Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Mol Ecol ; 28(22): 4845-4863, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31483077

RESUMO

Herbivorous insects have evolved many mechanisms to overcome plant chemical defences, including detoxification and sequestration. Herbivores may also use toxic plants to reduce parasite infection. Plant toxins could directly interfere with parasites or could enhance endogenous immunity. Alternatively, plant toxins could favour down-regulation of endogenous immunity by providing an alternative (exogenous) defence against parasitism. However, studies on genomewide transcriptomic responses to plant defences and the interplay between plant toxicity and parasite infection remain rare. Monarch butterflies (Danaus plexippus) are specialist herbivores of milkweeds (Asclepias spp.), which contain toxic cardenolides. Monarchs have adapted to cardenolides through multiple resistance mechanisms and can sequester cardenolides to defend against bird predators. In addition, high-cardenolide milkweeds confer monarch resistance to a specialist protozoan parasite (Ophryocystis elektroscirrha). We used this system to study the interplay between the effects of plant toxicity and parasite infection on global gene expression. We compared transcriptional profiles between parasite-infected and uninfected monarch larvae reared on two milkweed species. Our results demonstrate that monarch differentially express several hundred genes when feeding on A. curassavica and A. incarnata, two species that differ substantially in cardenolide concentrations. These differentially expressed genes include genes within multiple families of canonical insect detoxification genes, suggesting that they play a role in monarch toxin resistance and sequestration. Interestingly, we found little transcriptional response to infection. However, parasite growth was reduced in monarchs reared on A. curassavica, and in these monarchs, several immune genes were down-regulated, consistent with the hypothesis that medicinal plants can reduce reliance on endogenous immunity.


Assuntos
Borboletas/genética , Regulação para Baixo/genética , Interações Hospedeiro-Parasita/genética , Plantas Tóxicas/parasitologia , Transcriptoma/genética , Animais , Apicomplexa/genética , Asclepias/parasitologia , Cardenolídeos , Herbivoria/genética , Larva/genética , Parasitos/genética
2.
Insect Biochem Mol Biol ; 41(4): 273-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21255649

RESUMO

In the animal kingdom, carotenoids are usually absorbed from dietary sources and transported to target tissues. Despite their general importance, the uptake mechanism is still poorly understood. Here we report the "red crop" phenomenon, an accumulation of α- and ß-carotene in crystalline inclusions in the enlarged foregut of the polyphagous Spodoptera larvae feeding on some potentially toxic plant leaves. The carotene crystals give the insect foregut a distinctive orange-red color. The crystals are embedded in a homogenous lawn of the bacterium Enterococcus casseliflavus, but the carotene seems to be selectively taken from the food plant. Caterpillars which fail to develop these carotene crystals exhibit a high mortality or fail to develop to adulthood. The crystallization of carotene and the enlargement of the foregut thus appears to manifest a multiple-step physiological adaptation of the insects to toxic food plants.


Assuntos
Carotenoides/química , Carotenoides/metabolismo , Plantas Comestíveis/parasitologia , Plantas Tóxicas/parasitologia , Spodoptera/fisiologia , Animais , Cristalização , Comportamento Alimentar , Mucosa Intestinal/metabolismo , Intestinos/química , Larva/química , Larva/crescimento & desenvolvimento , Larva/fisiologia , Spodoptera/química , Spodoptera/crescimento & desenvolvimento , beta Caroteno/química , beta Caroteno/metabolismo
3.
Acta Biotheor ; 58(2-3): 89-102, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20658174

RESUMO

Toxic plants have been used for years in agriculture to control major crop pests. However, the continuous exposure of targeted pests to toxins dramatically increases the rate of resistance evolution (Gassman et al. in Annu Rev Entomol 54:147-163, 2009a; Tabashnik et al. Nat Biotechnol 26:199-202, 2008). To prevent or delay resistance, non toxic host plants can be used as refuges. Our study considers spatial and temporal refuges that are respectively implemented concurrently or alternatively a toxic crop. A conceptual model based on impulsive differential equations is proposed to describe the dynamics of the susceptible and resistant pest populations over time. The mathematical study enlightens threshold values of the proportion of the spatial refuge and key parameters that should help to understand evolution of pest resistance to toxic crop.


Assuntos
Controle de Pragas/métodos , Plantas Tóxicas , Animais , Produtos Agrícolas/parasitologia , Interações Hospedeiro-Patógeno , Modelos Biológicos , Plantas Geneticamente Modificadas/parasitologia , Plantas Tóxicas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...