Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Opt Express ; 30(2): 1745-1761, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209329

RESUMO

This work demonstrates a multi-lens microscopic imaging system that overlaps multiple independent fields of view on a single sensor for high-efficiency automated specimen analysis. Automatic detection, classification and counting of various morphological features of interest is now a crucial component of both biomedical research and disease diagnosis. While convolutional neural networks (CNNs) have dramatically improved the accuracy of counting cells and sub-cellular features from acquired digital image data, the overall throughput is still typically hindered by the limited space-bandwidth product (SBP) of conventional microscopes. Here, we show both in simulation and experiment that overlapped imaging and co-designed analysis software can achieve accurate detection of diagnostically-relevant features for several applications, including counting of white blood cells and the malaria parasite, leading to multi-fold increase in detection and processing throughput with minimal reduction in accuracy.


Assuntos
Eritrócitos/parasitologia , Processamento de Imagem Assistida por Computador/métodos , Contagem de Leucócitos/métodos , Leucócitos/citologia , Aprendizado de Máquina , Plasmodium falciparum/citologia , Hemeproteínas , Humanos , Redes Neurais de Computação , Carga Parasitária , Plasmodium falciparum/isolamento & purificação
2.
PLoS Pathog ; 18(2): e1010276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130301

RESUMO

Formation of gametes in the malaria parasite occurs in the midgut of the mosquito and is critical to onward parasite transmission. Transformation of the male gametocyte into microgametes, called microgametogenesis, is an explosive cellular event and one of the fastest eukaryotic DNA replication events known. The transformation of one microgametocyte into eight flagellated microgametes requires reorganisation of the parasite cytoskeleton, replication of the 22.9 Mb genome, axoneme formation and host erythrocyte egress, all of which occur simultaneously in <20 minutes. Whilst high-resolution imaging has been a powerful tool for defining stages of microgametogenesis, it has largely been limited to fixed parasite samples, given the speed of the process and parasite photosensitivity. Here, we have developed a live-cell fluorescence imaging workflow that captures the entirety of microgametogenesis. Using the most virulent human malaria parasite, Plasmodium falciparum, our live-cell approach captured early microgametogenesis with three-dimensional imaging through time (4D imaging) and microgamete release with two-dimensional (2D) fluorescence microscopy. To minimise the phototoxic impact to parasites, acquisition was alternated between 4D fluorescence, brightfield and 2D fluorescence microscopy. Combining live-cell dyes specific for DNA, tubulin and the host erythrocyte membrane, 4D and 2D imaging together enables definition of the positioning of newly replicated and segregated DNA. This combined approach also shows the microtubular cytoskeleton, location of newly formed basal bodies, elongation of axonemes and morphological changes to the erythrocyte membrane, the latter including potential echinocytosis of the erythrocyte membrane prior to microgamete egress. Extending the utility of this approach, the phenotypic effects of known transmission-blocking inhibitors on microgametogenesis were confirmed. Additionally, the effects of bortezomib, an untested proteasomal inhibitor, revealed a clear block of DNA replication, full axoneme nucleation and elongation. Thus, as well as defining a framework for broadly investigating microgametogenesis, these data demonstrate the utility of using live imaging to validate potential targets for transmission-blocking antimalarial drug development.


Assuntos
Citoesqueleto/metabolismo , Gametogênese , Malária Falciparum/parasitologia , Imagem Óptica/métodos , Plasmodium falciparum/citologia , Plasmodium falciparum/fisiologia , Animais , Membrana Celular/metabolismo , DNA de Protozoário/metabolismo , Eritrócitos/parasitologia , Células Germinativas/fisiologia , Humanos , Imageamento Tridimensional/métodos , Proteínas de Protozoários/metabolismo , Fluxo de Trabalho
3.
STAR Protoc ; 2(3): 100797, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34527954

RESUMO

Comet assay is a standard approach for studying DNA damage in malaria, but high-throughput options are not available. The CometChip was previously developed using mammalian cells as a high-throughput version of the comet assay. It is based on the same principle as the comet assay but provides greater efficacy, automated data processing, and improved consistency between experiments. In this protocol, we present MalariaCometChip to quantitatively assess drug-induced DNA damage in Plasmodium falciparum. For complete details on the use and execution of this protocol, please refer to Xiong et al. (2020).


Assuntos
Ensaio Cometa/métodos , Dano ao DNA/genética , Ensaios de Triagem em Larga Escala/métodos , Plasmodium falciparum/genética , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , DNA de Protozoário/análise , DNA de Protozoário/efeitos dos fármacos , DNA de Protozoário/genética , Eletroforese , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos
4.
PLoS Comput Biol ; 17(8): e1009257, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370724

RESUMO

Manual microscopic inspection of fixed and stained blood smears has remained the gold standard for Plasmodium parasitemia analysis for over a century. Unfortunately, smear preparation consumes time and reagents, while manual microscopy is skill-dependent and labor-intensive. Here, we demonstrate that deep learning enables both life stage classification and accurate parasitemia quantification of ordinary brightfield microscopy images of live, unstained red blood cells. We tested our method using both a standard light microscope equipped with visible and near-ultraviolet (UV) illumination, and a custom-built microscope employing deep-UV illumination. While using deep-UV light achieved an overall four-category classification of Plasmodium falciparum blood stages of greater than 99% and a recall of 89.8% for ring-stage parasites, imaging with near-UV light on a standard microscope resulted in 96.8% overall accuracy and over 90% recall for ring-stage parasites. Both imaging systems were tested extrinsically by parasitemia titration, revealing superior performance over manually-scored Giemsa-stained smears, and a limit of detection below 0.1%. Our results establish that label-free parasitemia analysis of live cells is possible in a biomedical laboratory setting without the need for complex optical instrumentation. We anticipate future extensions of this work could enable label-free clinical diagnostic measurements, one day eliminating the need for conventional blood smear analysis.


Assuntos
Malária Falciparum/parasitologia , Parasitemia/diagnóstico , Parasitemia/parasitologia , Plasmodium falciparum/classificação , Plasmodium falciparum/citologia , Biologia Computacional , Aprendizado Profundo , Diagnóstico por Computador , Eritrócitos/parasitologia , Humanos , Interpretação de Imagem Assistida por Computador , Malária Falciparum/diagnóstico por imagem , Microscopia Ultravioleta/instrumentação , Microscopia Ultravioleta/métodos , Redes Neurais de Computação , Parasitemia/diagnóstico por imagem , Plasmodium falciparum/crescimento & desenvolvimento
5.
Mol Biochem Parasitol ; 244: 111385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34062177

RESUMO

The sexual blood stages of the human malaria parasite Plasmodium falciparum undergo a remarkable transformation from a roughly spherical shape to an elongated crescent or "falciform" morphology from which the species gets its name. In this review, the molecular events that drive this spectacular shape change are discussed and some questions that remain regarding the mechanistic underpinnings are posed. We speculate on the role of the shape changes in promoting sequestration and release of the developing gametocyte, thereby facilitating parasite survival in the host and underpinning transmission to the mosquito vector.


Assuntos
Culicidae/parasitologia , Gametogênese , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Eritrócitos/parasitologia , Feminino , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita/genética , Humanos , Malária Falciparum/transmissão , Masculino , Microtúbulos/parasitologia , Microtúbulos/ultraestrutura , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Reprodução Assexuada
6.
BMC Infect Dis ; 21(1): 439, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985447

RESUMO

BACKGROUND: Genetic diversity in Plasmodium falciparum populations can be used to describe the resilience and spatial distribution of the parasite in the midst of intensified intervention efforts. This study used microsatellite analysis to evaluate the genetic diversity and population dynamics of P. falciparum parasites circulating in three ecological zones of Ghana. METHODS: A total of 1168 afebrile children aged between 3 to 13 years were recruited from five (5) Primary schools in 3 different ecological zones (Sahel (Tamale and Kumbungu), Forest (Konongo) and Coastal (Ada and Dodowa)) of Ghana. Asymptomatic malaria parasite carriage was determined using microscopy and PCR, whilst fragment analysis of 6 microsatellite loci was used to determine the diversity and population structure of P. falciparum parasites. RESULTS: Out of the 1168 samples examined, 16.1 and 39.5% tested positive for P. falciparum by microscopy and nested PCR respectively. The genetic diversity of parasites in the 3 ecological zones was generally high, with an average heterozygosity (He) of 0.804, 0.787 and 0.608 the rainy (peak) season for the Sahel, Forest and Coastal zones respectively. The mean He for the dry (off-peak) season were 0.562, 0.693 and 0.610 for the Sahel, Forest and Coastal zones respectively. Parasites from the Forest zone were more closely related to those from the Sahel than from the Coastal zone, despite the Coastal zone being closer in physical distance to the Forest zone. The fixation indexes among study sites ranged from 0.049 to 0.112 during the rainy season and 0.112 to 0.348 during the dry season. CONCLUSION: A large asymptomatic parasite reservoir was found in the school children during both rainy and dry seasons, especially those in the Forest and Sahel savannah zones where parasites were also found to be related compared to those from the Coastal zone. Further studies are recommended to understand why despite the roll out of several malaria interventions in Ghana, high transmission still persist.


Assuntos
Portador Sadio/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Adolescente , Portador Sadio/epidemiologia , Criança , Pré-Escolar , DNA de Protozoário/genética , Feminino , Variação Genética , Genética Populacional , Gana/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Masculino , Repetições de Microssatélites/genética , Plasmodium falciparum/citologia , Plasmodium falciparum/isolamento & purificação , Estações do Ano
7.
Cell Microbiol ; 23(3): e13284, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33124706

RESUMO

The eukaryotic cell cycle is typically divided into distinct phases with cytokinesis immediately following mitosis. To ensure proper cell division, each phase is tightly coordinated via feedback controls named checkpoints. During its asexual replication cycle, the malaria parasite Plasmodium falciparum undergoes multiple asynchronous rounds of mitosis with segregation of uncondensed chromosomes followed by nuclear division with intact nuclear envelope. The multi-nucleated schizont is then subjected to a single round of cytokinesis that produces dozens of daughter cells called merozoites. To date, no cell cycle checkpoints have been identified that regulate the Plasmodium spp. mode of division. Here, we identify the Plasmodium homologue of the Mini-Chromosome Maintenance Complex Binding Protein (PfMCMBP), which co-purified with the Mini-Chromosome Maintenance (MCM) complex, a replicative helicase required for genomic DNA replication. By conditionally depleting PfMCMBP, we disrupt nuclear morphology and parasite proliferation without causing a block in DNA replication. By immunofluorescence microscopy, we show that PfMCMBP depletion promotes the formation of mitotic spindle microtubules with extensions to more than one DNA focus and abnormal centrin distribution. Strikingly, PfMCMBP-deficient parasites complete cytokinesis and form aneuploid merozoites with variable cellular and nuclear sizes. Our study demonstrates that the parasite lacks a robust checkpoint response to prevent cytokinesis following aberrant karyokinesis.


Assuntos
Divisão do Núcleo Celular , Citocinese , Proteínas de Manutenção de Minicromossomo/metabolismo , Plasmodium falciparum/citologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Técnicas de Silenciamento de Genes , Merozoítos/citologia , Merozoítos/crescimento & desenvolvimento , Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/ultraestrutura , Proteínas Nucleares/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Esquizontes/fisiologia
8.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158263

RESUMO

Guttiferone A (GA) 1, a polycyclic polyprenylated acylphloroglucinol (PPAP) isolated from the plant Symphonia globulifera (Clusiaceae), constitutes a novel hit in antimalarial drug discovery. PPAPs do not possess identified biochemical targets in malarial parasites up to now. Towards this aim, we designed and evaluated a natural product-derived photoactivatable probe AZC-GA 5, embedding a photoalkylative fluorogenic motif of the 7-azidocoumarin (AZC) type, devoted to studying the affinity proteins interacting with GA in Plasmodium falciparum. Probe 5 manifested a number of positive functional and biological features, such as (i) inhibitory activity in vitro against P. falciparum blood-stages that was superimposable to that of GA 1, dose-response photoalkylative fluorogenic properties (ii) in model conditions using bovine serum albumin (BSA) as an affinity protein surrogate, (iii) in live P. falciparum-infected erythrocytes, and (iv) in fresh P. falciparum cell lysate. Fluorogenic signals by photoactivated AZC-GA 5 in biological settings were markedly abolished in the presence of excess GA 1 as a competitor, indicating significant pharmacological specificity of the designed molecular probe relative to the native PPAP. These results open the way to identify the detected plasmodial proteins as putative drug targets for the natural product 1 by means of proteomic analysis.


Assuntos
Benzofenonas , Corantes Fluorescentes , Imagem Óptica , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Benzofenonas/química , Benzofenonas/farmacologia , Eritrócitos/parasitologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Plasmodium falciparum/citologia
9.
Bioorg Med Chem Lett ; 30(21): 127502, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32822760

RESUMO

A series of tetrahydro-ß-carboline derivatives of a lead compound known to target the heat shock 90 protein of Plasmodium falciparum were synthesized and assayed for both potency against the parasite and toxicity against a human cell line. Using a rationalized structure based design strategy, a new lead compound with a potency two orders of magnitude greater than the original lead compound was found. Additional modeling of this new lead compound suggests multiple avenues to further increase potency against this target, potentially paving the path for a therapeutic with a mode of action different than any current clinical treatment.


Assuntos
Trifosfato de Adenosina/química , Antimaláricos/farmacologia , Carbolinas/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Sítios de Ligação/efeitos dos fármacos , Carbolinas/síntese química , Carbolinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Plasmodium falciparum/química , Plasmodium falciparum/citologia , Relação Estrutura-Atividade
10.
Biochem J ; 477(10): 1951-1970, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32401306

RESUMO

Upon Plasmodium falciparum merozoites exposure to low [K+] environment in blood plasma, there is escalation of cytosolic [Ca2+] which activates Ca2+-Dependent Protein Kinase 1 (CDPK1), a signaling hub of intra-erythrocytic proliferative stages of parasite. Given its high abundance and multidimensional attributes in parasite life-cycle, this is a lucrative target for designing antimalarials. Towards this, we have virtually screened MyriaScreenII diversity collection of 10,000 drug-like molecules, which resulted in 18 compounds complementing ATP-binding pocket of CDPK1. In vitro screening for toxicity in mammalian cells revealed that these compounds are non-toxic in nature. Furthermore, SPR analysis demonstrated differential binding affinity of these compounds towards recombinantly purified CDPK1 protein. Selection of lead compound 1 was performed by evaluating their inhibitory effects on phosphorylation and ATP binding activities of CDPK1. Furthermore, in vitro biophysical evaluations by ITC and FS revealed that binding of compound 1 is driven by formation of energetically favorable non-covalent interactions, with different binding constants in presence and absence of Ca2+, and TSA authenticated stability of compound 1 bound CDPK1 complex. Finally, compound 1 strongly inhibited intra-erythrocytic growth of P. falciparum in vitro. Conceivably, we propose a novel CDPK1-selective inhibitor, step towards developing pan-CDPK kinase inhibitors, prerequisite for cross-stage anti-malarial protection.


Assuntos
Desenho de Fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Proteínas Quinases/efeitos dos fármacos , Proteínas de Protozoários/efeitos dos fármacos , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Eritrócitos/parasitologia , Humanos , Plasmodium falciparum/citologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo
11.
Nature ; 582(7810): 104-108, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32427965

RESUMO

Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.


Assuntos
Apoptose/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Parasitos/imunologia , Plasmodium falciparum/citologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Aotidae/imunologia , Aotidae/parasitologia , Caspases/metabolismo , Criança , Estudos de Coortes , DNA de Protozoário/química , DNA de Protozoário/metabolismo , Ativação Enzimática , Eritrócitos/parasitologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Quênia , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Masculino , Camundongos , Parasitos/citologia , Parasitos/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/química , Tanzânia , Trofozoítos/citologia , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/imunologia , Vacúolos/imunologia
12.
Malar J ; 19(1): 147, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268910

RESUMO

BACKGROUND: A previous study reported that the malaria parasite Plasmodium falciparum enters an altered growth state upon extracellular withdrawal of the essential amino acid isoleucine. Parasites slowed transit through the cell cycle when deprived of isoleucine prior to the onset of S-phase. METHODS: This project was undertaken to study at higher resolution, how isoleucine withdrawal affects parasite growth. Parasites were followed at regular intervals across an extended isoleucine deprivation time course across the cell cycle using flow cytometry. RESULTS: These experiments revealed that isoleucine-deprived parasites never exit the cell cycle, but instead continuously grow at a markedly reduced pace. Moreover, slow growth occurs only if isoleucine is removed prior to the onset of schizogony. After S-phase commenced, the parasite is insensitive to isoleucine depletion and transits through the cell cycle at the normal pace. CONCLUSIONS: The markedly different response of the parasite to isoleucine withdrawal before or after the onset of DNA replication is reminiscent of the nutrient-dependent G1 cell cycle checkpoints described in other organisms.


Assuntos
Ciclo Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA de Protozoário/fisiologia , Eritrócitos/parasitologia , Isoleucina/deficiência , Plasmodium falciparum/crescimento & desenvolvimento , Replicação do DNA/fisiologia , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos
13.
Sci Rep ; 10(1): 4842, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179795

RESUMO

Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing <15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Evolução Molecular , Proteínas de Membrana Transportadoras/genética , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Aminoácidos/metabolismo , Proteínas de Membrana Transportadoras/química , Testes de Sensibilidade Parasitária , Filogenia , Plasmodium falciparum/citologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Vacúolos
14.
Curr Drug Targets ; 21(8): 736-775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995004

RESUMO

Long before the discovery of drugs like 'antibiotic and anti-parasitic drugs', the infectious diseases caused by pathogenic bacteria and parasites remain as one of the major causes of morbidity and mortality in developing and underdeveloped countries. The phenomenon by which the organism exerts resistance against two or more structurally unrelated drugs is called multidrug resistance (MDR) and its emergence has further complicated the treatment scenario of infectious diseases. Resistance towards the available set of treatment options and poor pipeline of novel drug development puts an alarming situation. A universal goal in the post-genomic era is to identify novel targets/drugs for various life-threatening diseases caused by such pathogens. This review is conceptualized in the backdrop of drug resistance in two major pathogens i.e. "Pseudomonas aeruginosa" and "Plasmodium falciparum". In this review, the available targets and key mechanisms of resistance of these pathogens have been discussed in detail. An attempt has also been made to analyze the common drug targets of bacteria and malaria parasite to overcome the current drug resistance scenario. The solution is also hypothesized in terms of a present pipeline of drugs and efforts made by scientific community.


Assuntos
Bactérias/efeitos dos fármacos , Malária/tratamento farmacológico , Antibacterianos/farmacologia , Antimaláricos/farmacologia , Resistência a Múltiplos Medicamentos , Humanos , Plasmodium falciparum/química , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade
15.
J Med Chem ; 63(5): 2240-2262, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31490680

RESUMO

Malaria is still a leading cause of mortality among children in the developing world, and despite the immense progress made in reducing the global burden, further efforts are needed if eradication is to be achieved. In this context, targeting transmission is widely recognized as a necessary intervention toward that goal. After carrying out a screen to discover new transmission-blocking agents, herein we report our medicinal chemistry efforts to study the potential of the most robust hit, DDD01035881, as a male-gamete targeted compound. We reveal key structural features for the activity of this series and identify analogues with greater potency and improved metabolic stability. We believe this study lays the groundwork for further development of this series as a transmission blocking agent.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Malária/transmissão , Plasmodium falciparum/efeitos dos fármacos , Animais , Descoberta de Drogas , Feminino , Células Germinativas/efeitos dos fármacos , Células Hep G2 , Humanos , Malária/tratamento farmacológico , Malária/prevenção & controle , Masculino , Camundongos , Plasmodium falciparum/citologia , Relação Estrutura-Atividade
16.
PLoS Comput Biol ; 15(9): e1007329, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509524

RESUMO

Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors.


Assuntos
Biologia Computacional/métodos , Código das Histonas/genética , Modelos Estatísticos , Nucleossomos/genética , Plasmodium falciparum/genética , Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genes de Protozoários/genética , Humanos , Estágios do Ciclo de Vida/genética , Aprendizado de Máquina , Malária Falciparum , Modelos Biológicos , Plasmodium falciparum/citologia , Plasmodium falciparum/patogenicidade
17.
Malar J ; 18(1): 287, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455343

RESUMO

BACKGROUND: The human infectious reservoir for malaria consists of individuals capable of infecting mosquitoes. Oocyst prevalence and density are typical indicators of human infectivity to mosquitoes. However, identification of oocysts is challenging, particularly in areas of low malaria transmission intensity where few individuals may infect mosquitoes, and infected mosquitoes tend to have few oocysts. Here, features that differentiate oocysts from other oocyst-like in mosquito midguts are explained and illustrated. In addition, the establishment and maintenance of infrastructure to perform malaria transmission experiments is described. This work may support other initiatives to set up membrane feeding infrastructure and guide oocyst detection in low transmission settings. METHODS: In 2014, an insectary was developed and equipped in Tororo district, Uganda. A colony of Anopheles gambiae s.s. mosquitoes (Kisumu strain) was initiated to support infectivity experiments from participants enrolled in a large cohort study. Venous blood drawn from participants who were naturally infected with malaria parasites was used for membrane feeding assays, using 60-80 mosquitoes per experiment. Approximately 9-10 days after feeding, mosquitoes were dissected, and midguts were stained in mercurochrome and examined by light microscopy for Plasmodium falciparum oocysts and similar structures. In supportive experiments, different staining procedures were compared using in vitro cultured parasites. RESULTS: A stable colony of the Kisumu strain of An. gambiae s.s. was achieved, producing 5000-10,000 adult mosquitoes on a weekly basis. Challenges due to temperature fluctuations, mosquito pathogens and pests were successfully overcome. Oocysts were characterized by: presence of malaria pigment, clearly defined edge, round shape within the mosquito midgut or on the peripheral tissue and always attached to the epithelium. The main distinguishing feature between artifacts and mature oocysts was the presence of defined pigment within the oocysts. CONCLUSIONS: Oocysts may be mistaken for other structures in mosquito midguts. Distinguishing real oocysts from oocyst-like structures may be challenging for inexperienced microscopists due to overlapping features. The characteristics and guidelines outlined here support identification of oocysts and reliable detection at low oocyst densities. Practical advice on sustaining a healthy mosquito colony for feeding experiments is provided. Following the reported optimization, the established infrastructure in Tororo allows assessments of infectivity of naturally infected parasite carriers.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Oocistos/isolamento & purificação , Plasmodium falciparum/isolamento & purificação , Animais , Feminino , Humanos , Oocistos/citologia , Oocistos/crescimento & desenvolvimento , Plasmodium falciparum/citologia , Plasmodium falciparum/crescimento & desenvolvimento , Uganda
18.
Genome Biol ; 20(1): 166, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412909

RESUMO

scRNA-seq dataset integration occurs in different contexts, such as the identification of cell type-specific differences in gene expression across conditions or species, or batch effect correction. We present scAlign, an unsupervised deep learning method for data integration that can incorporate partial, overlapping, or a complete set of cell labels, and estimate per-cell differences in gene expression across datasets. scAlign performance is state-of-the-art and robust to cross-dataset variation in cell type-specific expression and cell type composition. We demonstrate that scAlign reveals gene expression programs for rare populations of malaria parasites. Our framework is widely applicable to integration challenges in other domains.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Software , Animais , Biomarcadores/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica , Células Germinativas/metabolismo , Humanos , Ilhotas Pancreáticas/citologia , Camundongos Endogâmicos C57BL , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Análise de Componente Principal , Alinhamento de Sequência
19.
Malar J ; 18(1): 70, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866941

RESUMO

While significant advances have been made in understanding Plasmodium falciparum gametocyte biology and its relationship with malaria parasite transmission, the gametocyte sex ratio contribution to this process still remains a relevant research question. The present review discusses the biology of sex determination in P. falciparum, the underlying host and parasite factors, the sex specific susceptibility to drugs, the effect of sex ratio dynamics on malaria parasite transmission and the development of gametocyte sex specific diagnosis tools. Despite the inherent differences across several studies and approaches, the emerging picture highlights a potentially relevant contribution of the P. falciparum gametocyte sex ratio in the modulation of malaria parasite transmission. The increasing availability of molecular methods to measure gametocyte sex ratio will enable evaluation of important parameters, such as the impact of drug treatment on gametocyte sex ratio in vitro and in vivo as well as the changes of gametocyte sex ratios in natural infections, key steps towards elucidating how these parameters affect parasite infectiousness to the mosquito vectors.


Assuntos
Transmissão de Doença Infecciosa , Genótipo , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Fenótipo , Plasmodium falciparum/citologia , Plasmodium falciparum/fisiologia , Feminino , Humanos , Masculino , Plasmodium falciparum/classificação , Plasmodium falciparum/genética
20.
Malar J ; 18(1): 73, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866947

RESUMO

BACKGROUND: Accurate diagnosis of malaria is important for effective disease management and control. In Cameroon, presumptive clinical diagnosis, thick-film microscopy (TFM), and rapid diagnostic tests (RDT) are commonly used to diagnose cases of Plasmodium falciparum malaria. However, these methods lack sensitivity to detect low parasitaemia. Polymerase chain reaction (PCR), on the other hand, enhances the detection of sub-microscopic parasitaemia making it a much-needed tool for epidemiological surveys, mass screening, and the assessment of interventions for malaria elimination. Therefore, this study sought to determine the frequency of cases missed by traditional methods that are detected by PCR. METHODS: Blood samples, collected from 551 febrile Cameroonian patients between February 2014 and February 2015, were tested for P. falciparum by microscopy, RDT and PCR. The hospital records of participants were reviewed to obtain data on the clinical diagnosis made by the health care worker. RESULTS: The prevalence of malaria by microscopy, RDT and PCR was 31%, 45%, and 54%, respectively. However, of the 92% of participants diagnosed as having clinical cases of malaria by the health care worker, 38% were malaria-negative by PCR. PCR detected 23% and 12% more malaria infections than microscopy and RDT, respectively. A total of 128 (23%) individuals had sub-microscopic infections in the study population. The sensitivity of microscopy, RDT, and clinical diagnosis was 57%, 78% and 100%; the specificity was 99%, 94%, and 17%; the positive predictive values were 99%, 94%, and 59%; the negative predictive values were 66%, 78%, and 100%, respectively. Thus, 41% of the participants clinically diagnosed as having malaria had fever caused by other pathogens. CONCLUSIONS: Malaria diagnostic methods, such as TFM and RDT missed 12-23% of malaria cases detected by PCR. Therefore, traditional diagnostic approaches (TFM, RDT and clinical diagnosis) are not adequate when accurate epidemiological data are needed for monitoring malaria control and elimination interventions.


Assuntos
Sangue/parasitologia , Testes Diagnósticos de Rotina/métodos , Imunoensaio/métodos , Malária Falciparum/diagnóstico , Microscopia/métodos , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Camarões , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Sensibilidade e Especificidade , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...