrested state of the meristem. Our results support a high conservation of the factors triggering arrest in pea and Arabidopsis, but also reveal differences reinforcing the need to perform similar studies in other species.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema , Pisum sativum , Sementes , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Pisum sativum/genética , Pisum sativum/fisiologia , Pisum sativum/crescimento & desenvolvimento , Inflorescência/genética , Inflorescência/fisiologia , Inflorescência/crescimento & desenvolvimento , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Dormência de Plantas/genética , Dormência de Plantas/fisiologia
4.
Proc Biol Sci ; 291(2027): 20240673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39079667

RESUMO

Belowground plant competition has been shown to induce varying responses, from increases to decreases in root biomass allocation or in directional root placement. Such inconsistencies could result from the fact that root allocation and directional growth were seldom studied together, even though they might represent different strategies. Moreover, variations in belowground responses might be due to different size hierarchies between plants, but this hypothesis has not been studied previously. In a greenhouse rhizobox experiment, we examined the way both root allocation and directional root placement of Pisum sativum are affected by the size and density of Festuca glauca neighbours, and by nutrient distribution. We found that root allocation of P. sativum increased with the density and size of F. glauca. By contrast, directional root placement was unaffected by neighbour size and increased either towards or away from neighbours when nutrients were patchily or uniformly distributed, respectively. These results demonstrate that directional root placement under competition is contingent on the distribution of soil resources. Interestingly, our results suggest that root allocation and directional placement might be uncoupled strategies that simultaneously provide stress tolerance and spatial responsiveness to neighbours, thus highlighting the importance of measuring both when studying belowground plant competition.


Assuntos
Pisum sativum , Raízes de Plantas , Pisum sativum/fisiologia , Raízes de Plantas/fisiologia , Festuca/fisiologia , Solo/química , Biomassa
5.
Chemosphere ; 363: 142896, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029707

RESUMO

Increasing concentration of ground level O3 and its negative impacts on agricultural output is well documented, however, the response of leguminous crop plants is still sparsely cited. Given their nutritional richness, legume seeds are widely esteemed as a crucial dietary staple worldwide, prized for their abundance of oil, protein, dietary fiber, and low-fat characteristics. Termed as the "poor man's meat" due to their high-quality protein, they hold immense economic value. Acknowledging the significance of legumes, a field experiment was conducted to understand the physiological and antioxidant responses, stomatal characteristics, and yield response in three cultivars of Pisum sativum L. (K Agaiti, K Uday and K Damini), exposed to elevated ozone (O3). In the present study, Pisum sativum cultivars were subjected to ambient (control) and elevated (+15 ppb) concentrations of O3, using separate sets of OTCs. Elevated O3 stimulated the activity of the enzymes of Halliwell Asada pathway, which were responsible for the differential response of the three experimental cultivars. While K Agaiti and K Uday focused on upregulating their antioxidant defense, K Damini followed the strategy of biomass allocation. Test weight showed that K Damini was most efficient in succoring the yield losses under elevated O3. Under elevated O3, test weight reduced by 8.91%, 7.52%, and 5.1%, respectively, in K Agaiti, followed by K Uday and K Damini, rendering K Agaiti most sensitive to O3 stress. The present study not only helps us to elucidate the O3 sensitivity of the selected experimental cultivars, it also helps us in screening O3 tolerant cultivars for future agricultural practices.


Assuntos
Antioxidantes , Ozônio , Pisum sativum , Ozônio/toxicidade , Pisum sativum/efeitos dos fármacos , Pisum sativum/fisiologia , Antioxidantes/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Biomassa
6.
Plant Signal Behav ; 19(1): 2355739, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38837041

RESUMO

Previous studies on the kinematics of pea plants' ascent and attach behavior have demonstrated that the signature of their movement varies depending on the kind of support. So far, these studies have been confined to artificial supports (e.g. wooden sticks). Little is known regarding the conditions under which pea plants could rely on biological supports (e.g. neighboring plants) for climbing toward the light. In this study, we capitalize on the 3D kinematic analysis of movement to ascertain whether pea plants scale their kinematics differently depending on whether they aim for artificial or biological support. Results suggest that biological support determines a smoother and more accurate behavior than that elicited by the artificial one. These results shed light on pea plants' ability to detect and classify the properties of objects and implement a movement plan attuned to the very nature of the support. We contend that such differences depend on the augmented multisensory experience elicited by the biological support.


Assuntos
Pisum sativum , Pisum sativum/fisiologia , Fenômenos Biomecânicos , Movimento
7.
BMC Plant Biol ; 24(1): 559, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877456

RESUMO

Rainfed regions have inconsistent spatial and temporal rainfall. So, these regions could face water deficiency during critical stages of crop growth. In this regard, multi-environment trials could play a key role in introducing stable genotypes with good performance across several rainfed regions. Grass pea, as a potential forage crop, is a resilient plant that could grow in unsuitable circumstances. In this study, agro-morphological attributes of 16 grass pea genotypes were examined in four semi-warm rain-fed regions during the years 2018-2021. The MLM analysis of variance showed a significant genotype-by-environment interaction (GEI) for dry yield, seed yield, days to maturity, days to flowering, and plant height of grass pea. The PLS (partial least squares) regression revealed that rainfall in the grass pea establishment stage (October and November) is meaningful. For grass pea cultivation, monthly rainfall during plant growth is important, especially in May, with an aim for seed yield. Regarding dry yield, G5, G10, G11, G12, G13, and G15 were selected as good performers and stable genotypes using DY × WAASB biplots, while SY × WAASB biplot manifested G2, G3, G12, and G13 as superior genotypes with stable seed yield. Considering equal weights for yield as well as the WAASB stability index (50/50), G13 was selected as the best one. Among test environments, E2 and E11 played a prominent role in distinguishing the above genotypes from other ones. In this study, MTSI (multi-trait stability index) analysis was applied to select a stable genotype, considering all measured agro-morphological traits simultaneously. Henceforth, the G5 and G15 grass pea genotypes were discerningly chosen due to their commendable performance in the WAASBY plot. In this context, G13 did not emerge as the winner based on MTSI; however, it exhibited an MTSI value in close proximity to the outer boundary of the circle. Consequently, upon comprehensive consideration of all traits, it is deduced that G5, G13, and G15 can be appraised as promising superior genotypes with stability across diverse environmental conditions.


Assuntos
Interação Gene-Ambiente , Genótipo , Chuva , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento
8.
Int J Phytoremediation ; 26(8): 1243-1252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265045

RESUMO

There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.


Till date, abundant research has focused on plant biophysicochemical responses to different types of pollutants. However, the majority of these studies dealt with pollutant exposure to mature plants (generally after a vegetative growth period of 1­2 weeks). Despite significant research, there are still limited data regarding the biophysicochemical responses of plants at their early stages of germination and growth. In fact, stresses at germination or at an early stage of growth can be highly fatal and may significantly affect the ultimate plant growth and potential to remediate the contaminated sites. Therefore, the current study deals with the exposure of germinating pea seedlings to arsenic (As) stress under varied amendments. This experimental plan helped to understand the initial biophysicochemical changes induced in pea plants under As stress.


Assuntos
Arsênio , Germinação , Pisum sativum , Plântula , Poluentes do Solo , Pisum sativum/efeitos dos fármacos , Pisum sativum/fisiologia , Plântula/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Arsênio/metabolismo , Poluentes do Solo/metabolismo , Cálcio/metabolismo , Ácido Edético/farmacologia , Biodegradação Ambiental , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas , Estresse Fisiológico
9.
Plant Signal Behav ; 18(1): 2186045, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37016728

RESUMO

Drought stress poorly impacts many morphological and physio-biochemical processes in plants. Pea (Pisum sativum L.) plants are highly nutritious crops destined for human consumption; however, their productivity is threatened under drought stress. Thiamine (vitamin B1) is well-known essential micronutrient, acting as a cofactor in key metabolic processes. Therefore, this study was designed to examine the protective effect of foliar application of thiamine (0, 250, and 500 ppm) on two varieties of pea plants under drought stress. Here, we conducted the pot experiment at the Government College Women University, Faisalabad, to investigate the physio-biochemical and morphological traits of two pea varieties (sarsabz and metior) grown under drought stress and thiamine treatment. Drought stress was applied to plants after germination period of 1 month. Results showed that root fresh and dry weight, shoot fresh and dry weight, number of pods, leaf area, total soluble sugars, total phenolics, total protein contents, catalase, peroxidase, and mineral ions were reduced against drought stress. However, the application of thiamine (both 250 and 500 ppm) overcome the stress and also enhances these parameters, and significantly increases the antioxidant activities (catalase and peroxidase). Moreover, the performance of sarsabz was better under control and drought stress conditions than metior variety. In conclusion, the exogenous application of thiamine enabled the plants to withstand drought stress conditions by regulating several physiological and biochemical mechanisms. In agriculture, it is a great latent to alleviate the antagonistic impact of drought stress on crops through the foliar application of thiamine.


Assuntos
Pisum sativum , Tiamina , Feminino , Humanos , Catalase/metabolismo , Tiamina/farmacologia , Tiamina/metabolismo , Pisum sativum/fisiologia , Secas , Antioxidantes/metabolismo , Peroxidase/metabolismo
10.
J Environ Sci Health B ; 57(11): 905-915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36367047

RESUMO

Botanical products have an important role in the development of sustainable and ecologically friendly agriculture. Therefore, this study is focused on assessing the insecticidal activity of botanical products (Pyrethro Natura and Rapax) applied individually and in combination with an organic fertilizer (Fitasio) against Acyrthosiphon pisum. Further the change in the plastid pigments concentrations, productivity as well as product selectivity on Coccinella septempunctata larvae was explored. The experiment was conducted at the fields of the Institute of Forage crops, Pleven, Bulgaria from 2019 to 2021 year in spring forage peas. An alternate method of assessing the insecticide efficacy was used based on insect days and cumulative insect days. It was found that the mixture of Pyrethro Natura and Phytasio was associated with the highest overall efficacy against A. pisum and a reduction of cumulative insect days by 64.4% through a span of 9 days with an additive interaction between compounds. The botanical products used had a beneficial effect on the vegetative development of the plants. The Pyrethro Natura in combination with Fitasio provided the highest productivity of 30.7%, content of plastid pigments, and the best plant physiological condition. Botanicals were harmless with toxicity not exceeding 25% against ladybug larvae and displayed an important perspective due to their multiple benefits.


Assuntos
Afídeos , Besouros , Inseticidas , Animais , Pisum sativum/fisiologia , Afídeos/fisiologia , Larva , Inseticidas/farmacologia
11.
Curr Biol ; 32(16): 3593-3600.e3, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35839764

RESUMO

There has been a dramatic recent increase in the understanding of the mechanisms by which plants detect their neighbors,1 including by touch,2 reflected light,3 volatile organic chemicals, and root exudates.4,5 The importance of root exudates remains ill-defined because of confounding experimental variables6,7 and difficulties disentangling neighbor detection in shoot and roots.8-10 There is evidence that root exudates allow distinction between kin and non-kin neighbors,11-13 but identification of specific exudates that function in neighbor detection and/or kin recognition remain elusive.1 Strigolactones (SLs), which are exuded into the soil in significant quantities in flowering plants to promote recruitment of arbuscular mycorrhizal fungi (AMF),14 seem intuitive candidates to act as plant-plant signals, since they also act as hormones in plants,15-17 with dramatic effects on shoot growth18,19 and milder effects on root development.20 Here, using pea, we test whether SLs act as either cues or signals for neighbor detection. We show that peas detect neighbors early in the life cycle through their root systems, resulting in strong changes in shoot biomass and branching, and that this requires SL biosynthesis. We demonstrate that uptake and detection of SLs exuded by neighboring plants are needed for this early neighbor detection, and that plants that cannot exude SLs are outcompeted by neighboring plants and fail to adjust growth to their soil volume. We conclude that plants both exude SLs as signals to modulate neighbor growth and detect environmental SLs as a cue for neighbor presence; collectively, this allows plants to proactively adjust their shoot growth according to neighbor density.


Assuntos
Micorrizas , Compostos Orgânicos Voláteis , Compostos Heterocíclicos com 3 Anéis , Lactonas , Micorrizas/fisiologia , Pisum sativum/fisiologia , Reguladores de Crescimento de Plantas , Raízes de Plantas , Plantas , Solo
12.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163626

RESUMO

The metabolic re-arrangements of peas (Pisum sativum L.) under soil drought and re-watering are still not fully explained. The search for metabolic markers of the stress response is important in breeding programs, to allow for the selection drought-resistant cultivars. During the present study, changes in the polar metabolite content in pea plant shoots were measured under repeated short-term soil drought and subsequent re-watering. A gas chromatograph, equipped with a mass spectrometer (GC-MS), was used for the metabolite profiling of pea plants during their middle stage of vegetation (14-34 days after sowing, DAS). The major changes occurred in the concentration of amino acids and some soluble carbohydrates. Among them, proline, γ-aminobutyric acid (GABA), branched-chain amino acids, hydroxyproline, serine, myo-inositol, and raffinose were accumulated under each soil drought and decreased after re-watering. Besides, the obtained results show that the first drought/re-watering cycle increased the ability of pea plants to restore a metabolic profile similar to the control after the second similar stress. The accumulation of proline seems to be an important part of drought memory in pea plants. However, confirmation of this suggestion requires metabolite profiling studies on a broader spectrum of pea cultivars.


Assuntos
Secas , Metaboloma , Pisum sativum/metabolismo , Prolina/metabolismo , Estresse Fisiológico , Pisum sativum/fisiologia , Rafinose , Água
13.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831328

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.


Assuntos
Cério/farmacologia , Nanopartículas Metálicas/química , Nutrientes , Fotossíntese , Pisum sativum/fisiologia , Óxido de Zinco/farmacologia , Cério/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Ribulosefosfatos/metabolismo , Zinco/metabolismo
14.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502129

RESUMO

Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan's molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.


Assuntos
Glucanos/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetais/metabolismo , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Xilanos/metabolismo , Arabidopsis/fisiologia , Parede Celular/metabolismo , Imunofluorescência , Regulação da Expressão Gênica de Plantas , Glucanos/química , Pisum sativum/fisiologia , Transdução de Sinais , Xilanos/química
15.
Biochemistry (Mosc) ; 86(7): 878-886, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34284711

RESUMO

The effects of superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC), triethylenetetramine (trien), and their combination with glucose on cells of the epidermis from pea leaves of different age (rapidly growing young leaves and slowly growing old leaves) was investigated. DDC and trien caused death of the guard cells as determined by destruction of their nuclei. Glucose did not affect destruction of the nuclei induced by SOD inhibitors in the cells from old leaves, but intensified it in the cells from young leaves. 2-Deoxyglucose, an inhibitor of glycolysis, and propyl gallate, SOD-mimic and antioxidant, suppressed destruction of the nuclei that was caused by SOD inhibitors and glucose in cells of the epidermis from the young, but not from the old leaves. Glucose and trien stimulated, and propyl gallate reduced generation of reactive oxygen species (ROS) in the pea epidermis as determined by the fluorescence of 2',7'-dichlorofluorescein (DCF). Carbonyl cyanide m-chlorophenylhydrazone (CCCP), a protonophoric uncoupler of oxidative and photosynthetic phosphorylation, suppressed the DCF fluorescence in the guard cells. Treatment of the cells with CCCP followed by its removal with washing increased destruction of the nuclei caused by SOD inhibitors and glucose. In young leaves, CCCP was less effective than in old ones. The findings demonstrate the effects of SOD inhibitors and glucose on the cell death and generation of ROS and could indicate glycolysis-dependent ROS production.


Assuntos
Ditiocarb/farmacologia , Glucose/metabolismo , Pisum sativum/efeitos dos fármacos , Epiderme Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio , Superóxido Dismutase/antagonistas & inibidores , Trientina/farmacologia , Morte Celular , Quelantes/farmacologia , Inibidores Enzimáticos/farmacologia , Glucose/farmacologia , Pisum sativum/enzimologia , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Epiderme Vegetal/enzimologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
16.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063012

RESUMO

Single-walled carbon nanotubes (SWCNTs) emerge as promising novel carbon-based nanoparticles for use in biomedicine, pharmacology and precision agriculture. They were shown to penetrate cell walls and membranes and to physically interact and exchange electrons with photosynthetic complexes in vitro. Here, for the first time, we studied the concentration-dependent effect of foliar application of copolymer-grafted SWCNTs on the structural and functional characteristics of intact pea plants. The lowest used concentration of 10 mg L-1 did not cause any harmful effects on the studied leaf characteristics, while abundant epicuticular wax generation on both leaf surfaces was observed after 300 mg L-1 treatment. Swelling of both the granal and the stromal regions of thylakoid membranes was detected after application of 100 mg L-1 and was most pronounced after 300 mg L-1. Higher SWCNT doses lead to impaired photosynthesis in terms of lower proton motive force generation, slower generation of non-photochemical quenching and reduced zeaxanthin content; however, the photosystem II function was largely preserved. Our results clearly indicate that SWCNTs affect the photosynthetic apparatus in a concentration-dependent manner. Low doses (10 mg L-1) of SWCNTs appear to be a safe suitable object for future development of nanocarriers for substances that are beneficial for plant growth.


Assuntos
Cloroplastos/ultraestrutura , Nanotubos de Carbono/química , Fotossíntese , Pisum sativum/fisiologia , Pisum sativum/ultraestrutura , Folhas de Planta/anatomia & histologia , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Permeabilidade da Membrana Celular , Clorofila/metabolismo , Fluorescência , Nanotubos de Carbono/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/ultraestrutura , Prótons , Tilacoides/metabolismo , Fatores de Tempo , Xantofilas/metabolismo
17.
Cells ; 10(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923901

RESUMO

The accumulation of proline is one of the defense mechanisms of plants against the harmful effects of adverse environmental conditions; however, when pea plants were treated for 12 h with CdCl2, the proline concentration decreased in the youngest A (not expanded) and B1 (expanded) leaves, and did not change significantly in the B2 (mature, expanded) or C (the oldest) leaves. After 24 h of cadmium (Cd) stress, the proline concentration remained low in A and B1 leaves, while in B2 and C leaves, it increased, and after 48 h, an increase in the proline concentration in the leaves at each stage of development was observed. The role of proline in the different phases of plant response to the Cd treatment is discussed. Changes in proline accumulation corresponded closely with changes in the transcript levels of PsP5CS2, a gene encoding D1-pyrroline-5-carboxylate synthetase involved in proline synthesis, and PsPDH1, a gene encoding proline dehydrogenase engaged in proline degradation. CdCl2 application induced the expression of PsProT1 and PsProT2, genes encoding proline transporters, especially during the first 12 h of treatment in A and B1 leaves. When the time courses of abscisic acid (ABA) and proline accumulation were compared, it was concluded that an increase in the proline concentration in the leaves of Cd-treated pea plants was more related to a decrease in chlorophyll concentration (leaves B2 and C) and an increase in the malondialdehyde level (A and B1 leaves) than with an increase in ABA concentration alone. Exogenous application of ABA (0.5, 5, 50 µM) significantly increased the proline concentration in the A leaves of pea plants only, and was accompanied by an elevated and repressed expression of PsP5CS2 and PsPDH1 in these leaves, respectively. The presented results suggest that under Cd stress, the accumulation of proline in leaves of pea plants may take place independently of the ABA signaling.


Assuntos
Ácido Abscísico/farmacologia , Cádmio/toxicidade , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Folhas de Planta/metabolismo , Prolina/metabolismo , Estresse Fisiológico , Sequência de Bases , Transporte Biológico/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Malondialdeído/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Folhas de Planta/efeitos dos fármacos , Prolina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos
18.
Plant Cell Environ ; 44(9): 2912-2924, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33763869

RESUMO

Extreme events such as drought and heatwaves are among the biggest challenges to agricultural production and food security. However, the effects of cropping systems on drought resistance of arable crops via their hydraulic behaviour remain unclear. We investigated how hydraulic traits of a field-grown pea-barley (Pisum sativum L. and Hordeum vulgare L.) mixture were affected by different cropping systems, that is, organic and conventional farming with intensive or conservation tillage. Xylem vulnerability to cavitation of both species was estimated by measuring the pressure inducing 50% loss of hydraulic conductivity (P50 ), while the water stress plants experienced in the field were assessed using native percentage loss of hydraulic conductivity (nPLC). Pea and barley showed contrasting hydraulic behaviours: pea was less vulnerable to xylem cavitation and less stressed than barley; cropping systems affected the xylem vulnerability of barley, but not of pea. Barley grown under conventional farming with no tillage was more vulnerable and stressed than under organic farming with intensive tillage. nPLC proved to be a valuable indicator for plant water stress. Our results highlight the impact of cropping systems on crop xylem vulnerability and drought resistance, thus plant hydraulic traits, for protecting food security under future climate.


Assuntos
Produção Agrícola/métodos , Hordeum/fisiologia , Pisum sativum/fisiologia , Água/metabolismo , Desidratação , Hordeum/metabolismo , Pisum sativum/metabolismo , Xilema/metabolismo , Xilema/fisiologia
19.
Plant J ; 106(5): 1338-1355, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33738886

RESUMO

Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Pisum sativum/fisiologia , Adaptação Fisiológica , Transporte Biológico , Secas , Genótipo , Ácido Oleico/metabolismo , Pisum sativum/anatomia & histologia , Pisum sativum/genética , Floema/anatomia & histologia , Floema/genética , Floema/fisiologia , Exsudatos de Plantas , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estresse Fisiológico , Água/fisiologia
20.
Cells ; 10(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451018

RESUMO

Photosynthesis is an important target of action of numerous environmental factors; in particular, stressors can strongly affect photosynthetic light reactions. Considering relations of photosynthetic light reactions to electron and proton transport, it can be supposed that extremely low frequency magnetic field (ELFMF) may influence these reactions; however, this problem has been weakly investigated. In this paper, we experimentally tested a hypothesis about the potential influence of ELFMF of 18 µT intensity with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) on photosynthetic light reactions in wheat and pea seedlings. It was shown that ELFMF decreased non-photochemical quenching in wheat and weakly influenced quantum yield of photosystem II at short-term treatment; in contrast, the changes in potential and effective quantum yields of photosystem II were observed mainly under chronic action of ELFMF. It is interesting that both short-term and chronic treatment decreased the time periods for 50% activation of quantum yield and non-photochemical quenching under illumination. Influence of ELFMF on pea was not observed at both short-term and chronic treatment. Thus, we showed that ELFMF with Schumann resonance frequencies could influence photosynthetic light processes; however, this effect depends on plant species (wheat or pea) and type of treatment (short-term or chronic).


Assuntos
Luz , Campos Magnéticos , Fotossíntese/efeitos da radiação , Pisum sativum/fisiologia , Pisum sativum/efeitos da radiação , Triticum/fisiologia , Triticum/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...