RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Chaihu Guizhi Decoction (CGD) has a long history of use in China for the treatment of influenza, which involves the use of a variety of aromatic herbs. Our previous studies have found that the contents of aromatic constituents in CGD affected the efficacy of treatment of influenza-infected mice, suggesting a clue that essential oil from CGD may play a relatively important role in ameliorating influenza induced pneumonia. AIM OF THE STUDY: To evaluate the anti-influenza potential of essential oil derived from Chaihu Guizhi Decoction (CGD-EO), to characterize and predict the key active components in CGD-EO, and to explore the mechanism of action of CGD-EO. MATERIALS AND METHODS: CGD-EO was obtained by steam distillation, and the components of the essential oil were characterized by gas chromatography-mass spectrometry (GC-MS) in conjunction with the retention index. The constituents absorbed into the blood of mice treated with CGD-EO were analyzed by headspace solid phase microextraction gas chromatography/mass spectrometry (HS-SPME-GC/MS). The potential anti-influenza active constituents and their possible action pathway were predicted by simulation using a network pharmacology approach. The protective effect of CGD-EO and its major components on H1N1/PR8-infected cells was determined using the CCK8 assay kit. Mice infected with influenza A virus H1N1/PR8 were administered different doses of CGD-EO orally and the body weights and lung weights were recorded. Mice with varying degrees of H1N1/PR8 infection were administered CGD-EO orally, and their daily weight, water consumption, and clinical indicators were recorded. Necropsies were conducted on days 3 and 5, during which lung weights were measured and lung tissues were preserved. Furthermore, the mRNA expression of the H1N1/PR8 virus and inflammatory factors in lung tissue was analyzed using RT-qPCR. RESULTS: (E)-cinnamaldehyde was the most abundant compound in the CGD-EO. The results of serum medicinal chemistry combined with network pharmacological analysis indicated that (E)-cinnamaldehyde and 3-phenyl-2-propenal may be potential active components of the CGD-EO anti-influenza, and may be involved in the NF-κB signalling pathway. In vitro studies have demonstrated that both CGD-EO and cinnamaldehyde exert a protective effect on MDCK cells infected with H1N1/PR8. In a 0.5 TCID50 H1N1/PR8-induced influenza model, mice treated with CGD-EO at a dose of 63.50 µg/kg exhibited a reduction in lung index, pathological lung lesions, and H1N1/PR8 viral gene levels. In addition, CGD-EO treatment was found to regulate the levels of inflammatory cytokines, including IL-6, TNF-α, and IFN-γ. Moreover, following three days of administration, an upregulation of NF-κB mRNA levels in mouse lung tissue was observed in response to CGD-EO treatment. CONCLUSIONS: The findings of our study indicate CGD-EO exerts a protective effect against H1N1-induced cytopathic lesions in vitro and is capable of alleviating H1N1-induced pneumonitis in mice. Moreover, it appears to be more efficacious in the treatment of mild symptoms of H1N1 infection. Studies have demonstrated that CGD-EO has antiviral potential to attenuate influenza-induced lung injury by modulating inflammatory cytokines and NF-κB signalling pathways during the early stages of influenza infection. It is possible that (E)-cinnamaldehyde is a potential active ingredient in the anti-influenza efficacy of CGD-EO.
Assuntos
Antivirais , Medicamentos de Ervas Chinesas , Óleos Voláteis , Infecções por Orthomyxoviridae , Animais , Óleos Voláteis/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Antivirais/farmacologia , Camundongos Endogâmicos BALB C , Pneumonia Viral/tratamento farmacológico , Masculino , Células Madin Darby de Rim Canino , Cães , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Humanos , Feminino , Pneumonia/tratamento farmacológico , Pneumonia/virologia , Pneumonia/metabolismoRESUMO
Introduction: Neutrophils play a dichotomous role in community-acquired pneumonia (CAP), providing protection and potentially causing damage. Existing research on neutrophil function in CAP relies on animal studies, leaving a gap in patient-centered investigations. Methods: We used mass spectrometry to characterize the neutrophil proteome of moderately ill CAP patients at general ward admission and related the proteome to controls and clinical outcomes. Results: We prospectively included 57 CAP patients and 26 controls and quantified 3482 proteins in neutrophil lysates and 386 proteins in concurrently collected plasma. The extensively studied granule-related proteins in animal models did not drive the neutrophil proteome changes associated with human CAP. Proteome alterations were primarily characterized by an increased abundance of proteins related to (aerobic) metabolic activity and (m)RNA translation/processing, concurrent with a diminished presence of cytoskeletal organization-related proteins (all pathways p<0.001). Higher and lower abundances of specific proteins, primarily constituents of these pathways, were associated with prolonged time to clinical stability in CAP. Moreover, we identified a pronounced presence of platelet-related proteins in neutrophil lysates of particularly viral CAP patients, suggesting the existence of neutrophil-platelet complexes in non-critically ill CAP patients. Of the proteins measured in neutrophils, 4.3% were detected in plasma. Discussion: Our study presents new perspectives on the neutrophil proteome associated with CAP, laying the groundwork for forthcoming patient-centred investigations. Our results could pave the way for targeted strategies to fine-tune neutrophil responses, potentially improving CAP outcomes.
Assuntos
Infecções Comunitárias Adquiridas , Neutrófilos , Pneumonia , Proteoma , Proteômica , Humanos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Infecções Comunitárias Adquiridas/sangue , Infecções Comunitárias Adquiridas/imunologia , Masculino , Feminino , Proteômica/métodos , Pessoa de Meia-Idade , Idoso , Pneumonia/sangue , Pneumonia/metabolismo , Pneumonia/imunologia , Estudos ProspectivosRESUMO
Sepsis remains an important healthcare challenge. The lungs are often affected in sepsis, resulting in acute lung injury characterized by inflammation. Mechanisms involving lipopolysaccharide (LPS) stimulation of toll-like receptor (TLR) signaling with induction of proinflammatory pathways have been implicated in this process. To date, however, studies targeting these pathways have failed to improve outcomes. We have found that LPS may also promote lung injury through the activation of α4 nicotinic acetylcholine receptors (α4 nAChRs) in immune cells. We observed increased expression of α4 nAChRs in human THP-1 monocytic cells exposed to LPS (100 ng/mL, 24 h). We also observed that LPS stimulated the expression of other relevant genes, including tumor necrosis factor-α, interleukin-1ß, plasminogen activator inhibitor-1, the solute carrier family 7 member 11, extracellular superoxide dismutase, and transforming growth factor-ß1. Of interest, dihydro-ß-erythroidine hydrobromide (DHßE), a specific chemical inhibitor of α4 nAChRs, inhibited the LPS-induced expression of these genes. We generated mice with a global knockout mutation of the α4 nAChR subunit in the C57BL/6 background using CRISPR/Cas9 technology. The lungs of these LPS-treated animals demonstrated a reduction in the expression of the above-mentioned genes when compared with the lungs of wild-type animals. In support of the role of oxidative stress, we observed that LPS induced expression of the cystine transporter Slc7a11 in both THP-1 cells and in wild-type mouse lungs. The effects of LPS on THP-1 cells were blocked by the thiol antioxidant N-acetylcysteine and mimicked by redox stress. Importantly, the induction of IL-1ß by redox stress was inhibited by the α4 nAChR inhibitor DHßE. Finally, we showed that LPS stimulated calcium influx in THP-1 cells, which was blocked by the α4 nAChR inhibitor. Our observations suggest that LPS promotes lung injury by stimulating redox stress, which activates α4 nAChR signaling and drives proinflammatory cytokine expression.
Assuntos
Lipopolissacarídeos , Receptores Nicotínicos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Camundongos , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/patologia , Camundongos Endogâmicos C57BL , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Camundongos Knockout , Células THP-1 , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genéticaRESUMO
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1ß, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Assuntos
Quitosana , Cordyceps , Nanopartículas , Material Particulado , Pneumonia , Animais , Cordyceps/química , Quitosana/química , Quitosana/farmacologia , Camundongos , Nanopartículas/química , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células RAW 264.7 , Masculino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Citocinas/metabolismoRESUMO
Background: Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 (Acod1) was one of the most upregulated genes following LPS (vs. saline) exposure of murine whole lungs with transcriptomic profiling of sorted lung monocyte/macrophage subpopulations also highlighting its significance. Given monocyte/macrophage activation can be tightly linked to metabolism, the objective of these studies was to determine the role of the immunometabolic regulator ACOD1 in environmental exposure-induced lung inflammation. Methods: Wild-type (WT) mice were intratracheally (i.t.) instilled with 10 µg of LPS or saline. Whole lungs were profiled using bulk RNA sequencing or sorted to isolate monocyte/macrophage subpopulations. Sorted subpopulations were then characterized transcriptomically using a NanoString innate immunity multiplex array 48 h post-exposure. Next, WT and Acod1-/- mice were instilled with LPS, 25% organic dust extract (ODE), or saline, whereupon serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. BALF metabolites of the tricarboxylic acid (TCA) cycle were quantified by mass spectrometry. Cytokines/chemokines and tissue remodeling mediators were quantitated by ELISA. Lung immune cells were characterized by flow cytometry. Invasive lung function testing was performed 3 h post-LPS with WT and Acod1-/- mice. Results: Acod1-/- mice treated with LPS demonstrated decreased BALF levels of itaconate, TCA cycle reprogramming, decreased BALF neutrophils, increased lung CD4+ T cells, decreased BALF and lung levels of TNF-α, and decreased BALF CXCL1 compared to WT animals. In comparison, Acod1-/- mice treated with ODE demonstrated decreased serum pentraxin-2, BALF levels of itaconate, lung total cell, neutrophil, monocyte, and B-cell infiltrates with decreased BALF levels of TNF-α and IL-6 and decreased lung CXCL1 vs. WT animals. Mediators of tissue remodeling (TIMP1, MMP-8, MMP-9) were also decreased in the LPS-exposed Acod1-/- mice, with MMP-9 also reduced in ODE-exposed Acod1-/- mice. Lung function assessments demonstrated a blunted response to LPS-induced airway hyperresponsiveness in Acod1-/- animals. Conclusion: Acod1 is robustly upregulated in the lungs following LPS exposure and encodes a key immunometabolic regulator. ACOD1 mediates the proinflammatory response to acute inhaled environmental LPS and organic dust exposure-induced lung inflammation.
Assuntos
Carboxiliases , Lipopolissacarídeos , Camundongos Knockout , Animais , Camundongos , Carboxiliases/metabolismo , Carboxiliases/genética , Lipopolissacarídeos/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Exposição Ambiental/efeitos adversos , Pneumonia/imunologia , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Citocinas/metabolismo , Masculino , HidroliasesRESUMO
MicroRNAs have been shown to play a critical role in lung inflammatory diseases. Here, we report that knocking out miR-144/451 in mice exacerbates lipopolysaccharide (LPS)-induced lung inflammation. The lung inflammation in mice was induced by intratracheal instillation of LPS. Loss-of-function experiments demonstrated that miR-144/451 gene knockout (KO) increased LPS-induced lung inflammation and oxidant stress compared with wild-type (WT) mice, as manifested by increased total bronchoalveolar lavage fluid cells and neutrophil counts, elevated TNF-α and IL-6 levels in bronchoalveolar lavage fluid, enhanced myeloperoxidase activity, and reduced catalase and glutathione peroxidase activity in lung tissues. We also found that LPS significantly decreased miR-451 expression in lung tissues and macrophages; while miR-451 overexpression in LPS-induced RAW264.7 cells remarkably reduced TNF-α and IL-6 levels as well as reactive oxygen species (ROS) production, suggesting a feedback loop might exist in inflammatory cells. Rac1 mRNA and protein levels were downregulated in miR-451-overexpressed RAW264.7 cells. Ex vivo stimulation experiments, performed using alveolar macrophages isolated from miR-144/451 KO mice, confirmed that Rac1 inhibitor alleviated levels of TNF-α and ROS in response to LPS stimulation compared with WT controls. Luciferase reporter assay demonstrated that STAT-3 is a direct target of miR-451. STAT-3 protein levels were elevated in miR-144/451 KO macrophages. LPS treatment also resulted in higher phosphorylation levels of STAT-3 in macrophages from KO mice than in WT cells. Our study identified miR-144/451 as an anti-inflammatory factor in LPS-induced lung inflammation that acts by downregulating Rac1 and STAT-3.
Assuntos
Regulação para Baixo , Lipopolissacarídeos , Camundongos Knockout , MicroRNAs , Pneumonia , Fator de Transcrição STAT3 , Proteínas rac1 de Ligação ao GTP , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Lipopolissacarídeos/toxicidade , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Células RAW 264.7 , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/genética , Pneumonia/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , MasculinoRESUMO
Acute lung injury (ALI) is a serious acute respiratory disease that can cause alveolar-capillary barrier disruption and pulmonary edema, respiratory failure and multiple organ dysfunction syndrome. However, there is no effective drugs in clinic until now. GSK3179106 has been reported can alleviate intestinal stress syndrome, but the protective effect of GSK3179106 on ALI has not been elucidated. The present study will evaluate the pharmacological activity of GSK3179106 on lipopolysaccharide (LPS)-induced inflammation and lung injury and clarify its underlying mechanism. We found that GSK3179106 significantly attenuated LPS-induced lung injury in vivo, accompanied by inhibited infiltration of inflammatory cells and reduced expression of inflammatory cytokines. Meanwhile, GSK3179106 dose-dependently reduced the LPS-induced IL-6 expression both in protein and gene levels in macrophages. Mechanistically, GSK3179106 could inhibited the phosphorylation of P38 MAPK induced by LPS. Importantly, results showed that there is a direct combination between GSK3179106 and P38 MAPK. Together, our findings not only clarified the anti-inflammatory activity of GSK3179106 but also discovered its new clinical indications. Therefore, compound GSK3179106 may be a potential candidate for the treatment of acute inflammatory diseases.
Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Células RAW 264.7RESUMO
We assessed the anti-inflammatory activity of the TSPO ligand 2-Cl-MGV-1. Lipopolysaccharide (LPS) was used to induce inflammatory response in a murine RAW264.7 macrophage model (LPS: 100 ng/mL) and a mouse model (C57BL/6) of lung inflammation (LPS: 5 mg/kg). In the macrophage model, the presence of 2-Cl-MGV-1 (25 µM) caused the LPS-induced elevation in nitrite levels to decrease by 70% (p < 0.0001) and interleukin (IL)-6 by 50% (p < 0.05). In the mouse model, 2-Cl-MGV-1, administered 30 min before, or co-administered with, an LPS injection, significantly inhibited the elevation in serum IL-5 levels (both by 65%; p < 0.001 and p < 0.01, respectively). 2-Cl-MGV-1 administration to mice 30 min before LPS injection and 1 h thereafter significantly inhibited the elevation in IL-1ß serum levels (both by 63%, p < 0.005). IL-6 elevation was inhibited by 73% (p < 0.005) when 2-Cl-MGV-1 was administered 30 min before LPS, by 60% (p < 0.05) when co-administered with LPS, and by 64% (p < 0.05) when administered 1 h after LPS. All cytokine assessments were conducted 6 h post LPS injection. Histological analyses showed decreased leukocyte adherence in the lung tissue of the ligand-treated mice. 2-Cl-MGV-1 administration 30 min prior to exposure to LPS inhibited inflammation-induced open field immobility. The beneficial effect of 2-Cl-MGV-1 suggests its potential as a therapeutic option for inflammatory diseases.
Assuntos
Lipopolissacarídeos , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Modelos Animais de Doenças , Ligantes , Masculino , Inflamação/tratamento farmacológico , Inflamação/patologia , Receptores de GABA/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Pneumonia/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismoRESUMO
BACKGROUND: Despite promise in preclinical models of acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC) have failed to translate to therapeutic benefit in clinical trials. The MSC is a live cell medicine and interacts with the patient's disease state. Here, we explored this interaction, seeking to devise strategies to enhance MSC therapeutic function. METHODS: Human bone-marrow-derived MSCs were exposed to lung homogenate from healthy and E. coli-induced ARDS rat models. Apoptosis and functional assays of the MSCs were performed. RESULTS: The ARDS model showed reduced arterial oxygenation, decreased lung compliance and an inflammatory microenvironment compared to controls. MSCs underwent more apoptosis after stimulation by lung homogenate from controls compared to E. coli, which may explain why MSCs persist longer in ARDS subjects after administration. Changes in expression of cell surface markers and cytokines were associated with lung homogenate from different groups. The anti-microbial effects of MSCs did not change with the stimulation. Moreover, the conditioned media from lung-homogenate-stimulated MSCs inhibited T-cell proliferation. CONCLUSIONS: These findings suggest that the ARDS microenvironment plays an important role in the MSC's therapeutic mechanism of action, and changes can inform strategies to modulate MSC-based cell therapy for ARDS.
Assuntos
Microambiente Celular , Pulmão , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Humanos , Pulmão/patologia , Ratos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/metabolismo , Pneumonia/patologia , Pneumonia/metabolismo , Pneumonia/terapia , Masculino , Apoptose , Proliferação de Células , Ratos Sprague-Dawley , Modelos Animais de Doenças , Escherichia coli , Citocinas/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
BACKGROUND: Post-acute sequalae of COVID-19 defines a wide range of ongoing symptoms and conditions long after SARS-CoV-2 infection including respiratory diseases. The histopathological changes in the lung and underlying mechanism remain elusive. METHODS: We investigated lung histopathological and transcriptional changes in SARS-CoV-2-infected male hamsters at 7, 14, 42, 84 and 120dpi, and compared with A (H1N1)pdm09 infection. FINDINGS: We demonstrated viral residue, inflammatory and fibrotic changes in lung after SARS-CoV-2 but not H1N1 infection. The most prominent histopathological lesion was multifocal alveolar-bronchiolization observed in every SARS-CoV-2 infected hamster (31/31), from 42dpi to 120dpi. Proliferating (Ki67+) CK14+ basal cells accumulated in alveoli adjacent to bronchioles at 7dpi, where they proliferated and differentiated into SCGB1A+ club cell or Tubulin+ ciliated cells forming alveolar-bronchiolization foci. Molecularly, Notch pathway significantly upregulated with intensive Notch3 and Hes1 protein expression in alveolar-bronchiolization foci at 42 and 120dpi, suggesting Notch signaling involving the persistence of alveolar-bronchiolization. This is further demonstrated by spatial transcriptomic analysis. Intriguingly, significant upregulation of some cell-growth promoting pathways and genes such as Tubb4b, Stxbp4, Grb14 and Mlf1 were spatially overlapping with bronchiolization lesion. INTERPRETATION: Incomplete resolution of SARS-CoV-2 infection in lung with viral residue, chronic inflammatory and fibrotic damage and alveolar-bronchiolization impaired respiratory function. Aberrant activation of CK14+ basal cells during tissue regeneration led to persistent alveolar-bronchiolization due to sustained Notch signaling. This study advances our understanding of respiratory PASC, sheds light on disease management and highlights the necessity for monitoring disease progression in people with respiratory PASC. FUNDING: Funding is listed in the Acknowledgements section.
Assuntos
COVID-19 , Proliferação de Células , SARS-CoV-2 , Animais , COVID-19/patologia , COVID-19/virologia , COVID-19/metabolismo , SARS-CoV-2/fisiologia , Masculino , Cricetinae , Modelos Animais de Doenças , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Alvéolos Pulmonares/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Transdução de Sinais , Pneumonia/virologia , Pneumonia/metabolismo , Pneumonia/patologia , Receptores Notch/metabolismo , Receptores Notch/genética , HumanosRESUMO
T cell immunoglobulin and mucin-containing molecule 3 (TIM-3) exhibits unique, cell type- and context-dependent characteristics and functions. Here, we report that TIM-3 on myeloid cells plays essential roles in modulating lung inflammation. We found that myeloid cell-specific TIM-3 knock-in (FSF-TIM3/LysM-Cre+) mice have lower body weight and shorter lifespan than WT mice. Intriguingly, the lungs of FSF-TIM3/LysM-Cre+ mice display excessive inflammation and features of disease-associated pathology. We further revealed that galectin-3 levels are notably elevated in TIM-3-overexpressing lung-derived myeloid cells. Furthermore, both TIM-3 blockade and GB1107, a galectin-3 inhibitor, ameliorated lung inflammation in FSF-TIM3/LysM-Cre+/- mice. Using an LPS-induced lung inflammation model with myeloid cell-specific TIM-3 knock-out mice, we demonstrated the association of TIM-3 with both lung inflammation and galectin-3. Collectively, our findings suggest that myeloid TIM-3 is an important regulator in the lungs and that modulation of TIM-3 and galectin-3 could offer therapeutic benefits for inflammation-associated lung diseases.
Assuntos
Galectina 3 , Receptor Celular 2 do Vírus da Hepatite A , Células Mieloides , Pneumonia , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Galectina 3/metabolismo , Galectina 3/genética , Células Mieloides/metabolismo , Camundongos , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Galectinas/metabolismo , Galectinas/genética , Pulmão/patologia , Pulmão/metabolismoRESUMO
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Assuntos
Pulmão , Ativação de Macrófagos , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Ativação de Macrófagos/genética , Animais , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Inflamação/genética , Inflamação/patologiaRESUMO
Silica-induced pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. In this work, FDA-approved cannabidiol (CBD) was studied for its potential medical use in silicosis. In silicosis female C57BL/6 mice model, oral CBD or pirfenidone (PFD) on day 1 after intratracheal drip silica (150 mg/mL) and continued for 42 days. Lung inflammatory and fibrotic changes were studied using ELISA kits, H&E staining and Masson staining. Osteopontion (OPN) and α-smooth muscle actin (α-SMA) expression in lung tissues was determined using immunohistochemical staining. The results indicated that CBD attenuated silica-induced pulmonary inflammation and fibrosis. Human myeloid leukemia mononuclear cells (THP-1) were treated with silica (200 µg/mL) to induce cell damage, then CBD (10 µM, 20 µM) and PFD (100 µM) were incubated. In vitro experiments showed that CBD can effectively reduce the expression of NLRP3 inflammasome in THP-1 cells and subsequently block silica-stimulated transformation of fibromuscular-myofibroblast transition (FMT) by culturing human embryonic lung fibroblasts (MRC-5) in conditioned medium of THP-1 cells. Therefore, CBD exhibited the potential therapy for silicosis through inhibiting the silica-induced pulmonary inflammation and fibrosis via the NLRP3/TGF-ß1/Smad2/3 signaling pathway.
Assuntos
Canabidiol , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fibrose Pulmonar , Transdução de Sinais , Dióxido de Silício , Silicose , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Dióxido de Silício/toxicidade , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos , Feminino , Camundongos , Silicose/tratamento farmacológico , Silicose/metabolismo , Silicose/patologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Células THP-1 , Modelos Animais de Doenças , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêuticoRESUMO
Alcohol use disorder (AUD) is defined as patterns of alcohol misuse and affects over 30 million people in the US. AUD is a systemic disease with the epidemiology of acute lung injury and excessive alcohol use established in the literature. However, the distinct mechanisms by which alcohol induces the risk of pulmonary inflammation are less clear. A compelling body of evidence shows that cannabinoid receptors (CB1R and CB2R) play a relevant role in AUD. For this study, we investigated the role of CBR signaling in pulmonary immune activation. Using a human macrophage cell line, we evaluated the expression of CBR1 and CBR2 after cells were exposed to EtOH, +/- cannabinoid agonists and antagonists by flow cytometry. We also evaluated the expression of cannabinoid receptors from the lungs of adolescent mice exposed to acute binge EtOH +/- cannabinoid agonists and antagonists at both resting state and after microbial challenge via western blot, rt-PCR, cytokine analysis, and histology. Our results suggest that EtOH exposure modulates the expression of CBR1 and CBR2. Second, EtOH may contribute to the release of DAMPs and other proinflammatory cytokines, Finally, microbial challenge induces pulmonary inflammation in acute binge EtOH-exposed mice, and this observed immune activation may be CBR-dependent. We have shown that adolescent binge drinking primes the lung to subsequent microbial infection in adulthood and this response can be mitigated with cannabinoid antagonists. These novel findings may provide a framework for developing potential novel therapeutics in AUD research.
Assuntos
Etanol , Pulmão , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Animais , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Humanos , Etanol/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Masculino , Camundongos , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças , Agonistas de Receptores de Canabinoides/farmacologia , Consumo Excessivo de Bebidas Alcoólicas/complicações , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Chronic obstructive pulmonary disease (COPD), comprised of chronic bronchitis and emphysema, is a leading cause of morbidity and mortality worldwide. Mitogen-activated protein 2 kinase (MAP2K) pathway activation is present in COPD lung tissue and a genetic polymorphism in Map2k1 associates with FEV1 decline in COPD, suggesting it may contribute to disease pathogenesis. To test the functional contribution of Map2k1 in cigarette smoke (CS)-induced lung inflammation, we used a short-term CS exposure model in mice deficient in myeloid Map2k1 (LysmCre+Mek1fl) and wild-type mice (Mek1fl). Mice deficient in myeloid Map2k1 had enhanced CS-induced lung inflammation characterized by increased neutrophil recruitment, vascular leak, augmented expression of elastolytic matrix metalloproteinases, and increased type I interferon-stimulated gene expression. The augmented neutrophilic inflammatory response could be abrogated by IFNAR1 blockade. These findings indicate that myeloid Map2k1 regulates the immune response to CS via inhibition of the type I interferon pathway. Overall, these results suggest that Map2k1 is a critical determinant in modulating the severity of CS-induced lung inflammation and its expression is protective.NEW & NOTEWORTHY Activation of the mitogen-activated protein kinases (MAPK)-ERK1/2 pathway is present in COPD lung tissue compared with healthy lungs. Our study using mice deficient in myeloid Map2k1 reveals that Map2k1 is a critical determinant in modulating the severity of CS-induced lung inflammation via suppression of type I interferon responses, and its expression is protective.
Assuntos
Interferon Tipo I , Animais , Interferon Tipo I/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 1/genética , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pneumonia/patologia , Pulmão/patologia , Pulmão/metabolismo , Camundongos Knockout , Transdução de Sinais , Inflamação/patologia , Inflamação/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , MasculinoRESUMO
Pseudomonas aeruginosa is a frequent cause of antimicrobial-resistant hospital-acquired pneumonia, especially in critically ill patients. Inflammation triggered by P. aeruginosa infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Emerging data have shed light on the pro-resolving actions of angiotensin-(1-7) [Ang-(1-7)] signaling through the G protein-coupled receptor Mas (MasR) during infections. Herein, we investigated the role of the Ang-(1-7)/Mas axis in pneumonia caused by P. aeruginosa by using genetic and pharmacological approach and found that Mas receptor-deficient animals developed a more severe form of pneumonia showing higher neutrophilic infiltration into the airways, bacterial load, cytokines, and chemokines production and more severe pulmonary damage. Conversely, treatment of pseudomonas-infected mice with Ang-(1-7) was able to decrease neutrophilic infiltration in airways and lungs, local and systemic levels of pro-inflammatory cytokines and chemokines, and increase the efferocytosis rates, mitigating lung damage/dysfunction caused by infection. Notably, the therapeutic association of Ang-(1-7) with antibiotics improved the survival rates of mice subjected to lethal inoculum of P. aeruginosa, extending the therapeutic window for imipenem. Mechanistically, Ang-(1-7) increased phagocytosis of bacteria by neutrophils and macrophages to accelerate pathogen clearance. Altogether, harnessing the Ang-(1-7) pathway during infection is a potential strategy for the development of host-directed therapies to promote mechanisms of resistance and resilience to pneumonia.
Assuntos
Angiotensina I , Antibacterianos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos , Proto-Oncogene Mas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Receptores Acoplados a Proteínas G , Animais , Angiotensina I/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Pneumonia Bacteriana/metabolismo , Citocinas/metabolismo , Camundongos Knockout , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/microbiologia , Masculino , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Transdução de Sinais/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacosRESUMO
BACKGROUND: Store-operated calcium entry mediated by STIM (stromal interaction molecule)-1-Orai1 (calcium release-activated calcium modulator 1) is essential in endothelial cell (EC) functions, affecting signaling, NFAT (nuclear factor for activated T cells)-induced transcription, and metabolic programs. While the small GTPase Rap1 (Ras-proximate-1) isoforms, including the predominant Rap1B, are known for their role in cadherin-mediated adhesion, EC deletion of Rap1A after birth uniquely disrupts lung endothelial barrier function. Here, we elucidate the specific mechanisms by which Rap1A modulates lung vascular integrity and inflammation. METHODS: The role of EC Rap1A in lung inflammation and permeability was examined using in vitro and in vivo approaches. RESULTS: We explored Ca2+ signaling in human ECs following siRNA-mediated knockdown of Rap1A or Rap1B. Rap1A knockdown, unlike Rap1B, significantly increased store-operated calcium entry in response to a GPCR (G-protein-coupled receptor) agonist, ATP (500 µmol/L), or thapsigargin (250 nmol/L). This enhancement was attenuated by Orai1 channel blockers 10 µmol/L BTP2 (N-[4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide), 10 µmol/L GSK-7975A, and 5 µmol/L Gd3+. Whole-cell patch clamp measurements revealed enhanced Ca2+ release-activated Ca2+ current density in siRap1A ECs. Rap1A depletion in ECs led to increased NFAT1 nuclear translocation and activity and elevated levels of proinflammatory cytokines (CXCL1 [C-X-C motif chemokine ligand 1], CXCL11 [C-X-C motif chemokine 11], CCL5 [chemokine (C-C motif) ligand 5], and IL-6 [interleukin-6]). Notably, reducing Orai1 expression in siRap1A ECs normalized store-operated calcium entry, NFAT activity, and endothelial hyperpermeability in vitro. EC-specific Rap1A knockout (Rap1AiΔEC) mice displayed an inflammatory lung phenotype with increased lung permeability and inflammation markers, along with higher Orai1 expression. Delivery of siRNA against Orai1 to lung endothelium using lipid nanoparticles effectively normalized Orai1 levels in lung ECs, consequently reducing hyperpermeability and inflammation in Rap1AiΔEC mice. CONCLUSIONS: Our findings uncover a novel role of Rap1A in regulating Orai1-mediated Ca2+ entry and expression, crucial for NFAT-mediated transcription and endothelial inflammation. This study distinguishes the unique function of Rap1A from that of the predominant Rap1B isoform and highlights the importance of normalizing Orai1 expression in maintaining lung vascular integrity and modulating endothelial functions.
Assuntos
Sinalização do Cálcio , Permeabilidade Capilar , Pulmão , Fatores de Transcrição NFATC , Proteína ORAI1 , Proteínas rap1 de Ligação ao GTP , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Interferência de RNA , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genéticaRESUMO
We previously reported that myeloperoxidase-deficient (MPO-/-) mice develop more severe neutrophil-rich lung inflammation than wild-type mice following intranasal Zymosan administration. Interestingly, we found that these mutant mice with severe lung inflammation also displayed pronounced neutrophilia and anemia, characterized by increased granulopoiesis and decreased erythropoiesis in the bone marrow, compared to wild-type mice. This condition was associated with higher concentrations of granulocyte-colony stimulating factor (G-CSF) in both the lungs and serum, a factor known to enhance granulopoiesis. Neutrophils accumulating in the lungs of MPO-/- mice produced greater amounts of G-CSF than those in wild-type mice, indicating that they are a significant source of G-CSF. In vitro experiments using signal transduction inhibitors and Western blot analysis revealed that MPO-/- neutrophils express higher levels of G-CSF mRNA in response to Zymosan, attributed to the upregulation of the IκB kinase/nuclear factor (NF)-κB pathway and the extracellular-signal-regulated kinase/NF-κB pathway. These findings highlight MPO as a critical regulator of granulopoiesis and erythropoiesis in inflamed tissues.
Assuntos
Anemia , Eritropoese , Fator Estimulador de Colônias de Granulócitos , Camundongos Knockout , Neutrófilos , Peroxidase , Pneumonia , Zimosan , Animais , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peroxidase/metabolismo , Anemia/etiologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/imunologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Granulócitos/metabolismo , Granulócitos/imunologia , Pulmão/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Gestational diabetes mellitus (GDM) is a known risk factor for stillbirth (Rosenstein et al., 2012) [1]. Delayed villous maturation (DVM), predominantly seen in term placentas in pregnancies complicated with glucose dysmetabolism, may in part be a consequence of excessive maternal glucose leading to release of fetal insulin and other growth factors that promote excessive placental growth at the expense of villous maturation (Redline, 2012) [2]. CASES: We present three cases of under-diagnosed/treated glucose dysmetabolism in women in their first pregnancies cared for in other hospitals in the United Kingdom (UK) with the fatal fetal/neonatal outcomes and confirmed DVM in the placenta and congenital pneumonia on post-mortem examination in all three cases. CONCLUSION: This cluster supports a hypothesis that DVM and glucose dysmentabolism may make babies more susceptible to severe perinatal infection. All three cases received the antenatal care in their subsequent pregnancies in our unit and had confirmed glucose dysmetabolism which was treated and resulted in healthy babies.
Assuntos
Diabetes Gestacional , Pneumonia , Humanos , Feminino , Gravidez , Adulto , Pneumonia/metabolismo , Diabetes Gestacional/metabolismo , Recém-Nascido , Vilosidades Coriônicas/metabolismo , Vilosidades Coriônicas/patologia , Evolução Fatal , Doenças Fetais/metabolismo , Doenças Placentárias/metabolismo , Doenças Placentárias/patologiaRESUMO
Clinical trials investigating the potential of mesenchymal stromal cells (MSCs) for the treatment of inflammatory diseases, such as acute respiratory distress syndrome (ARDS), have been disappointing, with less than 50% of patients responding to treatment. Licensed MSCs show enhanced therapeutic efficacy in response to cytokine-mediated activation signals. There are two distinct sub-phenotypes of ARDS: hypo- and hyper-inflammatory. We hypothesized that pre-licensing MSCs in a hyper-inflammatory ARDS environment would enhance their therapeutic efficacy in acute lung inflammation (ALI). Serum samples from patients with ARDS were segregated into hypo- and hyper-inflammatory categories based on interleukin (IL)-6 levels. MSCs were licensed with pooled serum from patients with hypo- or hyper-inflammatory ARDS or healthy serum controls. Our findings show that hyper-inflammatory ARDS pre-licensed MSC conditioned medium (MSC-CMHyper) led to a significant enrichment in tight junction expression and enhanced barrier integrity in lung epithelial cells in vitro and in vivo in a vascular endothelial growth factor (VEGF)-dependent manner. Importantly, while both MSC-CMHypo and MSC-CMHyper significantly reduced IL-6 and tumor necrosis factor alpha (TNF-α) levels in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharide (LPS)-induced ALI mice, only MSC-CMHyper significantly reduced lung permeability and overall clinical outcomes including weight loss and clinical score. Thus, the hypo- and hyper-inflammatory ARDS environments may differentially influence MSC cytoprotective and immunomodulatory functions.