Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.104
Filtrar
1.
Sci Data ; 11(1): 781, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013933

RESUMO

We present DiasMorph, a dataset of images and traits of diaspores from 1,442 taxa in 519 genera, and 96 families from Central Europe, totalling 94,214 records. The dataset was constructed following a standardised and reproducible image analysis method. The image dataset consists of diaspores against a high-contrast background, enabling a simple and efficient segmentation process. The quantitative traits records go beyond traditional morphometric measurements, and include colour and contour features, which are made available for the first time in a large dataset. These measurements correspond to individual diaspores, an input currently unavailable in traits databases, and allow for several approaches to explore the morphological traits of these species. Additionally, information regarding the presence and absence of appendages and structures both in the images and diaspores of the assessed taxa is also included. By making these data available, we aim to encourage initiatives to advance on new tools for diaspore identification, further our understanding of morphological traits functions, and provide means for the continuous development of image analyses applications.


Assuntos
Plantas , Europa (Continente) , Plantas/anatomia & histologia , Plantas/classificação
2.
PLoS One ; 19(7): e0306568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968235

RESUMO

Exploring the relationship between soil properties and species diversity in typical forest stands in Liaoning Xianrendong National Nature Reserve will help maintain the stability of forest communities in the transition zone between flora in Changbai and North China. Based on the plant-soil feedback theory, community sample data from nine typical forest stands in the study area and experimental test data from 54 soil samples, we selected indexes of soil physical and chemical properties based on the minimum data set (temperature, compactness, capillary pore space, bulk weight, capillary water holding capacity, drainage capacity, soil water storage, conductivity, pH, organic matter, Ca, Fe, K, N and P). We adopt the research method of classical statistical analysis. The soil properties of nine typical stands in Xianrendong National Nature Reserve of Liaoning Province were systematically analyzed. The relationship between soil properties and forest stands' species diversity was quantified using correlation and redundancy analyses. The Pearson correlation analysis results showed significant positive correlations between the Gleason abundance index (arbors) with conductivity, pH, organic matter, Ca, N and P; Pielou's evenness index (arbors) with bulk weight and Fe. Significant negative correlations between the Gleason abundance index (arbors) with capillary pore space, bulk weight, drainage capacity, soil water storage and capillary water holding capacity; Simpson dominance index and Shannon-Wiener diversity index with capillary water holding capacity, drainage capacity and soil water storage; Pielou's evenness index (arbors) with Ca and N. The natural moisture content and clay particles are neutral feedback. The results showed that the feedback mechanism of soil physicochemical properties on stand species diversity was complex, which was conducive to species coexistence and community stability.


Assuntos
Biodiversidade , Florestas , Solo , Solo/química , China , Plantas/classificação , Árvores
3.
PLoS One ; 19(7): e0306174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968313

RESUMO

A long-standing key issue for examining the relationships between biodiversity and ecosystem functioning (BEF), such as forest productivity, is whether ecosystem functions are influenced by the total number of species or the properties of a few key species. Compared with controlled ecosystem experiments, the BEF relationships in secondary forest remain unclear, as do the effects of common species richness and rare species richness on the variation in ecosystem functions. To address this issue, we conducted field surveys at five sampling sites (1 ha each) with subtropical secondary evergreen broad-leaved forest vegetation. We found (1) a positive correlation between species richness and standing aboveground biomass (AGB); (2) that common species were primarily responsible for the distribution patterns of species abundance and dominance; although they accounted for approximately 25% of the total species richness on average, they represented 86-91% of species abundance and 88-97% of species dominance; and (3) that common species richness could explain much more of the variation in AGB than total species richness (common species plus rare species) at both the site and plot scales. Because rare species and common species were not equivalent in their ability to predict productivity in the biodiversity-ecosystem productivity model, redundant information should be eliminated to obtain more accurate results. Our study suggested that woody plant species richness and productivity relationship in subtropical forest ecosystem can be explained and predicted by a few common species.


Assuntos
Biodiversidade , Biomassa , Florestas , Clima Tropical , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Especificidade da Espécie , Plantas/classificação , Ecossistema , Madeira
4.
Nat Commun ; 15(1): 5641, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969636

RESUMO

On a global scale, biodiversity is geographically structured into regions of biotic similarity. Delineating these regions has been mostly targeted for tetrapods and plants, but those for hyperdiverse groups such as insects are relatively unknown. Insects may have higher biogeographic congruence with plants than tetrapods due to their tight ecological and evolutionary links with the former, but it remains untested. Here, we develop a global regionalization for a major and widespread insect group, ants, based on the most comprehensive distributional and phylogenetic information to date, and examine its similarity to regionalizations for tetrapods and vascular plants. Our ant regionalization supports the newly proposed Madagascan and Sino-Japanese realms based on tetrapod delineations, and it recovers clusters observed in plants but not in tetrapods, such as the Holarctic and Indo-Pacific realms. Quantitative comparison suggests strong associations among different groups-plants showed a higher congruence with ants than with tetrapods. These results underscore the wide congruence of diverse distribution patterns across the tree of life and the similarities shared by insects and plants that are not captured by tetrapod groups. Our analysis highlights the importance of developing global biogeographic maps for insect groups to obtain a more comprehensive geographic picture of life on Earth.


Assuntos
Formigas , Biodiversidade , Filogenia , Filogeografia , Plantas , Animais , Formigas/fisiologia , Plantas/classificação , Evolução Biológica
5.
Sci Data ; 11(1): 795, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025901

RESUMO

In our changing world, understanding plant community responses to global change drivers is critical for predicting future ecosystem composition and function. Plant functional traits promise to be a key predictive tool for many ecosystems, including grasslands; however, their use requires both complete plant community and functional trait data. Yet, representation of these data in global databases is sparse, particularly beyond a handful of most used traits and common species. Here we present the CoRRE Trait Data, spanning 17 traits (9 categorical, 8 continuous) anticipated to predict species' responses to global change for 4,079 vascular plant species across 173 plant families present in 390 grassland experiments from around the world. The dataset contains complete categorical trait records for all 4,079 plant species obtained from a comprehensive literature search, as well as nearly complete coverage (99.97%) of imputed continuous trait values for a subset of 2,927 plant species. These data will shed light on mechanisms underlying population, community, and ecosystem responses to global change in grasslands worldwide.


Assuntos
Pradaria , Plantas , Plantas/classificação , Ecossistema
6.
Sci Rep ; 14(1): 15657, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977726

RESUMO

Understanding the distribution of the plant species of an unexplored area is the utmost need of the present-day. In order to collect vegetation data, Quadrat method was used having size of 1 m2. The composite soil samples from each site were tested for various edaphic properties. PC-ORD v.5 was used for the classification of the vegetation while CANOCO v.5.1 was used for ordination of the data and to find out the complex relationship between plants and environment. Survey was conducted during summer season and a total of 216 herbaceous species were recorded from forty different sites of District Kohat, Pakistan. Cluster Analysis (CA) and Two-Way Cluster Analysis (TWCA) classified the vegetation of forty sites into six major plant groups i.e., 1. Paspalum paspalodes, Alternanthera sessilis, Typha domingensis, 2. Cynodon dactylon, Parthenium hysterophorus, Brachiaria ramosa, 3. Cynodon dactylon, Eragrostis minor, Cymbopogon jwarancusa, 4. Cymbopogon jwarancusa, Aristida adscensionis, Boerhavia procumbens, 5. Cymbopogon jwarancusa, Aristida adscensionis, Pennisetum orientale and 6. Heteropogon contortus, Bothriochloa ischaemum, Chrysopogon serrulatus. They were named after the dominant species based on their Importance Value (IV). The detrended correspondence analysis (DCA) analysis further confirmed the vegetation classification. Canonical correspondence analysis (CCA) indicated that the species distribution in the area was strongly affected by various environmental factors including status, soil characteristics, topography and altitude.


Assuntos
Plantas , Estações do Ano , Paquistão , Plantas/classificação , Análise Multivariada , Solo/química , Análise por Conglomerados , Ecossistema , Biodiversidade , Clima Tropical
7.
Sci Rep ; 14(1): 12707, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830929

RESUMO

Understanding the determinants of biodiversity in fragmented habitats is fundamental for informing sustainable landscape development, especially in urban landscapes that substantially fragment natural habitat. However, the relative roles of landscape and habitat characteristics, as emphasized by two competing frameworks (the island biogeography theory and the habitat diversity hypothesis), in structuring species assemblages in fragmented habitats have not been fully explored. This study investigated bird assemblages at 26 habitat patches (ranging in size from 0.3 to 290.4 ha) in an urban landscape, southwest China, among which habitat type composition and woody plant species composition varied significantly. Through 14 bird surveys conducted over six breeding seasons from 2017 to 2022, we recorded 70 breeding bird species (excluding birds recorded only once and fly-overs, such as raptors, swallows and swifts), with an average of 26 ± 10 (SD) species per patch. We found that patch area had significant direct and indirect effects on bird richness, with the indirect effects mediated by habitat richness (i.e., the number of habitat types). Isolation (measured as the distance to the nearest patch), perimeter to area ratio (PAR), and woody plant richness did not significantly predict variation in bird richness. Furthermore, none of these factors significantly sorted bird species based on their functional traits. However, the overall makeup of bird assemblages was significantly associated with the specific habitat types and woody plant species present in the patches. The results suggest that neither the island biogeography theory nor the habitat diversity hypothesis can fully explain the impacts of habitat fragmentation on bird richness in our study system, with their roles primarily being linked to patch area. The findings that habitat and plant compositions were the major drivers of variation in bird assemblage composition offer valuable insights into urban planning and green initiatives. Conservation efforts should focus not only on preserving large areas, but also on preventing urban monocultures by promoting diverse habitats within those areas, contributing to the persistence of meta-communities.


Assuntos
Biodiversidade , Aves , Ecossistema , Animais , Aves/fisiologia , China , Conservação dos Recursos Naturais , Plantas/classificação , Cidades
8.
An Acad Bras Cienc ; 96(2): e20230925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896693

RESUMO

Restinga formations are defined as the vegetation covering sandy coastal sediments deposited during the Quaternary period, regardless their physiognomy. They are usually characterized as areas of confluence between plant species associated with diverse phytogeographical domains. However, detailed floristic and biogeographic studies are still required to better define their distribution patterns, the origins of their plant species, and their biogeographical affinities. In this study, we investigate the floristic similarities among restingas in Northern and Northeastern Brazil and diverse ecosystems from different Brazilian phytogeographical domains (Caatinga, Cerrado, Atlantic Forest and Amazonia). We employed multivariate analyses to investigate differences in species composition and identify floristically similar groups. While sharing species with other ecosystems, restingas exhibit unique floristic composition, representing a coastal flora. Furthermore, the restingas of Northern and Northeastern Brazil are biogeographically subdivided according to previously recognized sectors of the coast of the country. These findings underscore the complex nature of restinga ecosystems, influenced by environmental factors such as geographic distance, geology and climate. These insights contribute to a nuanced understanding of the complex relationships between restingas and their surrounding ecosystems, facilitating informed conservation efforts in the face of escalating urban and industrial expansion along the Brazilian coast.


Assuntos
Ecossistema , Plantas , Brasil , Plantas/classificação , Biodiversidade
9.
PeerJ ; 12: e17375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915387

RESUMO

Elevational gradients constitute excellent systems for understanding the mechanisms that generate and maintain global biodiversity patterns. Climatic gradients associated with elevation show strong influence on species distribution in mountains. The study of mountains covered by the same habitat type is an ideal scenario to compare alternatives to the energy hypotheses. Our aim was to investigate how changes in climatic conditions along the elevational gradient drive α- and ß-diversity of four taxa in a mountain system located within a grassland biome. We sampled ants, spiders, birds and plants, and measured climatic variables at six elevational bands (with 10 sampling sites each) established between 470 and 1,000 masl on a mountain from the Ventania Mountain System, Argentina. Species richness per site and ß-diversity (turnover and nestedness) between the lowest band and upper sites were estimated. For most taxa, species richness declined at high elevations and energy, through temperature, was the major driver of species richness for ants, plants and birds, prevailing over productivity and water availability. The major ß-diversity component was turnover for plants, spiders and birds, and nestedness for ants. The unique environmental conditions of the upper bands could favour the occurrence of specialist and endemic species.


Assuntos
Altitude , Formigas , Biodiversidade , Aves , Pradaria , Aranhas , Animais , Formigas/fisiologia , Formigas/classificação , Aves/fisiologia , Argentina , Aranhas/fisiologia , Aranhas/classificação , Plantas/classificação , Clima , Ecossistema
10.
Mol Phylogenet Evol ; 198: 108134, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901473

RESUMO

Glycoside hydrolases are enzymes that break down complex carbohydrates into simple sugars by catalyzing the hydrolysis of glycosidic bonds. There have been multiple instances of adaptive horizontal gene transfer of genes belonging to various glycoside hydrolase families from microbes to insects, as glycoside hydrolases can metabolize constituents of the carbohydrate-rich plant cell wall. In this study, we characterize the horizontal transfer of a gene from the glycoside hydrolase family 26 (GH26) from bacteria to insects of the order Hemiptera. Our phylogenies trace the horizontal gene transfer to the common ancestor of the superfamilies Pentatomoidea and Lygaeoidea, which include stink bugs and seed bugs. After horizontal transfer, the gene was assimilated into the insect genome as indicated by the gain of an intron, and a eukaryotic signal peptide. Subsequently, the gene has undergone independent losses and expansions in copy number in multiple lineages, suggesting an adaptive role of GH26s in some insects. Finally, we measured tissue-level gene expression of multiple stink bugs and the large milkweed bug using publicly available RNA-seq datasets. We found that the GH26 genes are highly expressed in tissues associated with plant digestion, especially in the principal salivary glands of the stink bugs. Our results are consistent with the hypothesis that this horizontally transferred GH26 was co-opted by the insect to aid in plant tissue digestion and that this HGT event was likely adaptive.


Assuntos
Transferência Genética Horizontal , Glicosídeo Hidrolases , Hemípteros , Filogenia , Animais , Hemípteros/genética , Hemípteros/enzimologia , Hemípteros/classificação , Glicosídeo Hidrolases/genética , Plantas/genética , Plantas/classificação
11.
J Anim Ecol ; 93(7): 958-969, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38826033

RESUMO

Broad-scale assessments of plant-frugivore interactions indicate the existence of a latitudinal gradient in interaction specialization. The specificity (i.e. the similarity of the interacting partners) of plant-frugivore interactions could also change latitudinally given that differences in resource availability could favour species to become more or less specific in their interactions across latitudes. Species occurring in the tropics could be more taxonomically, phylogenetically and functionally specific in their interactions because of a wide range of resources that are constantly available in these regions that would allow these species to become more specialized in their resource usage. We used a data set on plant-avian frugivore interactions spanning a wide latitudinal range to examine these predictions, and we evaluated the relationship between latitude and taxonomic, phylogenetic and functional specificity of plant and frugivore interactions. These relationships were assessed using data on population interactions (population level), species means (species level) and community means (community level). We found that the specificity of plant-frugivore interactions is generally not different from null models. Although statistically significant relationships were often observed between latitude and the specificity of plant-frugivore interactions, the direction of these relationships was variable and they also were generally weak and had low explanatory power. These results were consistent across the three specificity measures and levels of organization, suggesting that there might be an interplay between different mechanisms driving the interactions between plants and frugivores across latitudes.


Assuntos
Herbivoria , Animais , Aves/fisiologia , Plantas/classificação , Especificidade da Espécie , Geografia , Filogenia
12.
Sci Total Environ ; 945: 174083, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906301

RESUMO

Plant phenology is influenced by a combined effect of phylogeny and climate, although it is yet unclear how these two variables work together to change phenology. We synthesized 107 previously published studies to examine whether phenological changes were impacted by both phylogeny and climate changes in various geographical settings globally. Phenological observation data from 52,463 plant species at 71 sites worldwide revealed that 90 % of phenological records showed phylogenetic conservation. i.e., closely related species exhibited similar phenology. To explore the significant and non-significant phylogenetic conservation between plant phenophases, our dataset comprises 5,47,000 observation records from the four main phenophases (leaf bud, leaf, flower, and fruit). Three-dimensional geographical distribution (altitude, latitude, and longitude) data analysis revealed that plant phenology may exhibit phylogenetic signals at finer special scales (optimal environmental conditions) that vanish in high altitude and latitude regions. Additionally, climatic sensitivity analysis suggested that phylogenetic signals were associated with plant phenophases and were stronger in the regions of ideal temperature (7-18 °C) and photoperiod (10-14 h) and weaker in harsh climatic conditions. These results show that phylogenetic conservation in plant phenological traits is frequently influenced by the interaction of harsh climatic conditions and geographical ranges. This meta-analysis enhances our knowledge of predicting species responses over geographic gradients under varied climatic conditions.


Assuntos
Filogenia , Flores , Geografia , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/classificação
13.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931618

RESUMO

Wild desert grasslands are characterized by diverse habitats, uneven plant distribution, similarities among plant class, and the presence of plant shadows. However, the existing models for detecting plant species in desert grasslands exhibit low precision, require a large number of parameters, and incur high computational cost, rendering them unsuitable for deployment in plant recognition scenarios within these environments. To address these challenges, this paper proposes a lightweight and fast plant species detection system, termed YOLOv8s-KDT, tailored for complex desert grassland environments. Firstly, the model introduces a dynamic convolutional KernelWarehouse method to reduce the dimensionality of convolutional kernels and increase their number, thus achieving a better balance between parameter efficiency and representation ability. Secondly, the model incorporates triplet attention into its feature extraction network, effectively capturing the relationship between channel and spatial position and enhancing the model's feature extraction capabilities. Finally, the introduction of a dynamic detection head tackles the issue related to target detection head and attention non-uniformity, thus improving the representation of the target detection head while reducing computational cost. The experimental results demonstrate that the upgraded YOLOv8s-KDT model can rapidly and effectively identify desert grassland plants. Compared to the original model, FLOPs decreased by 50.8%, accuracy improved by 4.5%, and mAP increased by 5.6%. Currently, the YOLOv8s-KDT model is deployed in the mobile plant identification APP of Ningxia desert grassland and the fixed-point ecological information observation platform. It facilitates the investigation of desert grassland vegetation distribution across the entire Ningxia region as well as long-term observation and tracking of plant ecological information in specific areas, such as Dashuikeng, Huangji Field, and Hongsibu in Ningxia.


Assuntos
Algoritmos , Clima Desértico , Plantas , Plantas/classificação , Ecossistema , Pradaria , China
14.
BMC Ecol Evol ; 24(1): 74, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831426

RESUMO

BACKGROUND: The geographic patterns of plant diversity in the Qinghai-Tibet Plateau (QTP) have been widely studied, but few studies have focused on wetland plants. This study quantified the geographic patterns of wetland plant diversity in the QTP through a comprehensive analysis of taxonomic, phylogenetic and functional indices. METHODS: Based on a large number of floras, monographs, specimens and field survey data, we constructed a comprehensive dataset of 1,958 wetland plant species in the QTP. Species richness (SR), phylogenetic diversity (PD), functional diversity (FD), net relatedness index (NRI) and net functional relatedness index (NFRI) were used to assess the taxonomic, phylogenetic and functional diversity of wetland plants. We explored the relationships between the diversity indices and four categories of environmental variables (i.e. energy-water, climate seasonality, topography and human activities). We used four diversity indices, namely endemic species richness, weighted endemism, phylogenetic endemism and functional endemism, together with the categorical analysis of neo- and paleo-endemism (CANAPE), to identify the endemic centers of wetland plants in the QTP. RESULTS: SR, PD and FD were highly consistent and showed a decreasing trend from southeast to northwest, decreasing with increasing elevation. The phylogenetic structure of wetland plant assemblages in most parts of the plateau is mainly clustered. The functional structure of wetland plant assemblages in the southeast of the plateau is overdispersed, while the functional structure of wetland plant assemblages in other areas is clustered. Energy-water and climate seasonality were the two most important categories of variables affecting wetland plant diversity. Environmental variables had a greater effect on the functional structure of wetland plants than on the phylogenetic structure. This study identified seven endemic centres, mainly in the Himalayas and Hengduan Mountains. CONCLUSIONS: Climate and topography are the main factors determining the geographic distribution of wetland plant diversity at large scales. The majority of grid cells in the QTP with significant phylogenetic endemism were mixed and super-endemism. At large scales, compared to climate and topography, human activities may not have a negative impact on wetland plant diversity in the QTP.


Assuntos
Biodiversidade , Plantas , Áreas Alagadas , Plantas/classificação , Tibet , Filogenia , China
15.
Ying Yong Sheng Tai Xue Bao ; 35(4): 867-876, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884221

RESUMO

To investigate the correlation between carbon and oxygen isotope compositions of plant cellulose and climatic factors as well as plant physiological indices on the southeastern margin of the Qinghai-Tibet Plateau, we examined plant species in eight sampling sites with similar latitudes and different longitudes in this region. Through the characteristics of δ13C and δ18O values, fractionation values (Δ13C and Δ18O) in leaf cellulose, we discussed water use efficiency (WUE) and the environmental factors, the variation of carbon and oxygen isotopes in the southeastern margin of the Qinghai-Tibet Plateau with elevation and longitude, and revealed the indication degrees of isotopic signals to different environments and vegetation physiology. By using the semi-quantitative model of carbon and oxygen dual isotopes, we investigated the physiological adaptation mechanisms of plants to varying environmental conditions. The results demonstrated that both Δ13C and Δ18O of cellulose decreased with increasing elevation and longitude, and Δ13C was more influenced by longitude, while Δ18O was more susceptible to elevation variation. Additionally, Δ13C and Δ18O were significantly and positively correlated with temperature (TEM), precipitation (PRE), potential evapotranspiration (PET), and relative humidity (RH). PRE was the dominant meteorological factor driving the variation of Δ13C, while RH was the dominant meteorological factor influencing Δ18O variation. In contrast to Δ13C, WUE showed a stronger correlation with elevation than with longitude, which increased as elevation and longitude increased. According to the carbon-oxygen model, plant stomatal conductance (gs) and photosynthetic capacity (Amax) decreased with increasing precipitation and relative humidity, while the values increased with increasing elevation and longitude. The combined analysis of carbon and oxygen isotopes of organic matters would yield additional environmental and gas exchange information for studies on climate tracing and vegetation physiology studies on the southeastern margin of the Qinghai-Tibet Plateau.


Assuntos
Isótopos de Carbono , Ecossistema , Isótopos de Oxigênio , Isótopos de Oxigênio/análise , China , Isótopos de Carbono/análise , Clima , Altitude , Plantas/metabolismo , Plantas/classificação , Fenômenos Fisiológicos Vegetais , Tibet , Celulose/metabolismo , Celulose/análise
16.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1016-1024, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884236

RESUMO

In this study, we explored the changes in plant community diversity and their relationship with soil factors under shrub encroachment pressure by selecting four marsh areas in Sanjiang Plain with different degrees of shrub cover (a, 0≤a≤100%), including marsh with no shrub encroachment (a=0), light shrub encroachment (0

Assuntos
Biodiversidade , Solo , Áreas Alagadas , China , Solo/química , Dinâmica Populacional , Poaceae/crescimento & desenvolvimento , Plantas/classificação , Desenvolvimento Vegetal
17.
Sci Rep ; 14(1): 12692, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830877

RESUMO

Here, we explore the application of Raman spectroscopy for the assessment of plant biodiversity. Raman spectra from 11 vascular plant species commonly found in forest ecosystems, specifically angiosperms (both monocots and eudicots) and pteridophytes (ferns), were acquired in vivo and in situ using a Raman leaf-clip. We achieved an overall accuracy of 91% for correct classification of a species within a plant group and identified lignin Raman spectral features as a useful discriminator for classification. The results demonstrate the potential of Raman spectroscopy in contributing to plant biodiversity assessment.


Assuntos
Biodiversidade , Análise Espectral Raman , Análise Espectral Raman/métodos , Plantas/química , Plantas/classificação , Folhas de Planta/química , Lignina/análise
18.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1269-1274, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886425

RESUMO

Harm from alien invasive plants is increasing in Jingzhou County, Hunan Province. Based on a one-year field investigation and available literature, we investigated species composition, origin, flora, degree of harm and distribution pattern of invasive plants in the county. The results showed that there were 34 invasive plant species from 27 genera and 16 families in this County. The dominant invasive species belonged to Asteraceae (8 species) and Amaranthaceae (6 species), which accounted for 23.5% and 17.7%, respectively. The majority of invasive plants originated from South America (45.7%) and North America (30.4%). Tropical flora showed a significantly higher representation than temperate flora, signifying robust tropical characteristics amongst the invasive plant population. Based on hazard level classification, we recognized four types as malicious invasion (Level 1): Alternanthera philoxeroides, Erigeron annuus, E. canadensis, and Xanthium chinense. In addition, five types were classified as severe invasion (Level 2), eight types as local invasion (Level 3), fifteen types as general invasion (Level 4), while two types were still under observation (Level 5). The pattern of distribution demonstrated that invasive plants in Jingzhou County mostly spread along the verges of transportation roads, in human settlements, and in a few areas of water flow. The higher levels of invasion damage were principally concentrated in the central part of Jingzhou County.


Assuntos
Asteraceae , Ecossistema , Espécies Introduzidas , China , Asteraceae/classificação , Asteraceae/crescimento & desenvolvimento , Amaranthaceae/crescimento & desenvolvimento , Amaranthaceae/classificação , Plantas/classificação , Conservação dos Recursos Naturais
19.
Nat Commun ; 15(1): 5346, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914561

RESUMO

Global patterns of leaf nitrogen (N) and phosphorus (P) stoichiometry have been interpreted as reflecting phenotypic plasticity in response to the environment, or as an overriding effect of the distribution of species growing in their biogeochemical niches. Here, we balance these contrasting views. We compile a global dataset of 36,413 paired observations of leaf N and P concentrations, taxonomy and 45 environmental covariates, covering 7,549 sites and 3,700 species, to investigate how species identity and environmental variables control variations in mass-based leaf N and P concentrations, and the N:P ratio. We find within-species variation contributes around half of the total variation, with 29%, 31%, and 22% of leaf N, P, and N:P variation, respectively, explained by environmental variables. Within-species plasticity along environmental gradients varies across species and is highest for leaf N:P and lowest for leaf N. We identified effects of environmental variables on within-species variation using random forest models, whereas effects were largely missed by widely used linear mixed-effect models. Our analysis demonstrates a substantial influence of the environment in driving plastic responses of leaf N, P, and N:P within species, which challenges reports of a fixed biogeochemical niche and the overriding importance of species distributions in shaping global patterns of leaf N and P.


Assuntos
Nitrogênio , Fósforo , Filogenia , Folhas de Planta , Fósforo/metabolismo , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Ecossistema , Plantas/metabolismo , Plantas/classificação , Meio Ambiente , Especificidade da Espécie
20.
Sci Data ; 11(1): 669, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909064

RESUMO

Species phenology - the timing of key life events - is being altered by ongoing climate changes with yet underappreciated consequences for ecosystem stability. While flowering is generally occurring earlier, we know much less about other key processes such as the time of fruit ripening, largely due to the lack of comprehensive long-term datasets. Here we provide information on the exact date and site where seeds of 4,462 taxa were collected for the Index Seminum (seed exchange catalogue) of the Botanic Garden of the University of Coimbra, between 1926 and 2013. Seeds were collected from spontaneous and cultivated individuals across Portugal, including both native and introduced taxa. The database consists of 127,747 curated records with information on the species, or infraspecific taxa (including authority), and the day and site where seeds were collected. All records are georeferenced and provided with a confidence interval for the collection site. Taxonomy was first curated manually by in-house botanists and then harmonized according to the GBIF backbone taxonomy.


Assuntos
Frutas , Plantas , Mudança Climática , Ecossistema , Plantas/classificação , Portugal , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...