Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Bioorg Chem ; 115: 105244, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34452759

RESUMO

Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Purinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Purinas/síntese química , Purinas/química , Relação Estrutura-Atividade
2.
J Med Chem ; 64(8): 4478-4497, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33792339

RESUMO

Malaria-causing Plasmodium parasites are developing resistance to antimalarial drugs, providing the impetus for new antiplasmodials. Although pantothenamides show potent antiplasmodial activity, hydrolysis by pantetheinases/vanins present in blood rapidly inactivates them. We herein report the facile synthesis and biological activity of a small library of pantothenamide analogues in which the labile amide group is replaced with a heteroaromatic ring. Several of these analogues display nanomolar antiplasmodial activity against Plasmodium falciparum and/or Plasmodium knowlesi, and are stable in the presence of pantetheinase. Both a known triazole and a novel isoxazole derivative were further characterized and found to possess high selectivity indices, medium or high Caco-2 permeability, and medium or low microsomal clearance in vitro. Although they fail to suppress Plasmodium berghei proliferation in vivo, the pharmacokinetic and contact time data presented provide a benchmark for the compound profile likely required to achieve antiplasmodial activity in mice and should facilitate lead optimization.


Assuntos
Antimaláricos/química , Isoxazóis/química , Ácido Pantotênico/análogos & derivados , Tiadiazóis/química , Triazóis/química , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Estabilidade de Medicamentos , Eritrócitos/citologia , Eritrócitos/parasitologia , Feminino , Meia-Vida , Humanos , Malária Falciparum/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Ácido Pantotênico/química , Ácido Pantotênico/metabolismo , Ácido Pantotênico/farmacologia , Ácido Pantotênico/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Relação Estrutura-Atividade
3.
Eur J Med Chem ; 214: 113253, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610028

RESUMO

The emerging resistance to combination therapies comprised of artemisinin derivatives has driven a need to identify new antimalarials with novel mechanisms of action. Central to the survival and proliferation of the malaria parasite is the invasion of red blood cells by Plasmodium merozoites, providing an attractive target for novel therapeutics. A screen of the Medicines for Malaria Venture Pathogen Box employing transgenic P. falciparum parasites expressing the nanoluciferase bioluminescent reporter identified the phenylsulfonyl piperazine class as a specific inhibitor of erythrocyte invasion. Here, we describe the optimization and further characterization of the phenylsulfonyl piperazine class. During the optimization process we defined the functionality required for P. falciparum asexual stage activity and determined the alpha-carbonyl S-methyl isomer was important for antimalarial potency. The optimized compounds also possessed comparable activity against multidrug resistant strains of P. falciparum and displayed weak activity against sexual stage gametocytes. We determined that the optimized compounds blocked erythrocyte invasion consistent with the asexual activity observed and therefore the phenylsulfonyl piperazine analogues described could serve as useful tools for studying Plasmodium erythrocyte invasion.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Células Hep G2 , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piperazinas/síntese química , Piperazinas/química , Solubilidade , Relação Estrutura-Atividade
4.
BMC Biol ; 18(1): 133, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993629

RESUMO

BACKGROUND: Resistance to front-line antimalarials (artemisinin combination therapies) is spreading, and development of new drug treatment strategies to rapidly kill Plasmodium spp. malaria parasites is urgently needed. Azithromycin is a clinically used macrolide antibiotic proposed as a partner drug for combination therapy in malaria, which has also been tested as monotherapy. However, its slow-killing 'delayed-death' activity against the parasite's apicoplast organelle and suboptimal activity as monotherapy limit its application as a potential malaria treatment. Here, we explore a panel of azithromycin analogues and demonstrate that chemical modifications can be used to greatly improve the speed and potency of antimalarial action. RESULTS: Investigation of 84 azithromycin analogues revealed nanomolar quick-killing potency directed against the very earliest stage of parasite development within red blood cells. Indeed, the best analogue exhibited 1600-fold higher potency than azithromycin with less than 48 hrs treatment in vitro. Analogues were effective against zoonotic Plasmodium knowlesi malaria parasites and against both multi-drug and artemisinin-resistant Plasmodium falciparum lines. Metabolomic profiles of azithromycin analogue-treated parasites suggested activity in the parasite food vacuole and mitochondria were disrupted. Moreover, unlike the food vacuole-targeting drug chloroquine, azithromycin and analogues were active across blood-stage development, including merozoite invasion, suggesting that these macrolides have a multi-factorial mechanism of quick-killing activity. The positioning of functional groups added to azithromycin and its quick-killing analogues altered their activity against bacterial-like ribosomes but had minimal change on 'quick-killing' activity. Apicoplast minus parasites remained susceptible to both azithromycin and its analogues, further demonstrating that quick-killing is independent of apicoplast-targeting, delayed-death activity. CONCLUSION: We show that azithromycin and analogues can rapidly kill malaria parasite asexual blood stages via a fast action mechanism. Development of azithromycin and analogues as antimalarials offers the possibility of targeting parasites through both a quick-killing and delayed-death mechanism of action in a single, multifactorial chemotype.


Assuntos
Antimaláricos/farmacologia , Azitromicina/análogos & derivados , Azitromicina/farmacologia , Malária/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle
5.
Med J Malaysia ; 75(4): 447-449, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32724015

RESUMO

Malaria is a parasitic disease that is caused by the Plasmodium parasite. Worldwide, it remains a significant public health problem especially in the Africa region where it contributes to more than 90% of cases and malaria death. However, zoonotic (simian) Plasmodium knowlesi parasite is a widely prevalent cause of malaria in the South East Asian countries. It is known to cause severe human disease due to its 24hour erythrocytic cycles. Thus far, cases of severe falciparum malaria have been reported in asplenic patients. Here, we report a case of severe P.knowlesi malaria in a 51-year-old man who is a postsplenectomy patient.


Assuntos
Malária/tratamento farmacológico , Plasmodium knowlesi/efeitos dos fármacos , Período Pós-Operatório , Esplenectomia , Sudeste Asiático , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Resultado do Tratamento
6.
PLoS One ; 15(7): e0235798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673324

RESUMO

During the course of the asexual erythrocytic stage of development, Plasmodium spp. parasites undergo a series of morphological changes and induce alterations in the host cell. At the end of this stage, the parasites egress from the infected cell, after which the progeny invade a new host cell. These processes are rapid and occur in a time-dependent manner. Of particular importance, egress and invasion of erythrocytes by the parasite are difficult to capture in an unsynchronized culture, or even a culture that has been synchronized within a window of one to several hours. Therefore, precise synchronization of parasite cultures is of paramount importance for the investigation of these processes. Here we describe a method for synchronizing Plasmodium falciparum and Plasmodium knowlesi asexual blood stage parasites with ML10, a highly specific inhibitor of the cGMP-dependent protein kinase (PKG) that arrests parasite growth approximately 15 minutes prior to egress. This inhibitor allows parasite cultures to be synchronized so that all parasites are within a window of development of several minutes, with a simple wash step. Furthermore, we show that parasites remain viable for several hours after becoming arrested by the compound and that ML10 has advantages, owing to its high specificity and low EC50, over the previously used PKG inhibitor Compound 2. Here, we demonstrate that ML10 is an invaluable tool for the study of Plasmodium spp. asexual blood stage biology and for the routine synchronization of P. falciparum and P. knowlesi cultures.


Assuntos
Eritrócitos/parasitologia , Malária/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Tempo
7.
Artigo em Inglês | MEDLINE | ID: mdl-32094134

RESUMO

Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver- and blood-stage parasites, making these drugs useful as both prophylaxis and treatment. Recently, several derivatives of endochin have been optimized to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and Plasmodium vivax, their activity against the zoonotic agent Plasmodium knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesiin vitro and compared this with their activity against P. falciparum tested under identical conditions. We demonstrated that ELQs are potent against P. knowlesi (50% effective concentration, <117 nM) and equally effective against P. falciparum We then screened selected quinolones and partner drugs using a longer exposure (2.5 life cycles) and found that proguanil is 10-fold less potent against P. knowlesi than P. falciparum, while the quinolones demonstrate similar potency. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, the combination of the novel quinolone ELQ-300 with atovaquone was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and in the interaction of proguanil with quinolones and support the ongoing development of novel quinolones as potent antimalarials that target multiple species.


Assuntos
Antimaláricos/farmacologia , Plasmodium knowlesi/efeitos dos fármacos , Proguanil/farmacologia , Quinolonas/farmacologia , Animais , Atovaquona/farmacologia , Interações Medicamentosas , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/crescimento & desenvolvimento
8.
Am J Trop Med Hyg ; 101(6): 1397-1401, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31595871

RESUMO

Although human infections of Plasmodium knowlesi have been found throughout Southeast Asia, most cases originated from Malaysian Borneo. In Thailand, P. knowlesi malaria was considered extremely rare. However, during October 2017-September 2018, there was a surge in the number of reported P. knowlesi cases. Here, a series of six cases of P. knowlesi malaria found during this period in Songkhla and Narathiwat provinces of southern Thailand are presented. All cases were confirmed by polymerase chain reaction. The unprecedented case number in the affected area is a warning sign of an increasing P. knowlesi burden in the south of Thailand.


Assuntos
Malária/diagnóstico , Plasmodium knowlesi/patogenicidade , Adulto , Antimaláricos/uso terapêutico , Feminino , Humanos , Malária/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Plasmodium knowlesi/efeitos dos fármacos , Tailândia , Viagem , Adulto Jovem
9.
PLoS Negl Trop Dis ; 13(6): e0007470, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158222

RESUMO

Plasmodium vivax causes the majority of malaria outside Africa, but is poorly understood at a cellular level partly due to technical difficulties in maintaining it in in vitro culture conditions. In the past decades, drug resistant P. vivax parasites have emerged, mainly in Southeast Asia, but while some molecular markers of resistance have been identified, none have so far been confirmed experimentally, which limits interpretation of the markers, and hence our ability to monitor and control the spread of resistance. Some of these potential markers have been identified through P. vivax genome-wide population genetic analyses, which highlighted genes under recent evolutionary selection in Southeast Asia, where chloroquine resistance is most prevalent. These genes could be involved in drug resistance, but no experimental proof currently exists to support this hypothesis. In this study, we used Plasmodium knowlesi, the most closely related species to P. vivax that can be cultured in human erythrocytes, as a model system to express P. vivax genes and test for their role in drug resistance. We adopted a strategy of episomal expression, and were able to express fourteen P. vivax genes, including two allelic variants of several hypothetical resistance genes. Their expression level and localisation were assessed, confirming cellular locations conjectured from orthologous species, and suggesting locations for several previously unlocalised proteins, including an apical location for PVX_101445. These findings establish P. knowlesi as a suitable model for P. vivax protein expression. We performed chloroquine and mefloquine drug assays, finding no significant differences in drug sensitivity: these results could be due to technical issues, or could indicate that these genes are not actually involved in drug resistance, despite being under positive selection pressure in Southeast Asia. These data confirm that in vitro P. knowlesi is a useful tool for studying P. vivax biology. Its close evolutionary relationship to P. vivax, high transfection efficiency, and the availability of markers for colocalisation, all make it a powerful model system. Our study is the first of its kind using P. knowlesi to study unknown P. vivax proteins and investigate drug resistance mechanisms.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Genes de Protozoários , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/genética , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Clonagem Molecular , Expressão Gênica , Genética Microbiana/métodos , Biologia Molecular/métodos , Testes de Sensibilidade Parasitária
10.
Malar J ; 18(1): 148, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023359

RESUMO

BACKGROUND: Long-term in vitro culture of blood stage Plasmodium parasites invariably leads to asynchronous parasite development. The most often used technique to synchronize Plasmodium falciparum culture is sorbitol treatment, which differentially induces osmotic lysis of trophozoite- and schizont-infected red blood cells due to presence of the new permeation pathways in the membranes of these cells. However, sorbitol treatment does not work well when used to synchronize the culture-adapted Plasmodium knowlesi A1-H.1 line. METHODS: A number of common solutes were tested in lieu of sorbitol for synchronization of P. knowlesi A1-H.1 ring stage. RESULTS: Guanidine hydrochloride was found to selectively lyse trophozoite- and schizont-infected red blood cells, yielding highly synchronous and viable rings. CONCLUSIONS: A method for synchronization of P. knowlesi in human red blood cells was developed. Requiring only common laboratory reagents, this method is simple and should be applicable to most laboratory settings.


Assuntos
Eritrócitos/efeitos dos fármacos , Guanidina/farmacologia , Parasitologia/métodos , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/crescimento & desenvolvimento , Eritrócitos/parasitologia , Humanos , Malária/parasitologia , Esquizontes/crescimento & desenvolvimento , Sorbitol/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-30831468

RESUMO

New antimalarial agents are identified and developed after extensive testing on Plasmodium falciparum parasites that can be grown in vitro. These susceptibility studies are important to inform lead optimisation and support further drug development. Until recently, little was known about the susceptibility of non-falciparum species as these had not been adapted to in vitro culture. The recent culture adaptation of P. knowlesi has therefore offered an opportunity to routinely define the drug susceptibility of this species, which is phylogenetically closer to all other human malarias than is P. falciparum. We compared the in vitro susceptibility of P. knowlesi and P. falciparum to a range of established and novel antimalarial agents under identical assay conditions. We demonstrated that P. knowlesi is significantly less susceptible than P. falciparum to six of the compounds tested; and notably these include three ATP4 inhibitors currently under development as novel antimalarial agents, and one investigational antimalarial, AN13762, which is 67 fold less effective against P. knowlesi. For the other compounds there was a less than two-fold difference in susceptibility between species. We then compared the susceptibility of a recent P. knowlesi isolate, UM01, to that of the well-established, older A1-H.1 clone. This recent isolate showed similar in vitro drug susceptibility to the A1-H.1 clone, supporting the ongoing use of the better characterised clone to further study drug susceptibility. Lastly, we used isobologram analysis to explore the interaction of a selection of drug combinations and showed similar drug interactions across species. The species differences in drug susceptibility reported by us here and previously, support adding in vitro drug screens against P. knowlesi to those using P. falciparum strains to inform new drug discovery and lead optimisation.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Artemisininas/farmacologia , Combinação de Medicamentos , Descoberta de Drogas , Testes de Sensibilidade Parasitária
12.
Am J Trop Med Hyg ; 99(4): 967-969, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30182921

RESUMO

Skeletal muscle is known to be damaged by falciparum malaria via sequestration of infected erythrocytes. We present a case of rhabdomyolysis caused by Plasmodium knowlesi infection. The patient had fever, myalgia, and muscle weakness 5 days after returning to Japan from Palawan, the Philippines. Blood test revealed thrombocytopenia and an elevated creatine kinase level. Although rhabdomyolysis resolved with fluid therapy, fever of 24-hour cycle continued and thrombocytopenia intensified. On day 7 of illness, Giemsa-stained thin blood smear revealed malaria parasites, with a parasite count of 2,380/µL, which were morphologically indistinguishable between P. knowlesi and Plasmodium malariae. Rapid diagnostic test showed a negative result. The pathogen was later confirmed to be P. knowlesi by nested polymerase chain reaction (PCR). The patient was successfully treated with artemether/lumefantrine. This case suggests that knowlesi malaria might be able to cause skeletal muscle damage.


Assuntos
Creatina Quinase/sangue , Malária/diagnóstico , Plasmodium knowlesi/isolamento & purificação , Rabdomiólise/diagnóstico , Trombocitopenia/diagnóstico , Idoso , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Biomarcadores/sangue , Hidratação/métodos , Humanos , Japão , Malária/complicações , Malária/tratamento farmacológico , Malária/parasitologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , Filipinas , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/genética , Plasmodium knowlesi/patogenicidade , Reação em Cadeia da Polimerase , Rabdomiólise/complicações , Rabdomiólise/tratamento farmacológico , Rabdomiólise/parasitologia , Trombocitopenia/complicações , Trombocitopenia/tratamento farmacológico , Trombocitopenia/parasitologia , Viagem
13.
Parasitol Int ; 67(6): 787-792, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30114522

RESUMO

Malaria caused by an infection of Plasmodium knowlesi can result in high parasitemia and deaths. Therefore, effective and prompt treatment is necessary to reduce morbidity and mortality. The study aims to characterize P. knowlesi dihydrofolate reductase-thymidylate synthase enzyme (PkDHFR-TS) and its sensitivity to antifolates. The putative Pkdhfr gene was PCR amplified from field isolates collected from the Southern Thailand. Molecular analysis showed 11 polymorphisms in the dhfr domain of the bifunctional dhfr-ts gene. Of these, 1 polymorphism was a non-synonymous substitution (R34L) that had previously been reported but not associated with antifolate resistance. The recombinant PkDHFR-TS enzyme was found to be sensitive to standard antifolates-pyrimethamine and cycloguanil-as well as P218, a registered candidate drug currently first in human clinical trial. Results suggest that antifolates class of compounds should be effective against P. knowlesi infection.


Assuntos
Antimaláricos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Plasmodium knowlesi/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Timidilato Sintase/antagonistas & inibidores , Sequência de Bases , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Plasmodium knowlesi/genética , Proguanil/farmacologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pirimetamina/farmacologia , Alinhamento de Sequência , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Triazinas/farmacologia
14.
Sci Rep ; 8(1): 10165, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976932

RESUMO

Plasmodium knowlesi, a zoonotic parasite causing severe-to-lethal malaria disease in humans, has only recently been adapted to continuous culture with human red blood cells (RBCs). In comparison with the most virulent human malaria, Plasmodium falciparum, there are, however, few cellular tools available to study its biology, in particular direct investigation of RBC invasion by blood-stage P. knowlesi merozoites. This leaves our current understanding of biological differences across pathogenic Plasmodium spp. incomplete. Here, we report a robust method for isolating viable and invasive P. knowlesi merozoites to high purity and yield. Using this approach, we present detailed comparative dissection of merozoite invasion (using a variety of microscopy platforms) and direct assessment of kinetic differences between knowlesi and falciparum merozoites. We go on to assess the inhibitory potential of molecules targeting discrete steps of invasion in either species via a quantitative invasion inhibition assay, identifying a class of polysulfonate polymer able to efficiently inhibit invasion in both, providing a foundation for pan-Plasmodium merozoite inhibitor development. Given the close evolutionary relationship between P. knowlesi and P. vivax, the second leading cause of malaria-related morbidity, this study paves the way for inter-specific dissection of invasion by all three major pathogenic malaria species.


Assuntos
Eritrócitos/patologia , Eritrócitos/parasitologia , Malária/parasitologia , Merozoítos/patogenicidade , Parasitos/patogenicidade , Plasmodium knowlesi/patogenicidade , Animais , Sobrevivência Celular , Eritrócitos/efeitos dos fármacos , Eritrócitos/ultraestrutura , Filtração , Humanos , Cinética , Merozoítos/isolamento & purificação , Merozoítos/ultraestrutura , Parasitos/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Parasitos/ultraestrutura , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/crescimento & desenvolvimento , Plasmodium knowlesi/ultraestrutura , Polímeros/farmacologia , Sulfonas/farmacologia
15.
Am J Trop Med Hyg ; 99(1): 17-23, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29761762

RESUMO

Important strides have been made within the past decade toward malaria elimination in many regions, and with this progress, the feasibility of eradication is once again under discussion. If the ambitious goal of eradication is to be achieved by 2040, all species of Plasmodium infecting humans will need to be targeted with evidence-based and concerted interventions. In this perspective, the potential barriers to achieving global malaria elimination are discussed with respect to the related diversities in host, parasite, and vector populations. We argue that control strategies need to be reorientated from a sequential attack on each species, dominated by Plasmodium falciparum to one that targets all species in parallel. A set of research themes is proposed to mitigate the potential setbacks on the pathway to a malaria-free world.


Assuntos
Erradicação de Doenças/métodos , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Malária/prevenção & controle , Animais , Anopheles/parasitologia , Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Erradicação de Doenças/economia , Interações Hospedeiro-Parasita , Humanos , Malária/tratamento farmacológico , Malária/imunologia , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Vivax/tratamento farmacológico , Malária Vivax/imunologia , Malária Vivax/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/imunologia , Plasmodium knowlesi/patogenicidade , Plasmodium malariae/efeitos dos fármacos , Plasmodium malariae/imunologia , Plasmodium malariae/patogenicidade , Plasmodium ovale/efeitos dos fármacos , Plasmodium ovale/imunologia , Plasmodium ovale/patogenicidade , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/imunologia , Plasmodium vivax/patogenicidade , Primaquina/uso terapêutico
16.
J Antimicrob Chemother ; 72(11): 3051-3058, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961865

RESUMO

BACKGROUND: The simian malaria parasite Plasmodium knowlesi is now a well-recognized pathogen of humans in South-East Asia. Clinical infections appear adequately treated with existing drug regimens, but the evidence base for this practice remains weak. The availability of P. knowlesi cultures adapted to continuous propagation in human erythrocytes enables specific studies of in vitro susceptibility of the species to antimalarial agents, and could provide a surrogate system for testing investigational compounds against Plasmodium vivax and other non-Plasmodium falciparum infections that cannot currently be propagated in vitro. OBJECTIVES: We sought to optimize protocols for in vitro susceptibility testing of P. knowlesi and to contrast outputs with those obtained for P. falciparum under comparable test conditions. METHODS: Growth monitoring of P. knowlesi in vitro was by DNA quantification using a SYBR Green fluorescent assay or by colorimetric detection of the lactate dehydrogenase enzyme. For comparison, P. falciparum was tested under conditions identical to those used for P. knowlesi. RESULTS: The SYBR Green I assay proved the most robust format over one (27 h) or two (54 h) P. knowlesi life cycles. Unexpectedly, P. knowlesi displays significantly greater susceptibility to the dihydrofolate reductase inhibitors pyrimethamine, cycloguanil and trimethoprim than does P. falciparum, but is less susceptible to the selective agents blasticidin and DSM1 used in parasite transfections. Inhibitors of dihydroorotate dehydrogenase also demonstrate lower activity against P. knowlesi. CONCLUSIONS: The fluorescent assay system validated here identified species-specific P. knowlesi drug susceptibility profiles and can be used for testing investigational compounds for activity against non-P. falciparum malaria.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Benzotiazóis , Colorimetria , Diaminas , Di-Hidro-Orotato Desidrogenase , Eritrócitos/parasitologia , Fluorescência , Humanos , L-Lactato Desidrogenase/genética , Malária/parasitologia , Compostos Orgânicos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/enzimologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/crescimento & desenvolvimento , Proguanil/farmacologia , Pirimetamina/farmacologia , Quinolinas , Sensibilidade e Especificidade , Triazinas/farmacologia
17.
Comb Chem High Throughput Screen ; 20(6): 547-558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28302017

RESUMO

AIM AND OBJECTIVE: Plasmodium knowlesi has been recently recognized as a human malarial parasite, particularly in the region of south-east Asia. Unlike human host, P. knowlesi cannot salvage pyrimidine bases and relies solely on nucleotides synthesized from de novo pyrimidine pathway. The enzymes involved in this are also unique in terms of their structure and function to its human counterpart. Thus, targeting Dihydroorotase, an enzyme involved in the pyrimidine biosynthesis, provides a promising route for novel drug development. MATERIALS AND METHODS: The 3D structure of P. knowlesi Dihydroorotase was predicted, refined and validated. Multiple docking was performed and the resultant complex was used for 3D structurebased pharmacophore modelling. A combinatorial library of 2,664,779 molecules was generated and used for structure based virtual screening. The stability of resultant compounds was checked using simulation studies. RESULTS: The modelled 3D structure of P. knowlesi Dihydroorotase enzyme is relaxed by running an MD simulation of 20 ns, and structure is validated by using Ramachandran plot and G-factor analysis. A five point based pharmacophore model was created and used as a query for screening in house database. The stability of two negatively charged compounds was studied, and ZINC22066495-DHOase complex was more stable throughout the simulation. CONCLUSION: The present study shows that ZINC22066495 compound has a high potential for disrupting P. knowlesi DHOase enzyme and may be used as a potential lead molecule for effective pyrimidine biosynthesis inhibition in P. knowlesi.


Assuntos
Antimaláricos/farmacologia , Cicloexanóis/farmacologia , Di-Hidro-Orotase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Organofosfatos/farmacologia , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/metabolismo , Pirimidinas/biossíntese , Antimaláricos/química , Cicloexanóis/química , Di-Hidro-Orotase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Organofosfatos/química , Testes de Sensibilidade Parasitária , Pirimidinas/química
18.
Int J Parasitol Drugs Drug Resist ; 7(1): 61-70, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129569

RESUMO

In the past decade there has been a significant reduction in deaths due to malaria, in part due to the success of the gold standard antimalarial treatment - artemisinin combination therapies (ACTs). However the potential threat of ACT failure and the lack of a broadly effective malaria vaccine are driving efforts to discover new chemical entities (NCEs) to target this disease. The primary sulfonamide (PS) moiety is a component of several clinical drugs, including those for treatment of kidney disease, glaucoma and epilepsy, however this chemotype has not yet been exploited for malaria. In this study 31 PS compounds sourced from the GlaxoSmithKline (GSK) Tres Cantos antimalarial set (TCAMS) were investigated for their ability to selectively inhibit the in vitro growth of Plasmodium falciparum asexual stage malaria parasites. Of these, 14 compounds were found to have submicromolar activity (IC50 0.16-0.89 µM) and a modest selectivity index (SI) for the parasite versus human cells (SI > 12 to >43). As the PS moiety is known to inhibit carbonic anhydrase (CA) enzymes from many organisms, the PS compounds were assessed for recombinant P. falciparum CA (PfCA) mediated inhibition of CO2 hydration. The PfCA inhibition activity did not correlate with antiplasmodial potency. Furthermore, no significant difference in IC50 was observed for P. falciparum versus P. knowlesi (P > 0.05), a Plasmodium species that is not known to contain an annotated PfCA gene. Together these data suggest that the asexual intraerythrocytic stage antiplasmodial activity of the PS compounds examined in this study is likely unrelated to PfCA inhibition.


Assuntos
Antimaláricos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sulfonamidas/farmacologia , Antimaláricos/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/enzimologia , Plasmodium knowlesi/crescimento & desenvolvimento , Sulfonamidas/química , Sulfonamidas/classificação
19.
Int J Parasitol Drugs Drug Resist ; 7(1): 42-50, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28107750

RESUMO

Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin) that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L. donovani parasites and two for in vivo activity in a mouse malaria model. All four compounds were potent inhibitors of P. knowlesi malaria parasites (IC50 9-370 nM), with belinostat, panobinostat and vorinostat having 8-45 fold selectivity for the parasite over human neonatal foreskin fibroblast (NFF) or human embryonic kidney (HEK 293) cells, while romidepsin was not selective. Each of the HDAC inhibitor drugs caused hyperacetylation of P. knowlesi histone H4. None of the drugs was active against Leishmania amastigote or promastigote parasites (IC50 > 20 µM) or S. mansoni schistosomula (IC50 > 10 µM), however romidepsin inhibited S. mansoni adult worm parings and egg production (IC50 ∼10 µM). Modest in vivo activity was observed in P. berghei infected mice dosed orally with vorinostat or panobinostat (25 mg/kg twice daily for four days), with a significant reduction in parasitemia observed on days 4-7 and 4-10 after infection (P < 0.05), respectively.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Leishmania/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Schistosoma mansoni/efeitos dos fármacos , Acetilação , Administração Oral , Animais , Depsipeptídeos/farmacologia , Células HEK293 , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Indóis/administração & dosagem , Indóis/farmacologia , Indóis/uso terapêutico , Concentração Inibidora 50 , Leishmania/crescimento & desenvolvimento , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Panobinostat , Parasitemia/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium knowlesi/crescimento & desenvolvimento , Schistosoma mansoni/crescimento & desenvolvimento , Sulfonamidas/farmacologia , Vorinostat
20.
Parasitol Res ; 115(6): 2139-48, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27079460

RESUMO

Malaria recurrences after an initially successful therapy and malarial fever occurring a long time after infection are well-known problems in malariology. Currently, two distinct types of malaria recurrences are defined: recrudescence and relapse. A recrudescence is thought to originate from circulating Plasmodium blood stages which do not cause fever before a certain level of a microscopically detectable parasitemia is reached. Contrary, a relapse is thought to originate from quiescent intracellular hepatic parasite stages called hypnozoites. Recrudescences would typically occur in infections due to Plasmodium falciparum. Plasmodium knowlesi, and Plasmodium malariae, whereas relapses would be caused exclusively by Plasmodium vivax and Plasmodium ovale. This schematic view is, however, insufficiently supported by experimental evidence. For instance, hypnozoites of P. ovale have never been experimentally documented. On the other hand, the nonfinding of P. malariae hypnozoites turned into the proof for the nonexistence of P. malariae hypnozoites. Clinical relapse-type recurrences have been observed in both P. ovale and P. malariae infections, and decade-long incubation times have also been reported in P. falciparum infections. We propose a gradual hypothesis in accordance with the continuity concept of biological evolution: both, relapse and recrudescence may be potentially caused by all Plasmodium spp. We hypothesize that the difference between the various Plasmodium spp. is quantitative rather than qualitative: there are Plasmodium spp. which frequently cause relapses such as P. vivax, particularly the P.v. Chesson strain, species which cause relapses less frequently, such as P. ovale and sometimes P. malariae, and species which may exceptionally cause relapses such as P. falciparum. All species may cause recrudescences. As clinical consequences, we propose that 8-aminquinolines may be considered in a relapse-type recrudescence regardless of the causal Plasmodium sp., whereas primaquine relapse prevention might not be routinely indicated in malaria due to P. ovale.


Assuntos
Antimaláricos/uso terapêutico , Malária/veterinária , Plasmodium/fisiologia , Aminoquinolinas/uso terapêutico , Humanos , Fígado/parasitologia , Malária/tratamento farmacológico , Malária/parasitologia , Parasitemia , Plasmodium/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium knowlesi/fisiologia , Plasmodium malariae/efeitos dos fármacos , Plasmodium malariae/fisiologia , Plasmodium ovale/efeitos dos fármacos , Plasmodium ovale/fisiologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/fisiologia , Primaquina/uso terapêutico , Recidiva , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...