Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.075
Filtrar
1.
Biomaterials ; 313: 122778, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39213978

RESUMO

Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.


Assuntos
Clorofilídeos , Indóis , Platina , Polímeros , Porfirinas , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Terapia por Ultrassom , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Indóis/química , Terapia por Ultrassom/métodos , Porfirinas/química , Porfirinas/farmacologia , Polímeros/química , Animais , Platina/química , Platina/uso terapêutico , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Apoptose/efeitos dos fármacos , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Quinolinas/farmacologia , Quinolinas/química , Camundongos Nus , Portadores de Fármacos/química
2.
J Ovarian Res ; 17(1): 196, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367438

RESUMO

Platinum is a key component of ovarian cancer systemic therapy. However, most patients will eventually face a recurrence, leading to chemotherapy resistance, especially against platinum. For individuals with platinum-resistant ovarian cancer (PROC), treatment options are limited, and their survival prospects are grim. The emergence of antibody-drug conjugates (ADCs) shows promises as a future treatment for PROC. This review synthesizes current research on the effectiveness of ADCs in treating PROC. It encapsulates the advancements and clinical trials of novel ADCs that target specific antigens such as Folate Receptor alpha (FRα), MUC16, NaPi2b, Mesothelin, Dipeptidase 3(DPEP3), and human epidermal growth factor receptor 2 (HER2), as well as tissue factor, highlighting their potential anti-tumor efficacy and used in combination with other therapies. The ADCs landscape in ovarian cancer therapeutics is swiftly evolving, promising more potent and efficacious treatment avenues.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoconjugados , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Platina/uso terapêutico , Platina/farmacologia , Antineoplásicos/uso terapêutico
3.
Molecules ; 29(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274943

RESUMO

In this study, we report a novel platinum-doxorubicin conjugate that demonstrates superior therapeutic indices to cisplatin, doxorubicin, or their combination, which are commonly used in cancer treatment. This new molecular structure (1) was formed by conjugating an amphiphilic Pt(IV) prodrug of cisplatin with doxorubicin. Due to its amphiphilic nature, the Pt(IV)-doxorubicin conjugate effectively penetrates cell membranes, delivering both cisplatin and doxorubicin payloads intracellularly. The intracellular accumulation of these payloads was assessed using graphite furnace atomic absorption spectrometry and fluorescence imaging. Since the therapeutic effects of cisplatin and doxorubicin stem from their ability to target nuclear DNA, we hypothesized that the amphiphilic Pt(IV)-doxorubicin conjugate (1) would effectively induce nuclear DNA damage toward killing cancer cells. To test this hypothesis, we used flow the cytometric analysis of phosphorylated H2AX (γH2AX), a biomarker of nuclear DNA damage. The Pt(IV)-doxorubicin conjugate (1) markedly induced γH2AX in treated MDA-MB-231 breast cancer cells, showing higher levels than cells treated with either cisplatin or doxorubicin alone. Furthermore, MTT cell viability assays revealed that the enhanced DNA-damaging capability of complex 1 resulted in superior cytotoxicity and selectivity against human cancer cells compared to cisplatin, doxorubicin, or their combination. Overall, the development of this amphiphilic Pt(IV)-doxorubicin conjugate represents a new form of combination therapy with improved therapeutic efficacy.


Assuntos
Cisplatino , Doxorrubicina , Cisplatino/farmacologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Platina/química , Platina/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Histonas
4.
Biomater Adv ; 165: 213998, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39236581

RESUMO

This review discusses the relationship between inflammation and cancer initiation and progression, which has prompted research into anti-inflammatory approaches for cancer prevention and treatment. Specifically, it focuses on the use of inflammation-reducing agents to enhance the effectiveness of tumor treatment methods. These agents are combined with platinum(II)-based antitumor drugs to create multifunctional platinum(IV) prodrugs, allowing for simultaneous delivery to tumor cells in a specific ratio. Once inside the cells and subjected to intracellular reduction, both components can act in parallel through distinct pathways. Motivated by the objective of reducing the systemic toxicity associated with contemporary chemotherapy, and with the aim of leveraging the passive enhanced permeability and retention effect exhibited by nanostructured materials to improve their accumulation within tumor tissues, the platinum(IV) complexes have been efficiently loaded into mesoporous silica SBA-15 material. The resulting nanostructured materials are capable of providing controlled release of the conjugates when subjected to simulated plasma conditions. This feature suggests the potential for extended circulation within the body in vivo, with minimal premature release of the drug before reaching the intended target site. The primary emphasis of this review is on research that integrates these two approaches to develop chemotherapeutic treatments that are both more efficient and less harmful.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Portadores de Fármacos , Nanoestruturas , Dióxido de Silício , Humanos , Dióxido de Silício/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Animais , Porosidade , Platina/química , Platina/uso terapêutico , Platina/farmacologia , Neoplasias/tratamento farmacológico
5.
Inorg Chem ; 63(37): 17249-17262, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39235210

RESUMO

Using the principle of "Magic Bullet", a cisplatin-derived platinum(IV) prodrug heterobimetallic Pt(IV)-Ru(II) complex, cis,cis,trans-[Pt(NH3)2Cl2{Ru(tpy-BODIPY)(tpy-COO)}(biotin)]Cl2 (Pt-Ru-B, 2), having two axial ligands, namely, biotin as water-soluble B-vitamin for enhanced cellular uptake and a BODIPY-ruthenium(II) (Ru-B, 1) photosensitizer having N,N,N-donor tpy (4'-phenyl-2,2':6',2″-terpyridine) bonded to boron-dipyrromethene (BODIPY), is developed as a "Platin Bullet" for targeted photodynamic therapy (PDT). Pt-Ru-B exhibited intense absorption near 500 nm and emission near 513 nm (λex = 488 nm) in a 10% dimethyl sulfoxide-Dulbecco's phosphate-buffered saline medium (pH 7.2). The BODIPY complex on light activation generates singlet oxygen as the reactive oxygen species (ROS) giving a quantum yield (ΦΔ) of ∼0.64 from 1,3-diphenylisobenzofuran experiments. Pt-Ru-B exhibited preferential cellular uptake in cancer cells over noncancerous cells. The dichlorodihydrofluorescein diacetate assay confirmed the generation of cellular ROS. Confocal images revealed its mitochondrial internalization. Pt-Ru-B showed submicromolar photocytotoxicity in visible light (400-700 nm) in A549 and multidrug-resistant MDA-MB-231 cancer cells. It remained nontoxic in the dark and less toxic in nontumorigenic cells. Cellular apoptosis and alteration of the mitochondrial membrane potential were evidenced from the respective Annexin V-FITC/propidium iodide assay and JC-1 dye assay. A wound healing assay using A549 cells and Pt-Ru-B revealed inhibition of cancer cell migration, highlighting its potential as an antimetastatic agent.


Assuntos
Antineoplásicos , Biotina , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pró-Fármacos , Rutênio , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Rutênio/química , Rutênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Biotina/química , Biotina/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Porfobilinogênio/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Platina/química , Platina/farmacologia , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/química
6.
Biomed Phys Eng Express ; 10(6)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39260382

RESUMO

This study describes the in-vitro cytotoxic effects of PEG-400 (Polyethylene glycol-400)-capped platinum nanoparticles (PEGylated Pt NPs) on both normal and cancer cell lines. Structural characterization was carried out using x-ray diffraction and Raman spectroscopy with an average crystallite size 5.7 nm, and morphological assessment using Scanning electron microscopy (SEM) revealed the presence of spherical platinum nanoparticles. The results of energy-dispersive x-ray spectroscopy (EDX) showed a higher percentage fraction of platinum content by weight, along with carbon and oxygen, which are expected from the capping agent, confirming the purity of the platinum sample. The dynamic light scattering experiment revealed an average hydrodynamic diameter of 353.6 nm for the PEGylated Pt NPs. The cytotoxicity profile of PEGylated Pt NPs was assessed on a normal cell line (L929) and a breast cancer cell line (MCF-7) using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results revealed an IC50of 79.18 µg ml-1on the cancer cell line and non-toxic behaviour on the normal cell line. In the dual staining apoptosis assay, it was observed that the mortality of cells cultured in conjunction with platinum nanoparticles intensified and the proliferative activity of MCF-7 cells gradually diminished over time in correlation with the increasing concentration of the PEGylated Pt NPs sample. Thein vitroDCFH-DA assay for oxidative stress assessment in nanoparticle-treated cells unveiled the mechanistic background of the anticancer activity of PEGylated platinum nanoparticles as ROS-assisted mitochondrial dysfunction.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Nanopartículas Metálicas , Platina , Polietilenoglicóis , Humanos , Polietilenoglicóis/química , Platina/química , Platina/farmacologia , Nanopartículas Metálicas/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Feminino , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Difração de Raios X , Análise Espectral Raman/métodos , Tamanho da Partícula , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Microscopia Eletrônica de Varredura
7.
J Med Chem ; 67(18): 16416-16434, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39235464

RESUMO

The inflammatory microenvironment is a central driver of tumor metastasis, intimately associated with the promotion of epithelial-mesenchymal transition (EMT) and immune suppression. Here, transferrin-modified carprofen platinum(IV) nanoparticles Tf-NPs@CPF2-Pt(IV) with promising antiproliferative and antimetastatic properties were developed, which activated by inhibiting inflammation, suppressing EMT, and activating immune responses besides causing DNA injury. The nanoparticles released the active ingredient CPF2-Pt(IV) in a sustained manner and offered enhanced pharmacokinetic properties compared to free CPF2-Pt(IV) in vivo. Additionally, they possessed satisfactory tumor targeting effects via the transferrin motif. Serious DNA damage was induced with the upregulation of γ-H2AX and P53, and the mitochondria-mediated apoptotic pathway Bcl-2/Bax/caspase3 was initiated. Inflammation was alleviated by inhibiting COX-2 and MMP9 and decreasing inflammatory cytokines TNF-α and IL-6. Subsequently, the EMT was reversed by inhibiting the Wnt/ß-catenin pathway. Furthermore, the antitumor immunity was provoked by blocking the immune checkpoint PD-L1 and increasing CD3+ and CD8+ T lymphocytes in tumors.


Assuntos
Antineoplásicos , Carbazóis , Transição Epitelial-Mesenquimal , Inflamação , Transferrina , Animais , Feminino , Humanos , Masculino , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Carbazóis/farmacologia , Carbazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Nanopartículas Metálicas/química , Camundongos Endogâmicos BALB C , Nanopartículas/química , Metástase Neoplásica , Platina/química , Platina/farmacologia , Transferrina/química , Transferrina/metabolismo , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia
8.
PLoS One ; 19(9): e0310997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39316585

RESUMO

The increasing prevalence of multi-drug resistance in pathogenic bacteria has rendered antibiotics ineffective, necessitating the exploration of alternative antibacterial approaches. Consequently, research efforts have shifted towards developing new antibiotics and improving the efficacy of existing ones. In the present study, novel core shell graphene oxide@platinum nanoparticles (GRO@Pt-NPs) and their unchanging form have been synthesized using the two-step pulsed laser ablation in liquid (PLAL) technique. The first step involved using the graphene target to create graphene nanoparticles (GRO-NPs), followed by the ablation of GRO-NPs inside platinum nanoparticles (Pt-NPs). To characterize the nanoparticles, various methods were employed, including UV-VIS, transmission electron microscopy (TEM), energy dispersive X-ray (EDX), mapping tests, and X-ray diffraction (XRD). The anti-bacterial and anti-biofilm properties of the nanoparticles were investigated. TEM data confirm the creation of GRO@Pt-NPs. The average particle size was 11 nm for GRO-NPs, 14 nm for Pt-NPs, and 26 nm for GRO@Pt-NPs. The results demonstrate that the created GRO@Pt-NPs have strong antibacterial properties. This pattern is mostly produced through the accumulation of GRO@Pt-NPs on the bacterial surface of Klebsiella pneumoniae (K. pneumoniae) and Enterococcus faecium (E. faecium). The inhibition zones against K. pneumoniae and E. faecium when GRO-NPs were used alone were found to be 11.80 mm and 11.50 mm, respectively. For Pt-NPs, the inhibition zones of E. faecium and K. pneumoniae were 20.50 mm and 16.50 mm, respectively. The utilization of GRO@Pt-NPs resulted in a significant increase in these values, with inhibitory rates of 25.50 mm for E. faecium and 20.45 mm for K. pneumoniae. The antibacterial results were more potent in the core-shell structure than the GRO-NPs alone or Pt-NPs alone. The current work uses, for the first time, a fast and effective technique to synthesize the GRO@Pt-NPs by PLAL method, and the preparation has high clinical potential for prospective use as an antibacterial agent.


Assuntos
Antibacterianos , Biofilmes , Grafite , Nanopartículas Metálicas , Platina , Grafite/química , Biofilmes/efeitos dos fármacos , Platina/química , Platina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/efeitos dos fármacos , Tamanho da Partícula
9.
ACS Sens ; 9(9): 4956-4962, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39283684

RESUMO

Natural products play a significant role in new drug discovery and anticancer therapy, making the evaluation of their anticancer efficiency crucial for clinical application. However, delivering natural products to single cells and in situ monitoring of induced signaling molecule fluctuation to evaluate anticancer efficiency remain significant challenges. Hence, we proposed a universal and straightforward strategy to construct a bifunctional nanoelectrode that integrates drug loading and monitoring of signal molecule fluctuations at the single-cell level. Platinum (Pt) nanoparticles/reduced graphene oxide (rGO) composites were first electrochemically deposited on the carbon fiber nanoelectrode (CFNE@Pt/rGO) to serve as electrocatalytic materials for the monitoring of natural-product-induced reactive oxygen species (ROS) generation. The GO/natural product complex, formed by π-π stacking and hydrophobic interactions, was further electrochemically reduced on the surface of CFNE@Pt/rGO to enable the CFNE drug-loading function. Using this bifunctional functional nanoelectrode, a series of natural products (such as capsaicin, curcumin, and chrysin) were delivered into single cancer cells, and their anticancer efficiency was evaluated by measuring ROS generation. The results showed that intracellular ROS production induced by chrysin was 1.5-fold greater than that of curcumin and 2.1-fold greater than that of capsaicin. This work proposes an effective tool to evaluate the anticancer efficiency of various natural products. Additionally, this nanotool can be expanded to monitor the fluctuation of other biomolecules (such as RNS, GSH, NADH, etc.) by replacing Pt nanoparticles with other electrocatalytic materials, which is significant for comprehensively exploring the anticancer efficiency of new drugs and for the clinical treatment of various diseases.


Assuntos
Antineoplásicos , Produtos Biológicos , Grafite , Platina , Espécies Reativas de Oxigênio , Humanos , Grafite/química , Espécies Reativas de Oxigênio/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Platina/química , Platina/farmacologia , Eletrodos , Análise de Célula Única/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química
10.
Int J Nanomedicine ; 19: 9727-9739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315364

RESUMO

Introduction: Photodynamic therapy (PDT) has attracted increasing attention in the clinical treatment of epidermal and luminal tumors. However, the PDT efficacy in practice is severely impeded by tumor hypoxia and the adverse factors associated with hydrophobic photosensitizers (PSs), including low delivery capacity, poor photoactivity and limited ROS diffusion. In this study, Pt nanozymes decorated two-dimensional (2D) porphyrin metal-organic framework (MOF) nanosheets (PMOF@HA) were fabricated and investigated to conquer the obstacles of PDT against hypoxic tumors. Materials and Methods: PMOF@HA was synthesized by the coordination of transition metal iron (Zr4+) and PS (TCPP), in situ generation of Pt nanozyme and surface modification with hyaluronic acid (HA). The abilities of hypoxic relief and ROS generation were evaluated by detecting the changes of O2 and 1O2 concentration. The cellular uptake was investigated using flow cytometry and confocal laser scanning microscopy. The SMMC-7721 cells and the subcutaneous tumor-bearing mice were used to demonstrate the PDT efficacy of PMOF@HA in vitro and in vivo, respectively. Results: Benefiting from the 2D structure and inherent properties of MOF materials, the prepared PMOF@HA could not only serve as nano-PS with high PS loading but also ensure the rational distance between PS molecules to avoid aggregation-induced quenching, enhance the photosensitive activity and promote the rapid diffusion of generated radical oxide species (ROS). Meanwhile, Pt nanozymes with catalase-like activity effectively catalyzed intratumoral overproduced H2O2 into O2 to alleviate tumor hypoxia. Additionally, PMOF@HA, with the help of externally coated HA, significantly improved the stability and increased the cell uptake by CD44 overexpressed tumor cells to strengthen O2 self-supply and PDT efficacy. Conclusion: This study provided a new strategy of integrating 2D porphyrin MOF nanosheets with nanozymes to conquer the obstacles of PDT against hypoxic tumors.


Assuntos
Ácido Hialurônico , Estruturas Metalorgânicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Hipóxia Tumoral , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/administração & dosagem , Linhagem Celular Tumoral , Humanos , Hipóxia Tumoral/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/farmacocinética , Porfirinas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Platina/química , Platina/farmacologia , Nanoestruturas/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos
11.
ACS Appl Mater Interfaces ; 16(37): 48937-48954, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39241197

RESUMO

Two phthalocyanine derivatives tetra-peripherally substituted with tert-butylsulfonyl groups and coordinating either zinc(II) or platinum(II) ions have been synthesized and subsequently investigated in terms of their optical and photochemical properties, as well as biological activity in cellular, tissue-engineered, and animal models. Our research has revealed that both synthesized phthalocyanines are effective generators of reactive oxygen species (ROS). PtSO2tBu demonstrated an outstanding ability to generate singlet oxygen (ΦΔ = 0.87-0.99), while ZnSO2tBu in addition to 1O2 (ΦΔ = 0.45-0.48) generated efficiently other ROS, in particular ·OH. Considering future biomedical applications, the affinity of the tested phthalocyanines for biological membranes (partition coefficient; log Pow) and their primary interaction with serum albumin were also determined. To facilitate their biological administration, a water-dispersible formulation of these phthalocyanines was developed using Pluronic triblock copolymers to prevent self-aggregation and improve their delivery to cancer cells and tissues. The results showed a significant increase in cellular uptake and phototoxicity when phthalocyanines were incorporated into the customizable polymeric micelles. Moreover, the improved distribution in the body and photodynamic efficacy of the encapsulated phthalocyanines were investigated in hiPSC-delivered organoids and BALB/c mice bearing CT26 tumors. Both photosensitizers exhibit strong antitumor activity. Notably, vascular-targeted photodynamic therapy (V-PDT) led to complete tumor eradication in 84% of ZnSO2tBu and 100% of PtSO2tBu-treated mice, and no recurrence has so far been observed for up to five months after treatment. In the case of PtSO2tBu, the effect was significantly stronger, offering a wider range of light doses suitable for achieving effective PDT.


Assuntos
Indóis , Isoindóis , Fotoquimioterapia , Fármacos Fotossensibilizantes , Zinco , Animais , Indóis/química , Indóis/farmacologia , Humanos , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Zinco/química , Zinco/farmacologia , Platina/química , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química
12.
Medicine (Baltimore) ; 103(39): e39845, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331917

RESUMO

The combination of chemotherapy and photodynamic therapy (PDT), enabled by core-shell nano-platforms, is a promising method to improve cancer therapy by overcoming hypoxia and boosting drug penetration in breast tumor. Core-shell magnetic (iron oxide: Fe3O4)@platinum-metal organic framework/epirubicin (abbreviated as M@Pt-MOF/EPI) nano-platform is considered an effective cancer therapeutic agent. Relatively small particle size, round shape, and specific response to pH, are the key features of these nanomaterials to be used as promising therapeutic agents. Chemotherapy and photodynamic therapy, when applied in addition to the anticancer effects of nanomaterials, further enhance the therapeutic efficacy. The extensive use, utilization, and efficacy of Core-Shell Magnetic@Platinium-Metal Organic Framework/epirubicin Nano-Platforms for chemo-photodynamic combination therapy in the treatment of several cancers, including triple-negative breast cancer, are examined in this in-depth investigation.


Assuntos
Epirubicina , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Fotoquimioterapia/métodos , Epirubicina/uso terapêutico , Epirubicina/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Feminino , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Terapia Combinada , Platina/uso terapêutico , Platina/farmacologia
13.
J Inorg Biochem ; 260: 112696, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39142055

RESUMO

Mitophagy is an important target for antitumor drugs development. A series of ciclopirox (CPX) platinum(IV) hybrids targeting PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitophagy were designed and prepared as antitumor agents. The dual CPX platinum(IV) complex with cisplatin core was screened out as a candidate, which displayed promising antitumor activities both in vitro and in vivo. Mechanistically, it caused serious DNA damage in tumor cells. Then, remarkable mitochondrial damage was induced accompanied by the mitochondrial membrane depolarization and reactive oxygen species generation, which further promoted apoptosis through the Bcl-2/Bax/Caspase3 pathway. Furthermore, mitophagy was ignited via the PINK1/Parkin/P62/LC3 axis, and exhibited positive influence on promoting the apoptosis of tumor cells. The antitumor immunity was boosted by the block of immune check point programmed cell death ligand-1 (PD-L1), which further increased the density of T cells in tumors. Subsequently, the metastasis of tumor cells was inhibited by inhibiting angiogenesis in tumors.


Assuntos
Antineoplásicos , Ciclopirox , Mitofagia , Ciclopirox/farmacologia , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Mitofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Platina/química , Platina/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
14.
ACS Nano ; 18(34): 23672-23683, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39137964

RESUMO

Engineering Z-scheme heterojunctions represents a promising strategy for optimizing the separation and migration of charge carriers in semiconductor sonosensitizers for enhanced reactive oxygen species (ROS) generation. Nevertheless, establishing a continuous and directional pathway for ultrasonic-induced charge flow in Z-scheme heterojunctions remains a significant challenge. In this study, we present a ternary Bi2WO6/TiO2-Pt heterojunction sonosensitizer achieved through the precise growth of Pt nanocrystals on a directionally assembled Bi2WO6/TiO2 Z-scheme structure. The construction of the Bi2WO6/TiO2-Pt heterojunction involves directional growth of Bi2WO6 in situ on the highly exposed (001) crystal facet of TiO2 nanosheets, followed by the precise deposition of nano Pt on the edge (101) crystal facet. The Z-scheme Bi2WO6/TiO2 in the ternary heterojunction ensures effective electron separation, while the Schottky TiO2-Pt interface establishes a well-defined charge flow path and robust redox capabilities. Moreover, nano Pt confers the Bi2WO6/TiO2-Pt heterojunction with excellent peroxidase-mimic and catalase-mimic activities, facilitating interactions with endogenous H2O2 to produce the hydroxyl radicals and O2. It effectively alleviates tumor hypoxia and enhances ROS production. This results in significantly higher efficiency in sonodynamically induced ROS generation compared to pure TiO2 or binary Bi2WO6/TiO2 heterojunctions, as confirmed by DFT theoretical calculation and experiments with both in vitro and in vivo anticancer performance. This study offers valuable insights for designing high-performance Z-scheme sonosensitizer systems.


Assuntos
Platina , Titânio , Titânio/química , Titânio/farmacologia , Animais , Platina/química , Platina/farmacologia , Humanos , Camundongos , Bismuto/química , Bismuto/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
15.
ACS Nano ; 18(34): 23579-23598, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39150904

RESUMO

Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The in situ-grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy. In addition, endogenous catalytic reactions based on peroxidase (POD)- and catalase (CAT)-mimicking activities can also be amplified, triggering intense oxidative stress, in which CAT-like activity decomposes endogenous H2O2 into O2 alleviating hypoxia and provides reactants for sonodynamic therapy. Moreover, PHTS NPs can elicit mild photothermal therapy with boosted photothermal properties as well as ferroptosis with loaded ferroptosis inducer sorafenib for effective tumor ablation and apoptosis-ferroptosis synergistic tumor inhibitory effect. In summary, this paper proposes an attractive design for antitumor strategies and highlights findings for heterojunction catalytic therapy with potential in tumor theranostics.


Assuntos
Antineoplásicos , Titânio , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Titânio/química , Titânio/farmacologia , Ferroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Platina/química , Platina/farmacologia , Sorafenibe/farmacologia , Sorafenibe/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Terapia Fototérmica , Nanopartículas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C
16.
Dalton Trans ; 53(35): 14811-14816, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39169877

RESUMO

Hypoxia (low-oxygen) is one of the most common characteristics of solid tumours. Exploiting tumour hypoxia to reductively activate Pt(IV) prodrugs has the potential to deliver toxic Pt(II) selectively and thus overcome the systemic toxicity issues of traditional Pt(II) therapies. However, our current understanding of the behaviour of Pt(IV) prodrugs in hypoxia is limited. Here, we evaluated and compared the aryl carbamate fluorogenic Pt(IV) complexes, CisNap and CarboNap, as well as the previously reported OxaliNap, as potential hypoxia-activated Pt(IV) (HAPt) prodrugs. Low intracellular oxygen concentrations (<0.1%) induced the greatest changes in the respective fluorescence emission channels. However, no correlation between reduction under hypoxic conditions and toxicity was observed, except in the case for CarboNap, which displayed significant hypoxia-dependent toxicity. Other aryl carbamate Pt(IV) derivatives (including non-fluorescent analogues) mirrored these observations, where carboplatin(IV) derivative CarboPhen displayed a hypoxia-selective cytotoxicity similar to that of CarboNap. These findings underscore the need to perform extensive structure activity relationship studies on the cytotoxicity of Pt(IV) complexes under normoxic and hypoxic conditions.


Assuntos
Antineoplásicos , Corantes Fluorescentes , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/síntese química , Desenho de Fármacos , Linhagem Celular Tumoral , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Platina/química , Platina/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química
17.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125821

RESUMO

Chlorambucil-platinum(IV) prodrugs exhibit multi-mechanistic chemotherapeutic activity with promising anticancer potential. The platinum(II) precursors of the prodrugs have been previously found to induce changes in the microtubule cytoskeleton, specifically actin and tubulin of HT29 colon cells, while chlorambucil alkylates the DNA. These prodrugs demonstrate significant anticancer activity in 2D cell and 3D spheroid viability assays. A notable production of reactive oxygen species has been observed in HT29 cells 72 h post treatment with prodrugs of this type, while the mitochondrial membrane potential was substantially reduced. The cellular uptake of the chlorambucil-platinum(IV) prodrugs, assessed by ICP-MS, confirmed that active transport was the primary uptake mechanism, with platinum localisation identified primarily in the cytoskeletal fraction. Apoptosis and necrosis were observed at 72 h of treatment as demonstrated by Annexin V-FITC/PI assay using flow cytometry. Immunofluorescence measured via confocal microscopy showed significant changes in actin and tubulin intensity and in architecture. Western blot analysis of intrinsic and extrinsic pathway apoptotic markers, microtubule cytoskeleton markers, cell proliferation markers, as well as autophagy markers were studied post 72 h of treatment. The proteomic profile was also studied with a total of 1859 HT29 proteins quantified by mass spectroscopy, with several dysregulated proteins. Network analysis revealed dysregulation in transcription, MAPK markers, microtubule-associated proteins and mitochondrial transport dysfunction. This study confirms that chlorambucil-platinum(IV) prodrugs are candidates with promising anticancer potential that act as multi-mechanistic chemotherapeutics.


Assuntos
Antineoplásicos , Apoptose , Clorambucila , Cisplatino , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Pró-Fármacos , Humanos , Clorambucila/farmacologia , Clorambucila/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Platina/química , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
18.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126093

RESUMO

The history of effective anti-cancer medications begins with the discovery of cisplatin's anti-cancer properties. Second-generation analogue, carboplatin, with a similar range of effectiveness, made progress in improving these drugs with fewer side effects and better solubility. Renewed interest in platinum-based drugs has been increasing in the past several years. These developments highlight a revitalized enthusiasm and ongoing exploration in platinum chemotherapy based on the series of dinuclear platinum(II) complexes, [{Pt(L)Cl}2(µ-bridging ligand)]2+, which have been synthesized and evaluated for their biological activities. These complexes are designed to target various cancerous conditions, exhibiting promising antitumor, antiproliferative, and apoptosis-inducing activities. The current work aims to shed light on the potential of these complexes as next-generation platinum-based therapies, highlighting their enhanced efficacy and reduced side effects, which could revolutionize the approach to chemotherapy.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Ligantes , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química , Apoptose/efeitos dos fármacos , Platina/química , Platina/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
19.
J Extracell Vesicles ; 13(8): e12486, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104279

RESUMO

Epithelial ovarian cancer (EOC) is an often-fatal malignancy marked by the development of resistance to platinum-based chemotherapy. Thus, accurate prediction of platinum drug efficacy is crucial for strategically selecting postoperative interventions to mitigate the risks associated with suboptimal therapeutic outcomes and adverse effects. Tissue-derived extracellular vesicles (tsEVs), in contrast to their plasma counterparts, have emerged as a powerful tool for examining distinctive attributes of EOC tissues. In this study, 4D data-independent acquisition (DIA) proteomic sequencing was performed on tsEVs obtained from 58 platinum-sensitive and 30 platinum-resistant patients with EOC. The analysis revealed a notable enrichment of differentially expressed proteins that were predominantly associated with immune-related pathways. Moreover, pivotal immune-related proteins (IRPs) were identified by LASSO regression. These factors, combined with clinical parameters selected through univariate logistic regression, were used for the construction of a model employing multivariate logistic regression. This model integrated three tsEV IRPs, CCR1, IGHV_35 and CD72, with one clinical parameter, the presence of postoperative residual lesions. Thus, this model could predict the efficacy of initial platinum-based chemotherapy in patients with EOC post-surgery, providing prognostic insights even before the initiation of chemotherapy.


Assuntos
Carcinoma Epitelial do Ovário , Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Vesículas Extracelulares/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Idoso , Resistencia a Medicamentos Antineoplásicos , Platina/uso terapêutico , Platina/farmacologia , Adulto , Proteômica/métodos , Prognóstico , Biomarcadores Tumorais/metabolismo
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 826-837, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39170005

RESUMO

Objective: To formulate a ZIF-8 nano mimetic enzyme conjugated with platinum metal (ZIF-8@Pt) that can scavenge reactive oxygen species (ROS) and to explore its potential applications in the treatment of rheumatoid arthritis (RA). Methods: The ZIF-8@Pt nanozyme was created by in situ reduction. Characterization of the nanozyme was then performed and its ability to mimic enzymes was investigated. Cell experiments were conducted using RAW264.7 cells, which were divided into three groups, including the untreated group (UT), the positive control group receiving lipopolysaccharide (LPS), which was designated as the LPS group, and the ZIF-8@Pt group receiving ZIF-8@Pt and LPS treatment. The cell experiments were conducted to evaluate the anti-inflammatory properties of ZIF-8@Pt through scavenging intracellular ROS. On the other hand, a collagen-induced arthritis (CIA) model was induced in rats. Similar to the group designations in the cell experiments, the rats were assigned to three groups, including a healthy control group (the UT group), a positive control group receiving a local injection of PBS solution in the knee joint, which was referred to as the control group, and a treatment group receiving a local injection of ZIF-8@Pt solution in the knee joint, which was referred to as the ZIF-8@Pt group. General evaluation, imaging observation, assessment of inflammatory factors, and pathological evaluation were performed to assess the therapeutic efficacy of ZIF-8@Pt against RA. Results: The in vitro experiment revealed significant difference in the levels of intracellular ROS and LPS-induced M1-type macrophage polarization between the LPS group and the ZIF-8@Pt group (P<0.05). The in vivo experiment showed that significant difference in the levels of inflammatory factors, including interleukin-1ß (IL-1ß), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and arginase-1 (Arg-1) in the knee joints of the CIA rats between the LPS group and the ZIF-8@Pt group (P<0.05). Comparing the findings for the ZIF-8@Pt group and the control group, pathology assessment revealed that ZIF-8@Pt reduced local hypoxia and suppressed osteoclastic activity, neovascularization, and M1-type macrophage polarization (P<0.05). Conclusion: The ZIF-8@Pt enzyme mimetic inhibits macrophage inflammatory polarization by ROS scavenging, thereby improving inflammation in RA. Furthermore, the ZIF-8@Pt nanozyme improves the hypoxic environment and inhibits angiogenesis and bone destruction, demonstrating promising therapeutic efficacy for RA.


Assuntos
Artrite Reumatoide , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Ratos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Camundongos , Células RAW 264.7 , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Platina/química , Platina/farmacologia , Platina/uso terapêutico , Lipopolissacarídeos , Fator de Necrose Tumoral alfa/metabolismo , Sequestradores de Radicais Livres/uso terapêutico , Interleucina-1beta/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...