Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.336
Filtrar
1.
Genes (Basel) ; 15(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38927655

RESUMO

The citrus cultivar 'Local Juhong', which has historically been used as a traditional Chinese medicinal material, originated in Yuanjiang County, Hunan Province.Its parental type and genetic background are indistinct as of yet. Morphological observation shows that 'Local Juhong' has a slight oblateness in fruit shape, a relatively smooth pericarp, a fine and slightly raised oil vacuole, and an inward concave at the blossom end. The tree form and fruit and leaf morphology of 'Local Juhong' are similar to those of 'Huangpi' sour orange. To reveal the genetic background of 'Local Juhong', 21 citrus accessions were evaluated using nuclear and chloroplast SSR markers and whole-genome SNP information. 'Local Juhong' was grouped with mandarins and sub-grouped with 'Miyagawa Wase' and 'Yanxi Wanlu' in a nuclear SSR analysis, which indicated that its pollen parent might be mandarins. It was closely clustered with orange and pummelo in the chloroplast SSR analysis. The genomic sequence similarity rate of 'Local Juhong' with mandarin and pummelo heterozygosity was 70.88%; the main part was the heterozygosity, except for the unknown (19.66%), mandarin (8.73%), and pummelo (3.9%) parts. Thus, 'Local Juhong' may be an F1 hybrid with pummelo as the female parent and mandarin as the male parent, sharing sisterhood with 'Huangpi' sour orange.


Assuntos
Citrus , Repetições de Microssatélites , Citrus/genética , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único , Plantas Medicinais/genética , Genômica/métodos , Genoma de Planta , Marcadores Genéticos , Filogenia , Cloroplastos/genética
2.
Phytomedicine ; 131: 155770, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851103

RESUMO

BACKGROUND: The genus Celastrus is an important medicinal plant resource. The similarity of morphology and the lack of complete chloroplast genome analysis have significantly impeded the exploration of species identification, molecular evolution and phylogeny of Celastrus. PURPOSE: In order to resolve the phylogenic controversy of Celastrus species, the chloroplast genome comparative analysis was performed to provide genetic evidence. METHODS: In this study, we collected and sequenced ten chloroplast genomes of Celastrus species from China and downloaded three chloroplast genomes from the databases. The chloroplast genomes were compared and analyzed to explore their characteristics and evolution. Furthermore, the phylogenetic relationships of Celastrus species were inferred based on the whole chloroplast genomes and protein-coding genes. RESULTS: All the 13 Celastrus species chloroplast genomes showed a typical quadripartite structure with genome sizes ranging from 155,113 to 157,366 bp. The intron loss of the rps16 gene occurred in all the 13 Celastrus species. The GC content, gene sequence, repeat types and codon bias pattern were highly conserved. Ten highly variation regions were identified, which can be used as potential DNA markers in molecular identification of Celastrus species. Eight genes, including accD, atp4, ndhB, rpoC1, rbcL, rpl2, rpl20 and ycf1, were detected to experience positive selection. Phylogenetic analysis showed that Celastrus was a monophyletic group and Tripterygium was the closest sister-group. Noteworthy, C. gemmatus Loes. and C. orbiculatus Thunb. can be discriminated using the chloroplast genome as a super barcode. The comparative and phylogenetic analysis results proposed that C. tonkinensis Pitard. was the synonym of C. hindsii Benth. CONCLUSION: The comparative analysis of the Celastrus chloroplast genomes can provide comprehensive genetic evidence for molecular evolution, species identification and phylogenetic relationships.


Assuntos
Celastrus , Evolução Molecular , Genoma de Cloroplastos , Filogenia , Celastrus/genética , Celastrus/classificação , Composição de Bases , Plantas Medicinais/genética , Plantas Medicinais/classificação , China , Íntrons
3.
Mol Biol Rep ; 51(1): 757, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874856

RESUMO

BACKGROUND: The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS: We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION: The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.


Assuntos
Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Salvia , Transcriptoma , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Vias Biossintéticas/genética , Salvia/genética , Salvia/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Anotação de Sequência Molecular , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Propanóis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário/genética
4.
Sci Data ; 11(1): 610, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866889

RESUMO

Tinospora sagittata (Oliv.) Gagnep. is an important medicinal tetraploid plant in the Menispermaceae family. Its tuber, Radix Tinosporae, used in traditional Chinese medicine, is rich in diterpenoids and benzylisoquinoline alkaloids (BIAs). To enhance our understanding of medicinal compounds' biosynthesis and Menispermaceae's evolution, we herein report assembling a high-quality chromosome-scale genome with both PacBio HiFi and Illumina sequencing technologies. PacBio Sequel II generated 2.5 million circular consensus sequencing (CCS) reads, and a hybrid assembly strategy with Illumina sequencing resulted in 4483 contigs. The assembled genome size was 2.33 Gb, consisting of 4070 scaffolds (N50 = 42.06 Mb), of which 92.05% were assigned to 26 pseudochromosomes. T. sagittata's chromosomal-scale genome assembly, the first species in Menispermaceae, aids Menispermaceae evolution and T. sagittata's secondary metabolites biosynthesis understanding.


Assuntos
Genoma de Planta , Plantas Medicinais , Tinospora , Tinospora/genética , Plantas Medicinais/genética , Cromossomos de Plantas/genética , Menispermaceae/genética
5.
Sci Rep ; 14(1): 13945, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886540

RESUMO

Veronica anagallis-aquatica L. and Veronica undulata Wall. are widely used ethnomedicinal plants in China. The two species have different clinical efficacies, while their extremely similar morphology and unclear interspecific relationship make it difficult to accurately identify them, leading to increased instances of mixed usage. This article reports on the complete chloroplast genomes sequence of these two species and their related Veronica species to conduct a comparative genomics analysis and phylogenetic construction. The results showed that the chloroplast (cp) genomes of Veronica exhibited typical circular quadripartite structures, with total lengths of 149,386 to 152,319 base pairs (bp), and GC content of 37.9 to 38.1%, and the number of genes was between 129-134. The total number of simple sequence repeats (SSRs) in V. anagallis-aquatica and V. undulata is 37 and 36, while V. arvensis had the highest total number of 56, predominantly characterized by A/T single bases. The vast majority of long repeat sequence types are forward repeats and palindromic repeats. Selective Ka/Ks values showed that three genes were under positive selection. Sequence differences often occur in the non-coding regions of the large single-copy region (LSC) and small single-copy region (SSC), with the lowest sequence variation in the inverted repeat regions (IR). Seven highly variable regions (trnT-GGU-psbD, rps8-rpl16, trnQ-UUG, trnN-GUU-ndhF, petL, ycf3, and ycf1) were detected, which may be potential molecular markers for identifying V. anagallis-aquatica and V. undulata. The phylogenetic tree indicates that there is a close genetic relationship between the genera Veronica and Neopicrorhiza, and V. anagallis-aquatica and V. undulata are sister groups. The molecular clock analysis results indicate that the divergence time of Veronica may occur at ∼ 9.09 Ma, and the divergence time of these two species occurs at ∼ 0.48 Ma. It is speculated that climate change may be the cause of Veronica species diversity and promote the radiation of the genus. The chloroplast genome data of nine Veronica specie provides important insights into the characteristics and evolution of the chloroplast genome of this genus, as well as the phylogenetic relationships of the genus Veronica.


Assuntos
Genoma de Cloroplastos , Repetições de Microssatélites , Filogenia , Repetições de Microssatélites/genética , Plantas Medicinais/genética , Composição de Bases , Genômica/métodos
6.
BMC Genom Data ; 25(1): 61, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886663

RESUMO

OBJECTIVES: As a traditional Chinese medicine, Lepidium apetalum is commonly used for purging the lung, relieving dyspnea, alleviating edema, and has the significant pharmacological effects on cardiovascular disease, hyperlipidemia, etc. In addition, the seeds of L. apetalum are rich in unsaturated fatty acids, sterols, glucosinolates and have a variety of biological activity compounds. To facilitate genomics, phylogenetic and secondary metabolite biosynthesis studies of L. apetalum, we assembled the high-resolution genome of L. apetalum. DATA DESCRIPTION: We completed chromosome-level genome assembly of the L. apetalum genome (2n = 32), using Illumina HiSeq and PacBio Sequel sequencing platform as well as high-throughput chromosome conformation capture (Hi-C) technique. The assembled genome was 296.80 Mb in size, 34.41% in GC content, and 23.89% in repeated sequence content, including 316 contigs with a contig N50 of 16.31 Mb. Hi-C scaffolding resulted in 16 chromosomes occupying 99.79% of the assembled genome sequences. A total of 46 584 genes and 105 pseudogenes were predicted, 98.37% of which can be annotated to Nr, GO, KEGG, TrEMBL, SwissPort, Pfam and KOG databases. The high-quality reference genome generated by this study will provide accurate genetic information for the molecular biology research of L. apetalum.


Assuntos
Genoma de Planta , Lepidium , Plantas Medicinais , Plantas Medicinais/genética , Lepidium/genética , Anotação de Sequência Molecular , Cromossomos de Plantas/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
7.
Sci Data ; 11(1): 667, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909038

RESUMO

Cnidium monnieri, a medicinal herb of the Cnidium genus and the Apiaceae family, is among the most important traditional Chinese medicines and is widely distributed in China. However, to date, no C. monnieri-related genomic information has been described. In this study, we assembled the C. monnieri genome of approximately 1210.23 Mb with a contig N50 of 83.14 Mb. Using PacBio HiFi and Hi-C sequencing data, we successfully anchored 93.86% of the assembled sequences to 10 pseudochromosomes (2n = 20). We predicted a total of 37,460 protein-coding genes, with 97.02% of them being functionally annotated in Non-Redundant, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and other databases. In addition, we identified 2,778 tRNAs, 4,180 rRNAs, 258 miRNAs, and 1,700 snRNAs in the genome. This is the first reported C. monnieri genome. Hopefully, the availability of this chromosome-level reference genome provides a significant basis for upcoming natural product-related biosynthetic pathway assessment in C. monnieri.


Assuntos
Cnidium , Genoma de Planta , Cromossomos de Plantas , Cnidium/genética , Medicina Tradicional Chinesa , Plantas Medicinais/genética
8.
Curr Opin Biotechnol ; 87: 103142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735192

RESUMO

Plant synthetic biology has the capability to provide solutions to global challenges in the production and supply of medicines. Recent advances in 'omics' technologies have accelerated gene discoveries in medicinal plant research so that even multistep biosynthetic pathways for bioactive plant natural products with high structural complexity can be reconstituted in heterologous plant expression systems more rapidly. This review provides an overview of concept and strategies used to produce high-value plant natural products in heterologous plant systems and highlights recent successes in engineering the biosynthesis of conventional and new medicines in alternative plant hosts.


Assuntos
Produtos Biológicos , Biologia Sintética , Biologia Sintética/métodos , Humanos , Produtos Biológicos/metabolismo , Plantas Medicinais/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas/metabolismo , Plantas/genética , Engenharia Metabólica/métodos
9.
Zhongguo Zhong Yao Za Zhi ; 49(8): 1989-1995, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812215

RESUMO

In the new stage of trans-omics and trans-subjects for medicinal plants, it is an urgent need to integrate big data, provide interactive applications, and form a unified and multi-level research system and big data platform. Dao-di medicinal material, as an important source of medicinal plants, is a unique quality concept and comprehensive standard of tranditional Chinese medicine(TCM). Several databases have been developed in China and abroad, such as the Encyclopedia of Traditional Chinese Medicine(ETCM) and the Global Pharmacopoeia Genome Database(GPGD). Yet, most databases do not provide multi-dimensional data, including geographic data, phenotype data, compound data, and genetic data. Sichuan, known as the hometown of TCM therapies and the treasure trove of TCM, is the most representative region of medicinal plant diversity in China. According to the latest data of the fourth national survey of TCM resources, there are more than 8 000 TCM and 86 Dao-di medicinal materials in Sichuan province. Based on resource census data and relevant achievements, this study constructed the bioinformatics database of medicinal plants and the visual analysis platform of production layout by taking the Dao-di medicinal materials in Sichuan province as an example, covering geographic data, phenotype data, compound data, and genetic data. It effectively integrates multi-dimensional data of Dao-di medicinal materials and provides different levels of data interaction applications. The platform is the first large-scale multi-dimensional database and visual platform of Dao-di medicinal materials in Sichuan province, which serves as an essential resource for germplasm resources identification, decomposition of biosynthetic pathways, molecular breeding of varieties and provides medicinal plant resource information and data support for development and utilization of medicinal plants in China and abroad.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Plantas Medicinais , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , China , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa
10.
Mol Biol Rep ; 51(1): 639, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727924

RESUMO

BACKGROUND: Peucedani Radix, also known as "Qian-hu" is a traditional Chinese medicine derived from Peucedanum praeruptorum Dunn. It is widely utilized for treating wind-heat colds and coughs accompanied by excessive phlegm. However, due to morphological similarities, limited resources, and heightened market demand, numerous substitutes and adulterants of Peucedani Radix have emerged within the herbal medicine market. Moreover, Peucedani Radix is typically dried and sliced for sale, rendering traditional identification methods challenging. MATERIALS AND METHODS: We initially examined and compared 104 commercial "Qian-hu" samples from various Chinese medicinal markets and 44 species representing genuine, adulterants or substitutes, utilizing the mini barcode ITS2 region to elucidate the botanical origins of the commercial "Qian-hu". The nucleotide signature specific to Peucedani Radix was subsequently developed by analyzing the polymorphic sites within the aligned ITS2 sequences. RESULTS: The results demonstrated a success rate of 100% and 93.3% for DNA extraction and PCR amplification, respectively. Forty-five samples were authentic "Qian-hu", while the remaining samples were all adulterants, originating from nine distinct species. Peucedani Radix, its substitutes, and adulterants were successfully identified based on the neighbor-joining tree. The 24-bp nucleotide signature (5'-ATTGTCGTACGAATCCTCGTCGTC-3') revealed distinct differences between Peucedani Radix and its common substitutes and adulterants. The newly designed specific primers (PR-F/PR-R) can amplify the nucleotide signature region from commercial samples and processed materials with severe DNA degradation. CONCLUSIONS: We advocate for the utilization of ITS2 and nucleotide signature for the rapid and precise identification of herbal medicines and their adulterants to regulate the Chinese herbal medicine industry.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas , DNA de Plantas/genética , Código de Barras de DNA Taxonômico/métodos , Medicamentos de Ervas Chinesas/normas , Apiaceae/genética , Apiaceae/classificação , Medicina Tradicional Chinesa/normas , DNA Espaçador Ribossômico/genética , Contaminação de Medicamentos , Plantas Medicinais/genética , Filogenia , Análise de Sequência de DNA/métodos , Reação em Cadeia da Polimerase/métodos , Nucleotídeos/genética , Nucleotídeos/análise
11.
Mol Biol Rep ; 51(1): 648, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727802

RESUMO

BACKGROUND: Polygonatum kingianum holds significant importance in Traditional Chinese Medicine due to its medicinal properties, characterized by its diverse chemical constituents including polysaccharides, terpenoids, flavonoids, phenols, and phenylpropanoids. The Auxin Response Factor (ARF) is a pivotal transcription factor known for its regulatory role in both primary and secondary metabolite synthesis. However, our understanding of the ARF gene family in P. kingianum remains limited. METHODS AND RESULTS: We employed RNA-Seq to sequence three distinct tissues (leaf, root, and stem) of P. kingianum. The analysis revealed a total of 31,558 differentially expressed genes (DEGs), with 43 species of transcription factors annotated among them. Analyses via gene ontology and the Kyoto Encyclopedia of Genes and Genomes demonstrated that these DEGs were predominantly enriched in metabolic pathways and secondary metabolite biosynthesis. The proposed temporal expression analysis categorized the DEGs into nine clusters, suggesting the same expression trends that may be coordinated in multiple biological processes across the three tissues. Additionally, we conducted screening and expression pattern analysis of the ARF gene family, identifying 12 significantly expressed PkARF genes in P. kingianum roots. This discovery lays the groundwork for investigations into the role of PkARF genes in root growth, development, and secondary metabolism regulation. CONCLUSION: The obtained data and insights serve as a focal point for further research studies, centred on genetic manipulation of growth and secondary metabolism in P. kingianum. Furthermore, these findings contribute to the understanding of functional genomics in P. kingianum, offering valuable genetic resources.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Plantas Medicinais , Polygonatum , Transcriptoma , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Polygonatum/genética , Polygonatum/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
12.
BMC Plant Biol ; 24(1): 358, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698337

RESUMO

BACKGROUND: Astragalus membranaceus var. mongholicus (Astragalus), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. The growth and metabolite accumulation of medicinal roots during the harvest period is intricately regulated by a transcriptional regulatory network. One key challenge is to accurately pinpoint the harvest date during the transition from conventional yield content of medicinal materials to high and to identify the core regulators governing such a critical transition. To solve this problem, we performed a correlation analysis of phenotypic, transcriptome, and metabolome dynamics during the harvesting of Astragalus roots. RESULTS: First, our analysis identified stage-specific expression patterns for a significant proportion of the Astragalus root genes and unraveled the chronology of events that happen at the early and later stages of root harvest. Then, the results showed that different root developmental stages can be depicted by co-expressed genes of Astragalus. Moreover, we identified the key components and transcriptional regulation processes that determine root development during harvest. Furthermore, through correlating phenotypes, transcriptomes, and metabolomes at different harvesting periods, period D (Nov.6) was identified as the critical period of yield and flavonoid content increase, which is consistent with morphological and metabolic changes. In particular, we identified a flavonoid biosynthesis metabolite, isoliquiritigenin, as a core regulator of the synthesis of associated secondary metabolites in Astragalus. Further analyses and experiments showed that HMGCR, 4CL, CHS, and SQLE, along with its associated differentially expressed genes, induced conversion of metabolism processes, including the biosynthesis of isoflavones and triterpenoid saponins substances, thus leading to the transition to higher medicinal materials yield and active ingredient content. CONCLUSIONS: The findings of this work will clarify the differences in the biosynthetic mechanism of astragaloside IV and calycosin 7-O-ß-D-glucopyranoside accumulation between the four harvesting periods, which will guide the harvesting and production of Astragalus.


Assuntos
Astragalus propinquus , Metabolômica , Fenótipo , Raízes de Plantas , Plantas Medicinais , Transcriptoma , Astragalus propinquus/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Metaboloma , Perfilação da Expressão Gênica
13.
BMC Plant Biol ; 24(1): 424, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764045

RESUMO

Rutaceae family comprises economically important plants due to their extensive applications in spices, food, oil, medicine, etc. The Rutaceae plants is able to better utilization through biotechnology. Modern biotechnological approaches primarily rely on the heterologous expression of functional proteins in different vectors. However, several proteins are difficult to express outside their native environment. The expression potential of functional genes in heterologous systems can be maximized by replacing the rare synonymous codons in the vector with preferred optimal codons of functional genes. Codon usage bias plays a critical role in biogenetic engineering-based research and development. In the current study, 727 coding sequences (CDSs) obtained from the chloroplast genomes of ten Rutaceae plant family members were analyzed for codon usage bias. The nucleotide composition analysis of codons showed that these codons were rich in A/T(U) bases and preferred A/T(U) endings. Analyses of neutrality plots, effective number of codons (ENC) plots, and correlations between ENC and codon adaptation index (CAI) were conducted, which revealed that natural selection is a major driving force for the Rutaceae plant family's codon usage bias, followed by base mutation. In the ENC vs. CAI plot, codon usage bias in the Rutaceae family had a negligible relationship with gene expression level. For each sample, we screened 12 codons as preferred and high-frequency codons simultaneously, of which GCU encoding Ala, UUA encoding Leu, and AGA encoding Arg were the most preferred codons. Taken together, our study unraveled the synonymous codon usage pattern in the Rutaceae family, providing valuable information for the genetic engineering of Rutaceae plant species in the future.


Assuntos
Uso do Códon , Genoma de Cloroplastos , Plantas Medicinais , Rutaceae , Plantas Medicinais/genética , Rutaceae/genética , Códon/genética
14.
Sci Data ; 11(1): 554, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816414

RESUMO

Warburgia ugandensis and Saururus chinensis are two of the most important medicinal plants in magnoliids and are widely utilized in traditional Kenya and Chinese medicine, respectively. The absence of higher-quality reference genomes has hindered research on the medicinal compound biosynthesis mechanisms of these plants. We report the chromosome-level genome assemblies of W. ugandensis and S. chinensis, and generated 1.13 Gb and 0.53 Gb genomes from 74 and 27 scaffolds, respectively, using BGI-DIPSEQ, Nanopore, and Hi-C sequencing. The scaffold N50 lengths were 82.97 Mb and 48.53 Mb, and the assemblies were anchored to 14 and 11 chromosomes of W. ugandensis and S. chinensis, respectively. In total, 24,739 and 20,561 genes were annotated, and 98.5% and 98% of the BUSCO genes were fully represented, respectively. The chromosome-level genomes of W. ugandensis and S. chinensis will be valuable resources for understanding the genetics of these medicinal plants, studying the evolution of magnoliids and angiosperms and conserving plant genetic resources.


Assuntos
Genoma de Planta , Plantas Medicinais , Plantas Medicinais/genética , Cromossomos de Plantas/genética , Saururaceae/genética
15.
Sci Data ; 11(1): 342, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580686

RESUMO

Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.


Assuntos
Genoma de Planta , Silybum marianum , Melhoramento Vegetal , Plantas Medicinais/genética , Silybum marianum/genética , Cromossomos de Plantas
16.
Sci Rep ; 14(1): 9662, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671173

RESUMO

Calendula officinalis L.is a versatile medicinal plant with numerous applications in various fields. However, its chloroplast genome structure, features, phylogeny, and patterns of evolution and mutation remain largely unexplored. This study examines the chloroplast genome, phylogeny, codon usage bias, and divergence time of C. officinalis, enhancing our understanding of its evolution and adaptation. The chloroplast genome of C. officinalis is a 150,465 bp circular molecule with a G + C content of 37.75% and comprises 131 genes. Phylogenetic analysis revealed a close relationship between C. officinalis, C. arvensis, and Osteospermum ecklonis. A key finding is the similarity in codon usage bias among these species, which, coupled with the divergence time analysis, supports their close phylogenetic proximity. This similarity in codon preference and divergence times underscores a parallel evolutionary adaptation journey for these species, highlighting the intricate interplay between genetic evolution and environmental adaptation in the Asteraceae family. Moreover unique evolutionary features in C. officinalis, possibly associated with certain genes were identified, laying a foundation for future research into the genetic diversity and medicinal value of C. officinalis.


Assuntos
Calendula , Evolução Molecular , Genoma de Cloroplastos , Filogenia , Plantas Medicinais , Plantas Medicinais/genética , Calendula/genética , Uso do Códon , Composição de Bases , Cloroplastos/genética
17.
Cryo Letters ; 45(2): 122-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557991

RESUMO

BACKGROUND: Acorus calamus Linn. is a medicinally valuable monocot plant belonging to the family Acoraceae. Over-exploitation and unscientific approach towards harvesting to fulfill an ever-increasing demand have placed it in the endangered list of species. OBJECTIVE: To develop vitrification-based cryopreservation protocols for A. calamus shoot tips, using conventional vitrification and V cryo-plate. MATERIALS AND METHODS: Shoot tips (2 mm in size) were cryopreserved with the above techniques by optimizing various parameters such as preculture duration, sucrose concentration in the preculture medium, and PVS2 dehydration time. Regenerated plantlets obtained post-cryopreservation were evaluated by random amplified polymorphic DNA (RAPD) to test their genetic fidelity. RESULTS: The highest regrowth of 88.3% after PVS2 exposure of 60 min was achieved with V cryo-plate as compared to 75% after 90 min of PVS2 exposure using conventional vitrification. After cryopreservation, shoot tips developed into complete plantlets in 28 days on regrowth medium (0.5 mg/L BAP, 0.3 mg/L GA3, and 0.3 mg/L ascorbic acid). RAPD analysis revealed 100% monomorphism in all cryo-storage derived regenerants and in vitro donor (120-days-old) plants. CONCLUSION: Shoot tips of A. calamus that were cryopreserved had 88.3% regrowth using V cryo-plate technique and the regerants retained genetic fidelity. https://doi.org/10.54680/fr24210110412.


Assuntos
Acorus , Plantas Medicinais , Criopreservação/métodos , Plantas Medicinais/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Brotos de Planta/genética , Vitrificação , Crioprotetores
18.
BMC Biotechnol ; 24(1): 20, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637734

RESUMO

BACKGROUND: Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS: We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS: The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , DNA de Cloroplastos/genética , Plantas Medicinais/genética , Cloroplastos/genética , Mapeamento Cromossômico , Filogenia
19.
J Nat Med ; 78(3): 792-798, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427209

RESUMO

Crude drug Angelicae acutilobae radix is one of the most important crude drugs in Japanese traditional medicine and is used mainly for the treatment of gynecological disorders. In the listing in the Japanese Pharmacopoeia XVIII, Angelicae acutilobae radix is defined as the root of Angelica acutiloba (Apiaceae), which has long been produced on an industrial scale in Japan. With the aging of farmers and depopulation of production areas, the domestic supply has recently declined and the majority of the supply is now imported from China. Due to having only slightly different morphological and chemical characteristics for the Apiaceae roots used to produce dried roots for Chinese medicines, the plant species originating the crude drug Apiaceae roots may be incorrectly identified. In particular, Angelicae sinensis radix, which is widely used in China, and Angelicae acutilobae radix are difficult to accurately identify by morphology and chemical profiles. Thus, in order to differentiate among Angelicae acutilobae radix and other radixes originated from Chinese medicinal Apiaceae plants, we established DNA markers. Using DNA sequences for the chloroplast psbA-trnH intergenic spacer and nuclear internal transcribed spacer regions, Angelicae acutilobae radix and other Chinese Apiaceae roots, including Angelicae sinensis radix, can be definitively identified.


Assuntos
Angelica sinensis , Angelica , Código de Barras de DNA Taxonômico , Raízes de Plantas , Angelica/genética , Angelica/química , Angelica/classificação , Angelica sinensis/genética , Raízes de Plantas/genética , Apiaceae/genética , Apiaceae/classificação , DNA de Plantas/genética , Plantas Medicinais/genética , Plantas Medicinais/classificação , Medicamentos de Ervas Chinesas/química , Filogenia , China
20.
J Integr Plant Biol ; 66(3): 510-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441295

RESUMO

The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.


Assuntos
Alcaloides , Plantas Medicinais , Humanos , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Alcaloides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...