Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.528
Filtrar
1.
Environ Health Perspect ; 132(7): 77001, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968089

RESUMO

BACKGROUND: Organophosphate esters (OPEs), used ubiquitously as flame retardants and plasticizers in consumer products, are suspected of having developmental toxicity. OBJECTIVES: Our study aimed to estimate associations between prenatal exposure to OPEs and fetal growth, including both ultrasound (head circumference, abdominal circumference, femur length, and estimated fetal weight) and delivery [birth weight z-score, small-for-gestational age (SGA), and large-for-gestational age (LGA)] measures of growth. METHODS: In the LIFECODES Fetal Growth Study (2008-2018), an enriched case-cohort of 900 babies born at the small and large ends of the growth spectrum, we quantified OPE biomarkers in three urine samples per pregnant participant and abstracted ultrasound and delivery measures of fetal growth from medical records. We estimated associations between pregnancy-averaged log-transformed OPE biomarkers and repeated ultrasound measures of fetal growth using linear mixed-effects models, and delivery measures of fetal growth using linear (birth weight) and logistic (SGA and LGA) regression models. RESULTS: Most OPE biomarkers were positively associated with at least one ultrasound measure of fetal growth, but associations with delivery measures were largely null. For example, an interquartile range (IQR; 1.31 ng/mL) increase in bis(2-chloroethyl) phosphate concentration was associated with larger z-scores in head circumference [mean difference (difference): 0.09; 95% confidence interval (CI): 0.01, 0.17], abdominal circumference (difference: 0.10; 95% CI: 0.02, 0.18), femur length (difference: 0.11; 95% CI: 0.03, 0.19), and estimated fetal weight (difference: 0.13; 95% CI: 0.04, 0.22) but not birth weight (difference: 0.04; 95% CI: -0.08, 0.17). At delivery, an IQR (1.00 ng/mL) increase in diphenyl phosphate (DPHP) concentration was associated with an SGA birth (odds ratio: 1.46; 95% CI: 1.10, 1.94). CONCLUSIONS: In a large prospective cohort, gestational OPE exposures were associated with larger fetal size during pregnancy, but associations at delivery were null. DPHP concentrations were associated with heightened risk of an SGA birth. These findings suggest that OPE exposure may affect fetal development. https://doi.org/10.1289/EHP14647.


Assuntos
Desenvolvimento Fetal , Retardadores de Chama , Exposição Materna , Plastificantes , Humanos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Plastificantes/toxicidade , Gravidez , Exposição Materna/estatística & dados numéricos , Organofosfatos , Adulto , Peso ao Nascer/efeitos dos fármacos , Recém-Nascido , Ésteres , Biomarcadores/urina , Estudos de Coortes , Masculino
2.
Front Endocrinol (Lausanne) ; 15: 1387133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966215

RESUMO

Introduction: Endocrine disrupting chemicals (EDCs) are known to interfere with endocrine homeostasis. Their impact on the adrenal cortex and steroidogenesis has not yet been sufficiently elucidated. This applies in particular to the ubiquitously available bisphenols A (BPA), F (BPF), and S (BPS). Methods: NCI-H295R adrenocortical cells were exposed to different concentrations (1nM-1mM) of BPA, BPF, BPS, and an equimolar mixture of them (BPmix). After 72 hours, 15 endogenous steroids were measured using LC-MS/MS. Ratios of substrate and product of CYP-regulated steps were calculated to identify most influenced steps of steroidogenesis. mRNA expression of steroidogenic enzymes was determined by real-time PCR. Results: Cell viability remained unaffected at bisphenol concentrations lower than 250 µM. All tested bisphenols and their combination led to extensive alterations in the quantified steroid levels. The most profound fold changes (FC) in steroid concentrations after exposure to BPA (>10µM) were seen for androstenedione, e.g. a 0.37±0.11-fold decrease at 25µM (p≤0.0001) compared to vehicle-treated controls. For BPF, levels of 17-hydroxyprogesterone were significantly increased by 25µM (FC 2.57±0.49, p≤0.001) and 50µM (FC 2.65±0.61, p≤0.0001). BPS treatment led to a dose-dependent decrease of 11-deoxycorticosterone at >1µM (e.g. FC 0.24±0.14, p≤0.0001 at 10µM). However, when combining all three bisphenols, additive effects were detected: e.g. 11-deoxycortisosterone was decreased at doses >10µM (FC 0.27±0.04, p≤0.0001, at 25µM), whereas 21-deoxycortisol was increased by 2.92±0.20 (p≤0.01) at 10µM, and by 3.21±0.45 (p≤0.001) at 50µM. While every measured androgen (DHEA, DHEAS, androstenedione, testosterone, DHT) was lowered in all experiments, estradiol levels were significantly increased by BPA, BPF, BPS, and BPmix (e.g. FC 3.60±0.54, p≤0.0001 at 100µM BPF). Calculated substrate-product ratios indicated an inhibition of CYP17A1-, and CYP21A2 mediated conversions, whereas CYP11B1 and CYP19A1 showed higher activity in the presence of bisphenols. Based on these findings, most relevant mRNA expression of CYP genes were analysed. mRNA levels of StAR, CYP11B1, and CYP17A1 were significantly increased by BPF, BPS, and BPmix. Discussion: In cell culture, bisphenols interfere with steroidogenesis at non-cytotoxic levels, leading to compound-specific patterns of significantly altered hormone levels. These results justify and call for additional in-vivo studies to evaluate effects of EDCs on adrenal gland functionality.


Assuntos
Córtex Suprarrenal , Compostos Benzidrílicos , Disruptores Endócrinos , Fenóis , Plastificantes , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Humanos , Disruptores Endócrinos/toxicidade , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/citologia , Plastificantes/toxicidade , Esteroides/biossíntese , Sulfonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos
3.
J Hazard Mater ; 474: 134743, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852244

RESUMO

Phthalate esters (PAEs), as a major plasticizer with multi-biotoxicity, are frequently detected in marine environments, and potentially affecting the survival of aquatic organisms. In the study, three typical PAEs (dimethyl phthalate [DMP], dibutyl phthalate [DBP] and di(2-ethylhexyl) phthalate [DEHP]) were selected to investigate the accumulation patterns and ecotoxicological effects on Mytilus coruscus (M. coruscus). In M. coruscus, the accumulation was DEHP>DBP>DMP, and the bioaccumulation in tissues was digestive glands>gills>gonads>muscles. Meanwhile, the activities of superoxide dismutase (SOD) and catalase (CAT) showed an activation-decrease-activation trend of stress, with more pronounced concentration effects. Glutathione reductase (GSH) activity was significantly increased, and its expression was more sensitive to be induced at an early stage. The metabolic profiles of the gonads, digestive glands and muscle tissues were significantly altered, and DEHP had a greater effect on the metabolic profiles of M. coruscus, with the strongest interference. PAEs stress for 7 d significantly altered the volatile components of M. coruscus, with potential implications for their nutritional value. This study provides a biochemical, metabolomic, and nutritional analysis of DMP, DBP, and DEHP toxic effects on M. coruscus from a multidimensional perspective, which provides support for ecotoxicological studies of PAEs on marine organisms. ENVIRONMENTAL IMPLICATION: Phthalate esters (PAEs), synthetic compounds from phthalic acid, are widespread in the environment, household products, aquatic plants, animals, and crops, posing a significant threat to human health. However, the majority of toxicological studies examining the effects of PAEs on aquatic organisms primarily focus on non-economic model organisms like algae and zebrafish. Relatively fewer studies have been conducted on marine organisms, particularly economically important shellfish. So, this study is innovative and necessary. This study provides a biochemical, metabolomic, and nutritional analysis of DMP, DBP, and DEHP toxic effects on mussels, and supports the ecotoxicology of PAEs on marine organisms.


Assuntos
Mytilus , Ácidos Ftálicos , Plastificantes , Poluentes Químicos da Água , Animais , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Plastificantes/toxicidade , Plastificantes/metabolismo , Superóxido Dismutase/metabolismo , Antioxidantes/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Catalase/metabolismo , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Glutationa Redutase/metabolismo , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Ésteres/metabolismo , Ésteres/toxicidade , Estresse Oxidativo/efeitos dos fármacos
4.
J Hazard Mater ; 474: 134776, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852255

RESUMO

Phthalate esters (PAEs) are widely used as plasticizers and cause serious complex pollution problem in environment. Thus, strains with efficient ability to simultaneously degrade various PAEs are required. In this study, a newly isolated strain Rhodococcus sp. AH-ZY2 can degrade 500 mg/L Di-n-octyl phthalate completely within 16 h and other 500 mg/L PAEs almost completely within 48 h at 37 °C, 180 rpm, and 2 % (v/v) inoculum size of cultures with a OD600 of 0.8. OD600 = 0.8, 2 % (v/v). Twenty genes in its genome were annotated as potential esterase and four of them (3963, 4547, 5294 and 5359) were heterogeneously expressed and characterized. Esterase 3963 and 4547 is a type I PAEs esterase that hydrolyzes PAEs to phthalate monoesters. Esterase 5294 is a type II PAEs esterase that hydrolyzes phthalate monoesters to phthalate acid (PA). Esterase 5359 is a type III PAEs esterase that simultaneously degrades various PAEs to PA. Molecular docking results of 5359 suggested that the size and indiscriminate binding feature of spacious substrate binding pocket may contribute to its substrate versatility. AH-ZY2 is a potential strain for efficient remediation of PAEs complex pollution in environment. It is first to report an esterase that can efficiently degrade mixed various PAEs.


Assuntos
Biodegradação Ambiental , Esterases , Ésteres , Simulação de Acoplamento Molecular , Ácidos Ftálicos , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/enzimologia , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Esterases/metabolismo , Esterases/genética , Ésteres/metabolismo , Ésteres/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Plastificantes/metabolismo
5.
Food Chem ; 455: 139888, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843712

RESUMO

A novel method has been proposed to determine nine plasticizers in honey samples by gas chromatography-mass spectrometry. An efficient sample treatment was proposed (average analyte recoveries between 77% and 118%) involving a double solvent extraction with ethyl acetate, followed by a clean-up step with florisil. Chromatographic analysis (< 21 min) was performed in an Agilent HP-5MS column under programmed temperature conditions. The greenness of the method was assessed with different tools that classified it as environmentally friendly. The method was validated in terms of selectivity, limits of detection (0.1-3.1 µg kg-1) and quantification (0.2-10.3 µg kg-1), linearity, matrix effect, trueness, and precision (relative standard deviation <9%). An analysis of thirty samples from different sources (commercial or experimental apiaries) revealed the presence of residues of five plasticizers in most of the samples. Finally, health risk assessment was evaluated, and the results indicated no associated health risks for consumers.


Assuntos
Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Mel , Plastificantes , Plastificantes/análise , Contaminação de Alimentos/análise , Mel/análise , Química Verde
6.
Int J Biol Macromol ; 273(Pt 2): 132956, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848838

RESUMO

Free-standing films have been obtained by drop-casting cellulose-glycerol mixtures (up to 50 wt% glycerol) dissolved in trifluoroacetic acid and trifluoroacetic anhydride (TFA:TFAA, 2:1, v:v). A comprehensive examination of the optical, structural, mechanical, thermal, hydrodynamic, barrier, migration, greaseproof, and biodegradation characteristics of the films was conducted. The resulting cellulose-glycerol blends exhibited an amorphous molecular structure and a reinforced H-bond network, as evidenced by X-ray diffraction analysis and infrared spectroscopy, respectively. The inclusion of glycerol exerted a plasticizing influence on the mechanical properties of the films, while keeping their transparency. Hydrodynamic and barrier properties were assessed through water uptake and water vapor/oxygen transmission rates, respectively, and obtained values were consistent with those of other cellulose-based materials. Furthermore, overall migration levels were below European regulation limits, as stated by using Tenax® as a dry food simulant. In addition, these bioplastics demonstrated good greaseproof performance, particularly at high glycerol content, and potential as packaging materials for bakery products. Biodegradability assessments were carried out by measuring the biological oxygen demand in seawater and high biodegradation rates induced by glycerol were observed.


Assuntos
Celulose , Embalagem de Alimentos , Glicerol , Embalagem de Alimentos/métodos , Glicerol/química , Celulose/química , Plásticos/química , Plastificantes/química , Vapor , Água/química , Biodegradação Ambiental , Plásticos Biodegradáveis/química
7.
Int J Biol Macromol ; 273(Pt 2): 133203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885860

RESUMO

This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO2 as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO2. DC conductivity estimates from AC spectra plateau regions reach up to 5.6 × 10-4 S/cm. The electric bulk resistance Rb obtained from the Nyquist plots exhibits a substantial decrease with increasing plasticizer concentration, further enhanced by the addition of the nanoparticles. Specifically, Rb decreases from ∼20 kΩ to 287 Ω when glycerol concentration increases from 10 % to 40 % and further drops to 30 Ω with the introduction of TiO2. Specific capacitance obtained from cyclic voltammetry shows a notable increase as the scan rate decreases, indicating improved efficiency and stability of ion transport. The TiO2-enriched EDCL achieves 12.3 F/g specific capacitance at 20 mV/s scan rate, with high ion conductivity and extended electrochemical stability. These results suggest the great potential of plasticizer and TiO2 with biopolymers in improving the performance of energy storage systems.


Assuntos
Quitosana , Dextranos , Eletrólitos , Transporte de Íons , Titânio , Titânio/química , Quitosana/química , Eletrólitos/química , Dextranos/química , Capacitância Elétrica , Condutividade Elétrica , Plastificantes/química
8.
Int J Biol Macromol ; 273(Pt 2): 132826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825277

RESUMO

Using bio-based plasticizers derived from biomass resources to replace traditional phthalates can avoid the biotoxicity and non-biodegradability caused by the migration of plasticizers during the application of plastics. In this study, L-lactic acid and levulinic acid were employed as the major biomass monomer to successfully fabricate L-lactic acid-based plasticizers (LBL-n, n = 1.0, 1.5, 2.0, 2.5) containing a diverse number of lactate groups. The plasticizing mechanism was explained, manifesting that L-lactic acid-based plasticizers containing a substantial number of lactate groups could effectively improve the flexibility of poly (lactic acid) (PLA), and the elongation at break was 590 %-750 %. Compared to LBL-1.5 plasticized-PLA films, the tensile strength and modulus of ketonized-LBL-1.5 (KLBL-1.5) plasticized-PLA films increased to 59 % and 163 %, indicating the ketal functionality of plasticizers enhanced the strength of PLA. Meanwhile, the increment of lactate groups and the introduction of the ketal group in the plasticizer increased the crystallization, migration, and volatilization stability of plasticized-PLA films and also kept their outstanding optical transparency. Besides, the biodegradability of KLBL-1.5 was investigated by active soil and Tenebrio molitor experiments, and its degradation products were characterized. The findings indicated that KLBL-1.5 was fully decomposed. Taken together, this paper offers new promise for developing high-efficiency and biodegradable plasticizers.


Assuntos
Plastificantes , Poliésteres , Plastificantes/química , Poliésteres/química , Cristalização , Resistência à Tração , Ácidos Levulínicos/química , Ácido Láctico/química
9.
Ecotoxicol Environ Saf ; 280: 116544, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838463

RESUMO

Benzyl butyl phthalate (BBP) is a widely used plasticizer that poses various potential health hazards. Although BBP has been extensively studied, the direct mechanism underlying its toxicity in male germ cells remains unclear. Therefore, we investigated BBP-mediated male germ cell toxicity in GC-1 spermatogonia (spg), a differentiated mouse male germ cell line. This study investigated the impact of BBP on reactive oxygen species (ROS) generation, apoptosis, and autophagy regulation, as well as potential protective measures against BBP-induced toxicity. A marked dose-dependent decrease in GC-1 spg cell proliferation was observed following treatment with BBP at 12.5 µM. Exposure to 50 µM BBP, approximating the IC50 of 53.9 µM, markedly increased cellular ROS generation and instigated apoptosis, as evidenced by augmented protein levels of both intrinsic and extrinsic apoptosis-related markers. An amount of 50 µM BBP induced marked upregulation of autophagy regulator proteins, p38 MAPK, and extracellular signal-regulated kinase and substantially downregulated the phosphorylation of key kinases involved in regulating cell proliferation, including phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin (mTOR), c-Jun N-terminal kinase. The triple combination of N-acetylcysteine, parthenolide, and 3-methyladenine markedly restored cell proliferation, decreased BBP-induced apoptosis and autophagy, and restored mTOR phosphorylation. This study provides new insights into BBP-induced male germ cell toxicity and highlights the therapeutic potential of the triple inhibitors in mitigating BBP toxicity.


Assuntos
Acetilcisteína , Adenina , Apoptose , Autofagia , Proliferação de Células , Ácidos Ftálicos , Espécies Reativas de Oxigênio , Sesquiterpenos , Masculino , Animais , Camundongos , Ácidos Ftálicos/toxicidade , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/toxicidade , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Plastificantes/toxicidade , Espermatogônias/efeitos dos fármacos
10.
World J Microbiol Biotechnol ; 40(8): 247, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904858

RESUMO

Phthalate isomers are key intermediates in the biodegradation of pollutants including waste polyethylene terephthalate (PET) plastics and plasticizers. So far, an increasing number of phthalate isomer-degrading strains have been isolated, and their degradation pathways show significant diversity. In this paper, we comprehensively review the current status of research on the degrading bacteria, degradation characteristics, aerobic and anaerobic degradation pathways, and degradation genes (clusters) of phthalate isomers, and discuss the current shortcomings and challenges. Moreover, the degradation process of phthalate isomers produces many important aromatic precursor molecules, which can be used to produce higher-value derivative chemicals, and the modification of their degradation pathways holds good prospects. Therefore, this review also highlights the current progress made in modifying the phthalate isomer degradation pathway and explores its potential for high-value applications.


Assuntos
Bactérias , Biodegradação Ambiental , Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Isomerismo , Plastificantes/metabolismo , Poluentes Ambientais/metabolismo , Redes e Vias Metabólicas , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química
11.
Int J Biol Macromol ; 271(Pt 2): 132495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763256

RESUMO

Incorporating starch, which is a potential biodegradable substitute for petroleum-based polymers, into conventional polymers is challenging owing to limitations in processability and weak-performing resulting materials. Herein, corn starch/polyvinyl alcohol (PVA) blend films (starch: PVA ratio of 50:50) were prepared via the solvent casting method using glycerol as a plasticizer and with varying concentrations of maleic acid as the crosslinking agent. Fourier transform infrared spectroscopy revealed the molecular interactions of the maleic acid crosslinker with the polymeric network of starch and PVA through an ester linkage. The properties of the films were strongly dependent on the maleic acid concentration. An increasing maleic acid concentration imparted hydrophobicity to the film; therefore, water swelling was significantly reduced, and water resistance was enhanced. The film containing 20 wt% maleic acid exhibited excellent barrier properties, with the lowest oxygen and water vapor transmission rates of 0.5 ± 0.2 cc/m2⋅day and 232.3 ± 5.4 g/m2⋅day, respectively. Moreover, the mechanical properties of the film improved with increasing crosslinking. This study demonstrates that the addition of maleic acid leads to an improvement in the overall performance of starch/PVA blend films. Therefore, maleic acid-crosslinked films can be used as barrier materials in food packaging applications.


Assuntos
Embalagem de Alimentos , Maleatos , Álcool de Polivinil , Amido , Álcool de Polivinil/química , Amido/química , Maleatos/química , Embalagem de Alimentos/métodos , Reagentes de Ligações Cruzadas/química , Interações Hidrofóbicas e Hidrofílicas , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Permeabilidade , Plastificantes/química , Vapor
12.
Arch Toxicol ; 98(7): 2153-2171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806720

RESUMO

Diisopentyl phthalate (DiPeP) is primarily used as a plasticizer or additive within the production of polyvinyl chloride (PVC), and has many additional industrial applications. Its metabolites were recently found in urinary samples of pregnant women; thus, this substance is of concern as relates to human exposure. Depending upon the nature of the alcohol used in its synthesis, DiPeP may exist either as a mixture consisting of several branched positional isomers, or as a single defined structure. This article investigates the skin sensitization potential and immunomodulatory effects of DiPeP CAS No. 84777-06-0, which is currently marketed and classified as a UVCB substance, by in silico and in vitro methods. Our findings showed an immunomodulatory effect for DiPeP in LPS-induced THP-1 activation assay (increased CD54 expression). In silico predictions using QSAR TOOLBOX 4.5, ToxTree, and VEGA did not identify DiPeP, in the form of a discrete compound, as a skin sensitizer. The keratinocyte activation (Key Event 2 (KE2) of the adverse outcome pathway (AOP) for skin sensitization) was evaluated by two different test methods (HaCaT assay and RHE assay), and results were discordant. While the HaCaT assay showed that DiPeP can activate keratinocytes (increased levels of IL-6, IL-8, IL-1α, and ILA gene expression), in the RHE assay, DiPeP slightly increased IL-6 release. Although inconclusive for KE2, the role of DiPeP in KE3 (dendritic cell activation) was demonstrated by the increased levels of CD54 and IL-8 and TNF-α in THP-1 cells (THP-1 activation assay). Altogether, findings were inconclusive regarding the skin sensitization potential of the UVCB DiPeP-disagreeing with the results of DiPeP in the form of discrete compound (skin sensitizer by the LLNA assay). Additional studies are needed to elucidate the differences between DiPeP isomer forms, and to better understand the applicability domains of non-animal methods in identifying skin sensitization hazards of UVCB substances.


Assuntos
Simulação por Computador , Queratinócitos , Ácidos Ftálicos , Humanos , Queratinócitos/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Células HaCaT , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Relação Quantitativa Estrutura-Atividade , Plastificantes/toxicidade , Células THP-1 , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Linhagem Celular
13.
Environ Toxicol Chem ; 43(7): 1604-1614, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38771199

RESUMO

The presence and persistence of microplastics (MPs) in diverse aquatic environments are of global concern. Microplastics can impact marine organisms via direct physical interaction and the release of potentially harmful chemical additives incorporated into the plastic. These chemicals are physically bound to the plastic matrix and can leach out. The hazards associated with chemical additives to exposed organisms is not well characterized. We investigated the hazards of plastic additives leaching from plastic. We used the common plasticizer dibutyl phthalate (DBP) as a chemical additive proxy and the New Zealand green-lipped mussel (Perna canaliculus) as a model. We used early-adult P. canaliculus exposed to combinations of virgin and DBP-spiked polyvinyl chloride (PVC), MPs, and DBP alone for 7 days. Whole transcriptome sequencing (RNA-seq) was conducted to assess whether leaching of DBP from MPs poses a hazard. The differences between groups were evaluated using pairwise permutational multivariate analysis of variance (PERMANOVA), and all treatments were significantly different from controls. In addition, a significant difference was seen between DBP and PVC MP treatment. Transcriptome analysis revealed that mussels exposed to DBP alone had the most differentially expressed genes (914), followed by PVC MP + DBP (448), and PVC MP (250). Gene ontology functional analysis revealed that the most enriched pathway types were in cellular metabolism, immune response, and endocrine disruption. Microplastic treatments enriched numerous pathways related to cellular metabolism and immune response. The combined exposure of PVC MP + DBP appears to cause combined effects, suggesting that DBP is bioavailable to the exposed mussels in the PVC MP + DBP treatment. Our results support the hypothesis that chemical additives are potentially an important driver of MP toxicity. Environ Toxicol Chem 2024;43:1604-1614. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Dibutilftalato , Microplásticos , Perna (Organismo) , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Dibutilftalato/toxicidade , Perna (Organismo)/efeitos dos fármacos , Plastificantes/toxicidade , Transcriptoma/efeitos dos fármacos , Plásticos/toxicidade
14.
Int J Biol Macromol ; 271(Pt 1): 132354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750852

RESUMO

The utilization of biopolymer-based food packaging holds significant promise in aligning with sustainability goals and enhancing food safety by offering a renewable, biodegradable, and safer alternative to traditional synthetic polymers. However, these biopolymer-derived films often exhibit poor barrier and mechanical properties, potentially limiting their commercial viability. Desirable barrier properties, such as moisture and oxygen resistance, are critical for preserving and maintaining the quality of packaged food products. This review comprehensively explores different traditional and advance methodologies employed to access the barrier properties of edible films. Additionally, this review thoroughly examines various approaches aimed at enhancing the barrier properties of edible films, such as the fabrication of multilayer films, the selection of biopolymers for composite films, as well as the integration of plasticizers, crosslinkers, hydrophobic agents, and nanocomposites. Moreover, the influence of process conditions, such as preparation techniques, homogenization, drying conditions, and rheological behavior, on the barrier properties of edible films has been discussed. The review provides valuable insights and knowledge for researchers and industry professionals to advance the use of biopolymer-based packaging materials and contribute to a more sustainable and food-safe future.


Assuntos
Filmes Comestíveis , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Biopolímeros/química , Nanocompostos/química , Permeabilidade , Plastificantes/química
15.
J Hazard Mater ; 474: 134596, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820744

RESUMO

Because of the significant environmental and health hazards imposed by di(2-ethylhexyl) phthalate (DEHP), a common plasticizer, developing safe and green techniques to degrade DEHP plasticizer is of huge scientific significance. It has been observed that environmental contamination of DEHP may also induce serious food safety problems because crops raised in plasticizers contaminated soils would transfer the plasticizer into foods, such as Baijiu. Additionally, when plastic packaging or vessels are used during Baijiu fermentation and processing, plasticizer compounds frequently migrate and contaminate the product. In this study, hairpin-like structured peptides with catalytically active sites containing serine, histidine and aspartic acid were found to degrade DEHP. Furthermore, after incorporating caffeic acid molecules at the N-terminus, the peptides could be attached onto foam titanium (Ti) surfaces via enediol-metal interactions to create an enzyme-mimicking flow reactor for the degradation of DEHP in Baijiu. The structure and catalytic activity of peptides, their interaction with DEHP substrate and the hydrolysis mechanism of DEHP were discussed in this work. The stability and reusability of the peptide-modified foam Ti flow reactor were also investigated. This approach provides an effective technique for the degradation of plasticizer compounds.


Assuntos
Dietilexilftalato , Peptídeos , Plastificantes , Titânio , Dietilexilftalato/química , Dietilexilftalato/metabolismo , Plastificantes/química , Titânio/química , Peptídeos/química , Peptídeos/metabolismo , Hidrólise
16.
Ecotoxicol Environ Saf ; 279: 116517, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805830

RESUMO

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.


Assuntos
Monitoramento Ambiental , Água Doce , Ácidos Ftálicos , Plastificantes , Poluentes Químicos da Água , Qualidade da Água , Ácidos Ftálicos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Água Doce/química , Monitoramento Ambiental/métodos , Plastificantes/análise , Plastificantes/toxicidade , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Ésteres , China , Animais , Dibutilftalato/toxicidade
17.
J Hazard Mater ; 473: 134554, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759407

RESUMO

The widely existed plastic additives plasticizers in organic wastes possibly pose negative influences on anaerobic digestion (AD) performance, the direct evidence about the effects of plasticizers on AD performance is still lacking. This study evaluated the influencing mechanism of two typical plasticizers bisphenol A (BPA) and dioctyl phthalate on the whole AD process. Results indicated that plasticizers addition inhibited methane production, and the inhibiting effects were reinforced with the increase of concentration. By contrast, 50 mg/L BPA exhibited the strongest inhibition on methane production. Physicochemical analysis showed plasticizers inhibited the metabolism efficiency of soluble polysaccharide and volatile fatty acids. Microbial communities analyses suggested that plasticizers inhibited the direct interspecies electron transfer participators of methanogenic archaea (especially Methanosarcina) and syntrophic bacteria. Furthermore, plasticizers inhibited the methane metabolisms, key coenzymes (CoB, CoM, CoF420 and methanofuran) biosynthesis and the metabolisms of major organic matters. This study shed light on the effects of plasticizers on AD performance and provided new insights for assessing the influences of plasticizers or plastic additives on the disposal of organic wastes.


Assuntos
Compostos Benzidrílicos , Metano , Fenóis , Plastificantes , Anaerobiose , Plastificantes/metabolismo , Metano/metabolismo , Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Reatores Biológicos , Eliminação de Resíduos/métodos , Ácidos Ftálicos/metabolismo , Alimentos , Perda e Desperdício de Alimentos
18.
Environ Pollut ; 355: 124217, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797346

RESUMO

Although di(2-ethylhexyl) terephthalate (DOTP) is being widely adopted as a non-phthalate plasticizer, existing research primarily focuses on human and rat toxicity. This leaves a significant gap in our understanding of their impact on microbial communities. This study assessed the biodegradation and toxicity of DOTP on microbes, focusing on its impact on biofilms and microbial metabolism using Rhodococcus ruber as a representative bacterial strain. DOTP is commonly found in mass fractions between 0.6 and 20% v/v in various soft plastic products. This study used polyvinyl chloride films (PVC) with varying DOTP concentrations (range 1-10% v/v) as a surface for analysis of biofilm growth. Cell viability and bacterial stress responses were tested using LIVE/DEAD™ BacLight™ Bacterial Viability Kit and by the detection of reactive oxygen species using CellROX™ Green Reagent, respectively. An increase in the volume of dead cells (in the plastisphere biofilm) was observed with increasing DOTP concentrations in experiments using PVC films, indicating the potential negative impact of DOTP on microbial communities. Even at a relatively low concentration of DOTP (1%), signs of stress in the microbes were noticed, while concentrations above 5% compromised their ability to survive. This research provides a new understanding of the environmental impacts of alternative plasticizers, prompting the need for additional research into their wider effects on both the environment and human health.


Assuntos
Biodegradação Ambiental , Biofilmes , Ácidos Ftálicos , Plastificantes , Espécies Reativas de Oxigênio , Plastificantes/toxicidade , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Rhodococcus/metabolismo , Rhodococcus/efeitos dos fármacos , Cloreto de Polivinila/toxicidade , Dietilexilftalato/toxicidade
19.
Int J Biol Macromol ; 270(Pt 1): 132392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754681

RESUMO

The most likely materials for use in packaging are plastics. A lot of synthetic polymers are harming the environment. A plasticizer is required for all polymers to improve their characteristics and workability. The plasticizers come in liquid form and are also derived from fossil fuels, which are harmful to the environment. Producing functional and affordable biopolymer for packaging applications is a difficult task nowadays. The preparation of biofilm for packaging using biopolymer and bioplasticizer is the main aim of this work. The biopolymer poly L-lactic acid (PLA) is used, and the bio plasticizer is extracted from Pedalium murex plant. Chemical and mechanical methods are used to extract the plasticizer. Plasticization of polylactic acid biopolymer was done using the extracted plasticizer at additions of 1 %, 2 %, 3 %, 4 %, and 5 %. FT-IR spectroscopy, X-ray diffraction spectroscopy, and surface roughness values are used to characterise the prepared biofilms. Scanning electron spectroscopy pictures are utilised to evaluate the morphological orientation of the biofilms. Strawberries packed with biofilms are used to evaluate the barrier properties of biofilms using UV spectroscopy analysis. Thermal degradation behaviour is investigated using thermo gravimetric analysis. We examined the mechanical characteristics, such as tensile strength, elongation modulus, and elongation break percentage. The plasticizing effect of the plasticizer raises the elongation break percentage while decreasing the tensile strength and modulus. For 2 % plasticizer addition the elongation break increases and the tensile not much affected. To demonstrate biodegradability and microbial resistance, the soil degradation behaviour and antimicrobial activities were examined.


Assuntos
Biofilmes , Embalagem de Alimentos , Plastificantes , Poliésteres , Poliésteres/química , Plastificantes/química , Embalagem de Alimentos/métodos , Biofilmes/efeitos dos fármacos , Frutas/química , Biopolímeros/química , Biopolímeros/farmacologia , Resistência à Tração , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Waste Manag ; 183: 21-31, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38714119

RESUMO

Poly(vinyl chloride) (PVC) is one of the most widely used plastics. However, a major challenge in recycling PVC is that there is no economical method to separate and remove its toxic phthalate plasticizers. This research made a breakthrough by extracting PVC with liquefied dimethyl ether (DME) and successfully separating the plasticizer components. Nearly all (97.1 %) of the di(2-ethylhexyl) phthalate plasticizer was extracted within 30 min by passing liquefied DME (285 g) through PVC at 25 °C. The compatibility of PVC with organic solvents, including liquefied DME, was derived theoretically from their Hansen solubility parameters (HSP), and actual dissolution experiments were conducted to determine the optimal PVC solvents. A liquefied DME mixture was used to dissolve PVC, and the extract was diluted with ethanol to precipitate the dissolved PVC. We demonstrated that liquefied DME is a promising method for producing high quality recycled products and that the process retains the fundamental properties of plasticizers and PVC without inducing degradation or depolymerization. Because of its low boiling point, DME can be easily separated from the solute after extraction, allowing for efficient reuse of the solvent, extracted plasticizer, and PVC. DME does not require heat and produces little harmful wastewater, which significantly reduces the energy consumption of the plasticizer additive separation process.


Assuntos
Dietilexilftalato , Éteres Metílicos , Plastificantes , Cloreto de Polivinila , Reciclagem , Cloreto de Polivinila/química , Dietilexilftalato/química , Reciclagem/métodos , Éteres Metílicos/química , Éteres Metílicos/análise , Solventes/química , Ácidos Ftálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...