Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.166
Filtrar
1.
J Clin Invest ; 134(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828722

RESUMO

The occurrence of clonal hematopoiesis of indeterminate potential (CHIP), in which advantageous somatic mutations result in the clonal expansion of blood cells, increases with age, as do an increased risk of mortality and detrimental outcomes associated with CHIP. However, the role of CHIP in susceptibility to pulmonary infections, which also increase with age, is unclear. In this issue of the JCI, Quin and colleagues explored the role of CHIP in bacterial pneumonia. Using characterization of immune cells from human donors and mice lacking tet methylcytosine dioxygenase 2 (Tet2), the authors mechanistically link myeloid immune cell dysfunction to CHIP-mediated risk of bacterial pneumonia. The findings suggest that CHIP drives inflammaging and immune senescence, and provide Tet2 status in older adults as a potential prognostic tool for informing treatment options related to immune modulation.


Assuntos
Hematopoiese Clonal , Proteínas de Ligação a DNA , Dioxigenases , Pneumonia Bacteriana , Humanos , Animais , Hematopoiese Clonal/imunologia , Hematopoiese Clonal/genética , Camundongos , Dioxigenases/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas/metabolismo
2.
J Immunol ; 213(3): 317-327, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905107

RESUMO

Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.


Assuntos
Dinoprostona , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Obesidade , Pneumonia Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Regulação para Cima , Animais , Feminino , Masculino , Macrófagos Alveolares/imunologia , Camundongos , Dinoprostona/metabolismo , Pseudomonas aeruginosa/imunologia , Obesidade/imunologia , Infecções por Pseudomonas/imunologia , Pneumonia Bacteriana/imunologia , Regulação para Cima/imunologia , Dieta Hiperlipídica/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Fagocitose/imunologia , Fatores Sexuais
3.
Comput Biol Med ; 177: 108574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772102

RESUMO

The immune dysregulation associated with carbapenem-resistant Klebsiella pneumoniae (CRKP) severity was investigated through single-cell RNA sequencing (scRNA-seq) of 5 peripheral blood samples from 3 patients with moderate and severe CRKP pneumonia. Additionally, scRNA-seq datasets from two individuals with COVID-19 were included for comparative analysis. The dynamic characterization and functional properties of each immune cell type were examined by delineating the transcriptional profiles of immune cells throughout the transition from moderate to severe conditions. Overall, most immune cells in CRKP patients exhibited a robust interferon-α response and inflammatory reaction compared to healthy controls, mirroring observations in COVID-19 patients. Furthermore, cell signatures associated with NK cells, macrophages, and monocytes were identified in CRKP progression including PTPRCAP for NK cells, C1QB for macrophages, and S100A12 for both macrophages and monocytes. In summary, this study offers a comprehensive scRNA-seq resource for illustrating the dynamic immune response patterns during CRKP progression, thereby shedding light on the associations between CRKP and COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Análise de Célula Única , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Masculino , Klebsiella pneumoniae/imunologia , Infecções por Klebsiella/imunologia , Feminino , Pessoa de Meia-Idade , Pneumonia Bacteriana/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Idoso
4.
Clin Transl Sci ; 17(6): e13850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38807464

RESUMO

Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that plays a critical role in triggering inflammatory responses. It remains unknown whether CIRP is strongly associated with bacterial load, inflammatory response, and mortality in sepsis model. Pneumonia was induced in specific pathogen-free 8-9-week old male rats by injecting bacteria via puncture of the tracheal cartilage. The expressions of CIRP and proinflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1ß] in lung tissues, alveolar macrophages (AMs), plasma, and bronchoalveolar lavage fluid (BALF) were determined by reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The numbers of bacteria recovered from the lungs were correlated with the bacterial loads injected and mortality. The expressions of CIRP increased sharply as the bacterial loads increased in the lung tissues and AMs. The amounts of TNF-α, IL-6 and IL-1ß proteins synthesized were dependent on the bacterial load in the lung tissues. Releases of CIRP, TNF-α, IL-6, and IL-1ß increased with the bacterial load in the blood plasma. The proteins confirmed similar patterns in the BALF. CIRP was strongly associated with the releases of TNF-α, IL-6, and IL-1ß in the lung tissues, blood plasma, and BALF, and showed a close correlation with mortality. CIRP demonstrated a strong association with bacterial load, which is new evidence, and close correlations with proinflammatory cytokines and mortality of pneumonia in rats, suggesting that it might be an interesting pneumonic biomarker for monitoring host response and predicting mortality, and a promising target for immunotherapy.


Assuntos
Carga Bacteriana , Citocinas , Proteínas de Ligação a RNA , Animais , Masculino , Proteínas de Ligação a RNA/metabolismo , Citocinas/metabolismo , Citocinas/sangue , Ratos , Pulmão/microbiologia , Pulmão/imunologia , Pulmão/patologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Pneumonia/microbiologia , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/mortalidade , Ratos Sprague-Dawley , Interleucina-1beta/metabolismo , Interleucina-1beta/sangue , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/mortalidade
5.
Infect Immun ; 92(6): e0001624, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38771050

RESUMO

Polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae bacteria is associated with high morbidity and mortality in vulnerable populations throughout the world. Ineffective antimicrobial activity by these last resort therapeutics can occur by transfer of mcr-1, a plasmid-mediated resistance gene, causing modification of the lipid A portion of lipopolysaccharide (LPS) and disruption of the interactions between polymyxins and lipid A. Whether this modification alters the innate host immune response or carries a high fitness cost in the bacteria is not well established. To investigate this, we studied infection with K. pneumoniae (KP) ATCC 13883 harboring either the mcr-1 plasmid (pmcr-1) or the vector control (pBCSK) ATCC 13883. Bacterial fitness characteristics of mcr-1 acquisition were evaluated. Differentiated human monocytes (THP-1s) were stimulated with KP bacterial strains or purified LPS from both parent isolates and isolates harboring mcr-1. Cell culture supernatants were analyzed for cytokine production. A bacterial pneumonia model in WT C57/BL6J mice was used to monitor immune cell recruitment, cytokine induction, and bacterial clearance in the bronchoalveolar lavage fluid (BALF). Isolates harboring mcr-1 had increased colistin MIC compared to the parent isolates but did not alter bacterial fitness. Few differences in cytokines were observed with purified LPS from mcr-1 expressing bacteria in vitro. However, in a mouse pneumonia model, no bacterial clearance defect was observed between pmcr-1-harboring KP and parent isolates. Consistently, no differences in cytokine production or immune cell recruitment in the BALF were observed, suggesting that other mechanisms outweigh the effect of these lipid A mutations in LPS.


Assuntos
Antibacterianos , Colistina , Modelos Animais de Doenças , Imunidade Inata , Infecções por Klebsiella , Klebsiella pneumoniae , Lipídeo A , Animais , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/efeitos dos fármacos , Colistina/farmacologia , Lipídeo A/imunologia , Camundongos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Feminino
7.
J Equine Vet Sci ; 138: 105103, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797250

RESUMO

Rhodococcus equi (R. equi), a gram-positive facultative intracellular pathogen, is a common cause of pneumonia in foals and represents a major cause of disease and death. The aim of the present study was to investigate the time-depended changes in White Blood Cells (WBC), basophils (Baso), neutrophils (Neu), lymphocytes (Lymf), monocytes (Mon), eosinophils (Eos), platelet (PLT) counts, fibrinogen (Fbg) concentration, interferon (IFN-α, IFN-γ) and interleukins (IL-2 and IL-10) in foals with clinical R. equi pneumonia. The main treatment was with azithromycin-rifampicin for 14 days. Blood was sampled prior to, 7 and 14 days after starting therapy. Treatment was associated with significantly decreased counts of WBC, (25.6 ± 6.7 and 14.2 ± 2,7 × 103/ml), Neu (18.6 ±6.2 and 10.7 ± 3.1 × 103/ml), Mon (1.5 ± 0.5 and 0.9 ± 0.2 × 103/ml) and Fbg (539 ± 124 and 287 ± 26 g/dl) between day 0 and day 14. IL-2 and IL-10 concentrations were significantly increased (P = 0.028, P = 0.013, respectively) after treatment, whereas IFN-α and IFN-γ concentrations were not. The diagnostic potentials of INF-α, INF-γ, IL-2 and IL-10 per se seems not very high, however, the study suggests that the activity change of selected interleukins in the course of the disease may be associated with amelioration. We concluded that patterns of serum concentration changes of INF-α, INF-γ, IL-2 and IL-10 may help in the study of the innate immune response in foals during infection and treatment of R. equi pneumonia.


Assuntos
Infecções por Actinomycetales , Antibacterianos , Biomarcadores , Doenças dos Cavalos , Rhodococcus equi , Animais , Cavalos/sangue , Doenças dos Cavalos/sangue , Doenças dos Cavalos/tratamento farmacológico , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/imunologia , Infecções por Actinomycetales/veterinária , Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/sangue , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/microbiologia , Antibacterianos/uso terapêutico , Biomarcadores/sangue , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/veterinária , Pneumonia Bacteriana/sangue , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Azitromicina/uso terapêutico , Feminino , Masculino
8.
Gene Ther ; 31(7-8): 400-412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678160

RESUMO

Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.


Assuntos
Anticorpos Monoclonais , Dependovirus , Vetores Genéticos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Dependovirus/genética , Dependovirus/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/genética , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/terapia , Anticorpos Monoclonais/imunologia , Anticorpos Biespecíficos , Feminino , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Pneumonia Bacteriana/prevenção & controle , Pneumonia Bacteriana/terapia , Pneumonia Bacteriana/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos , Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros
9.
J Clin Invest ; 134(11)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573824

RESUMO

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP affects risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2-knockout (Tet2-/-) and floxed control mice (Tet2fl/fl) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2-/- mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2-/- mice. We delineated the transcriptional landscape of Tet2-/- neutrophils and found that, while inflammation-related pathways were upregulated in Tet2-/- neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake, and neutrophil extracellular trap (NET) formation by Tet2-/- neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Imunidade Inata , Neutrófilos , Streptococcus pneumoniae , Animais , Feminino , Humanos , Masculino , Camundongos , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Camundongos Knockout , Neutrófilos/imunologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/microbiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Streptococcus pneumoniae/imunologia
10.
Front Cell Infect Microbiol ; 13: 1191806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424774

RESUMO

Pseudomonas aeruginosa is a common cause of hospital-acquired infections, including central line-associated bloodstream infections and ventilator-associated pneumonia. Unfortunately, effective control of these infections can be difficult, in part due to the prevalence of multi-drug resistant strains of P. aeruginosa. There remains a need for novel therapeutic interventions against P. aeruginosa, and the use of monoclonal antibodies (mAb) is a promising alternative strategy to current standard of care treatments such as antibiotics. To develop mAbs against P. aeruginosa, we utilized ammonium metavanadate, which induces cell envelope stress responses and upregulates polysaccharide expression. Mice were immunized with P. aeruginosa grown with ammonium metavanadate and we developed two IgG2b mAbs, WVDC-0357 and WVDC-0496, directed against the O-antigen lipopolysaccharide of P. aeruginosa. Functional assays revealed that WVDC-0357 and WVDC-0496 directly reduced the viability of P. aeruginosa and mediated bacterial agglutination. In a lethal sepsis model of infection, prophylactic treatment of mice with WVDC-0357 and WVDC-0496 at doses as low as 15 mg/kg conferred 100% survival against challenge. In both sepsis and acute pneumonia models of infection, treatment with WVDC-0357 and WVDC-0496 significantly reduced bacterial burden and inflammatory cytokine production post-challenge. Furthermore, histopathological examination of the lungs revealed that WVDC-0357 and WVDC-0496 reduced inflammatory cell infiltration. Overall, our results indicate that mAbs directed against lipopolysaccharide are a promising therapy for the treatment and prevention of P. aeruginosa infections.


Assuntos
Anticorpos Antibacterianos , Anticorpos Monoclonais , Lipopolissacarídeos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Camundongos , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Aderência Bacteriana , Carga Bacteriana/imunologia , Convalescença , Mediadores da Inflamação/imunologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/imunologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/prevenção & controle , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
11.
Microbiol Spectr ; 10(6): e0311022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36255321

RESUMO

Nontuberculous mycobacteria (NTM) cause pulmonary disease in individuals without obvious immunodeficiency. This study was initiated to gain insight into the immunological factors that predispose persons to NTM pulmonary disease (NTMPD). Blood was obtained from 15 pairs of NTMPD patients and their healthy household contacts. Peripheral blood mononuclear cells (PBMCs) were stimulated with the Mycobacterium avium complex (MAC). A total of 34 cytokines and chemokines were evaluated in plasma and PBMC culture supernatants using multiplex immunoassays, and gene expression in the PBMCs was determined using real-time PCR. PBMCs from NTMPD patients produced significantly less interleukin-1ß (IL-1ß), IL-18, IL-1α, and IL-10 than PBMCs from their healthy household contacts in response to MAC. Although plasma RANTES levels were high in NTMPD patients, they had no effect on IL-1ß production by macrophages infected with MAC. Toll-like receptor 2 (TLR2) and TWIK2 (a two-pore domain K+ channel) were impaired in response to MAC in PBMCs of NTMPD patients. A TLR2 inhibitor decreased all four cytokines, whereas a two-pore domain K+ channel inhibitor decreased the production of IL-1ß, IL-18, and IL-1α, but not IL-10, by MAC-stimulated PBMCs and monocytes. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. A reduced monocyte ratio might contribute to the attenuated production of IL-1 family cytokines by PBMCs of NTMPD patients in response to MAC stimulations. Collectively, our findings suggest that the attenuated IL-1 response may increase susceptibility to NTM pulmonary infection through multiple factors, including impaired expression of the TLR2 and TWIK2 and reduced monocyte ratio. IMPORTANCE Upon MAC stimulation, the production of IL-1 family cytokines and IL-10 by PBMCs of NTMPD patients was attenuated compared with that of healthy household contacts. Upon MAC stimulation, the expression of TLR2 and TWIK2 (one of the two-pore domain K+ channels) was attenuated in PBMCs of NTMPD patients compared with that of healthy household contacts. The production of IL-1 family cytokines by MAC-stimulated PBMCs and MAC-infected monocytes of healthy donors was reduced by a TLR2 inhibitor and two-pore domain K+ channel inhibitor. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. Collectively, our data suggest that defects in the expression of TLR2 and TWIK2 in human PBMCs or monocytes and reduced monocyte ratio are involved in the reduced production of IL-1 family cytokines, and it may increase susceptibility to NTM pulmonary infection.


Assuntos
Citocinas , Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Pneumonia Bacteriana , Humanos , Interleucina-18/imunologia , Leucócitos Mononucleares , Pneumopatias/imunologia , Monócitos/imunologia , Complexo Mycobacterium avium , Infecções por Mycobacterium não Tuberculosas/imunologia , Receptor 2 Toll-Like/imunologia , Pneumonia Bacteriana/imunologia , Citocinas/imunologia
12.
J Leukoc Biol ; 112(3): 499-512, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35435271

RESUMO

Clearance of airway intruders by immune cells is required to resolve infectious pneumonia. However, the molecular mechanisms underlying this process remain elusive. Here, we demonstrated that alveolar macrophage (AM)-derived neuropilin 2 (NRP2) plays an essential role in controlling severe pneumonia by enhancing microbial clearance. Mice with conditional deletion of the NRP2 gene in AM had persistent bacteria, uncontrolled neutrophil influx, and decreased survival during Escherichia coli-induced pneumonia. In vitro assays demonstrated that NRP2 could bind to CD11b+ Ly6Glo/+ neutrophils and promote their capacities in phagocytosis and killing of bacteria, which is partially contributed to the increased expression of TLR4 and TNF-a. These findings collectively revealed that AM-derived NRP2 protects the lungs from unwanted injury by promoting the clearance of invading pathogens. This study might provide a promising diagnostic biomarker and therapeutic target for severe pneumonia.


Assuntos
Infecções por Escherichia coli , Macrófagos Alveolares , Neuropilina-2 , Pneumonia Bacteriana , Animais , Infecções por Escherichia coli/imunologia , Pulmão , Lesão Pulmonar , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-2/metabolismo , Neutrófilos , Fagocitose , Pneumonia Bacteriana/imunologia
13.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215805

RESUMO

The increased plasma levels of von Willebrand factor (VWF) in patients with COVID-19 was reported in many studies, and its correlation with disease severity and mortality suggest its important role in the pathogenesis of thrombosis in COVID-19. We performed histological and immunohistochemical studies of the lungs of 29 patients who died from COVID-19. We found a significant increase in the intensity of immunohistochemical reaction for VWF in the pulmonary vascular endothelium when the disease duration was more than 10 days. In the patients who had thrombotic complications, the VWF immunostaining in the pulmonary vascular endothelium was significantly more intense than in nonsurvivors without thrombotic complications. Duration of disease and thrombotic complications were found to be independent predictors of increased VWF immunostaining in the endothelium of pulmonary vessels. We also revealed that bacterial pneumonia was associated with increased VWF staining intensity in pulmonary arterial, arteriolar, and venular endothelium, while lung ventilation was an independent predictor of increased VWF immunostaining in arterial endothelium. The results of the study demonstrated an important role of endothelial VWF in the pathogenesis of thrombus formation in COVID-19.


Assuntos
COVID-19/complicações , Pulmão/irrigação sanguínea , Trombose Venosa/etiologia , Trombose Venosa/patologia , Fator de von Willebrand/análise , Adulto , Autopsia , COVID-19/sangue , Endotélio Vascular/imunologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pneumonia Bacteriana/imunologia , Embolia Pulmonar , Índice de Gravidade de Doença , Trombose Venosa/classificação
14.
PLoS One ; 17(1): e0261750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986178

RESUMO

BACKGROUND: In the nation-wide double-blind cluster-randomised Finnish Invasive Pneumococcal disease trial (FinIP, ClinicalTrials.gov NCT00861380, NCT00839254), we assessed the indirect impact of the 10-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against five pneumococcal disease syndromes. METHODS: Children 6 weeks to 18 months received PHiD-CV10 in 48 clusters or hepatitis B/A-vaccine as control in 24 clusters according to infant 3+1/2+1 or catch-up schedules in years 2009-2011. Outcome data were collected from national health registers and included laboratory-confirmed and clinically suspected invasive pneumococcal disease (IPD), hospital-diagnosed pneumonia, tympanostomy tube placements (TTP) and outpatient antimicrobial prescriptions. Incidence rates in the unvaccinated population in years 2010-2015 were compared between PHiD-CV10 and control clusters in age groups <5 and ≥5 years (5-7 years for TTP and outpatient antimicrobial prescriptions), and in infants <3 months. PHiD-CV10 was introduced into the Finnish National Vaccination Programme (PCV-NVP) for 3-month-old infants without catch-up in 9/2010. RESULTS: From 2/2009 to 10/2010, 45398 children were enrolled. Vaccination coverage varied from 29 to 61% in PHiD-CV10 clusters. We detected no clear differences in the incidence rates between the unvaccinated cohorts of the treatment arms, except in single years. For example, the rates of vaccine-type IPD, non-laboratory-confirmed IPD and empyema were lower in PHiD-CV10 clusters compared to control clusters in 2012, 2015 and 2011, respectively, in the age-group ≥5 years. CONCLUSIONS: This is the first report from a clinical trial evaluating the indirect impact of a PCV against clinical outcomes in an unvaccinated population. We did not observe consistent indirect effects in the PHiD-CV10 clusters compared to the control clusters. We consider that the sub-optimal trial vaccination coverage did not allow the development of detectable indirect effects and that the supervening PCV-NVP significantly diminished the differences in PHiD-CV10 vaccination coverage between the treatment arms.


Assuntos
Proteínas de Bactérias/administração & dosagem , Proteínas de Transporte/administração & dosagem , Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/administração & dosagem , Haemophilus influenzae/imunologia , Imunoglobulina D/administração & dosagem , Lipoproteínas/administração & dosagem , Vacinas Pneumocócicas/administração & dosagem , Pneumonia Bacteriana/prevenção & controle , Proteínas de Bactérias/efeitos adversos , Proteínas de Bactérias/imunologia , Proteínas de Transporte/efeitos adversos , Proteínas de Transporte/imunologia , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Infecções por Haemophilus/imunologia , Vacinas Anti-Haemophilus/efeitos adversos , Vacinas Anti-Haemophilus/imunologia , Humanos , Imunoglobulina D/efeitos adversos , Imunoglobulina D/imunologia , Lactente , Lipoproteínas/efeitos adversos , Lipoproteínas/imunologia , Masculino , Vacinas Pneumocócicas/efeitos adversos , Vacinas Pneumocócicas/imunologia , Pneumonia Bacteriana/imunologia , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/efeitos adversos , Vacinas Conjugadas/imunologia
15.
Nat Med ; 28(1): 201-211, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782790

RESUMO

Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.


Assuntos
COVID-19/imunologia , Citocinas/imunologia , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Neutrófilos/imunologia , Pneumonia Bacteriana/imunologia , Síndrome do Desconforto Respiratório/imunologia , Adulto , Idoso , COVID-19/complicações , COVID-19/genética , Comunicação Celular , Cromatografia Líquida , Regulação para Baixo , Feminino , Redes Reguladoras de Genes , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Pneumonia Bacteriana/complicações , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/genética , Prostaglandinas/imunologia , Proteômica , RNA-Seq , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/genética , SARS-CoV-2 , Índice de Gravidade de Doença , Fatores Sexuais , Análise de Célula Única , Espectrometria de Massas em Tandem , Tratamento Farmacológico da COVID-19
16.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34908534

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome, constituted by respiratory failure and diffuse alveolar damage that results from dysregulated local and systemic immune activation, causing pulmonary vascular, parenchymal, and alveolar damage. SARS-CoV-2 infection has become the dominant cause of ARDS worldwide, and emerging evidence implicates neutrophils and their cytotoxic arsenal of effector functions as central drivers of immune-mediated lung injury in COVID-19 ARDS. However, key outstanding questions are whether COVID-19 drives a unique program of neutrophil activation or effector functions that contribute to the severe pathogenesis of this pandemic illness and whether this unique neutrophil response can be targeted to attenuate disease. Using a combination of high-dimensional single-cell analysis and ex vivo functional assays of neutrophils from patients with COVID-19 ARDS, compared with those with non-COVID ARDS (caused by bacterial pneumonia), we identified a functionally distinct landscape of neutrophil activation in COVID-19 ARDS that was intrinsically programmed during SARS-CoV-2 infection. Furthermore, neutrophils in COVID-19 ARDS were functionally primed to produce high amounts of neutrophil extracellular traps. Surprisingly, this unique pathological program of neutrophil priming escaped conventional therapy with dexamethasone, thereby revealing a promising target for adjunctive immunotherapy in severe COVID-19.


Assuntos
COVID-19/imunologia , Armadilhas Extracelulares/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/patologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Síndrome do Desconforto Respiratório/patologia , Índice de Gravidade de Doença
17.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960788

RESUMO

Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.


Assuntos
Vírus da Influenza A/imunologia , Interleucina-33/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Apoptose , Asma , Morte Celular , Células Epiteliais , Cavalos , Humanos , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia , Pneumonia Bacteriana/imunologia , Virulência , Fatores de Virulência/metabolismo
18.
Front Immunol ; 12: 761317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777376

RESUMO

Pneumonia is a global cause of mortality, and this provides a strong incentive to improve the mechanistic understanding of innate immune responses in the lungs. Here, we characterized the involvement of the cytokine interleukin (IL)-26 in bacterial lung infection. We observed markedly increased concentrations of IL-26 in lower airway samples from patients with bacterial pneumonia and these correlated with blood neutrophil concentrations. Moreover, pathogen-associated molecular patterns (PAMPs) from both Gram-negative and -positive bacteria increased extracellular IL-26 concentrations in conditioned media from human models of alveolar epithelial cells, macrophages, and neutrophils in vitro. Stimulation with IL-26 inhibited the inherent release of neutrophil elastase and myeloperoxidase in unexposed neutrophils. This stimulation also inhibited the expression of activity makers in neutrophils exposed to Klebsiella pneumoniae. In addition, priming of human lung tissue ex vivo with exogenous IL-26 potentiated the endotoxin-induced increase in mRNA for other cytokines involved in the innate immune response, including the master Th17-regulator IL-23 and the archetype inhibitory cytokine IL-10. Finally, neutralization of endogenous IL-26 clearly increased the growth of Klebsiella pneumoniae in the macrophage culture. These findings suggest that IL-26 is involved in bacterial lung infection in a complex manner, by modulating critical aspects of innate immune responses locally and systemically in a seemingly purposeful manner and by contributing to the killing of bacteria in a way that resembles an antimicrobial peptide. Thus, IL-26 displays both diagnostic and therapeutic potential in pneumonia and deserves to be further evaluated in these respects.


Assuntos
Citocinas/imunologia , Pneumonia Bacteriana/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Humanos , Klebsiella pneumoniae , Elastase de Leucócito/imunologia , Pulmão/citologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Peroxidase/imunologia , Adulto Jovem
19.
Iran J Allergy Asthma Immunol ; 20(5): 537-549, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34664813

RESUMO

Nosocomial infections caused by Acinetobacter baumannii (A. baumannii) nosocomial infections caused by Acinetobacter baumannii (A. baumannii) are considered as a global serious problem in hospitalized patients because of emerging antibiotic resistance. Immunotherapy approaches are promising to prevent such infections. In our previous study, five antigenic epitopes of outer membrane protein A (OmpA), as the most dangerous virulence molecule in A. baumanii, were predicted in silico. In this study, the investigators evaluated some immunological aspects of the peptides. Five peptides were separately injected into C5BL/6 mice; then the cytokine production (interleukin-4 and interferon-gamma) of splenocytes and opsonophagocytic activity of immunized serum were assessed. To identify the protective function of the peptides, animal models of sepsis and pneumonia infections were actively and passively immunized with selected peptides and pooled sera of immunized mice, respectively. Then, survival rates of them were compared with the non-infected controls. Based on the results, activated spleen cells in P127 peptide-immunized mice exhibited an increase level of IFN-γ compared with the other experimental groups, but not about the IL-4 concentration. The results of opsonophagocytic assay revealed an appropriate killing activity of produced antibodies against A. baumannii in a dose-dependent manner. Further, the survival rates of the mice under passive immunization with the immunized sera or active immunization with P127 peptide were significantly more than those in the control group. Moreover, the survival rate of the P127 peptide immunized group was considerably higher than that among the other peptide-immunized group. In conclusion, findings indicated that peptides derived from outer membrane protein-A can be used as a promising tool for designing the epitope-based vaccines against infections caused by A. baumannii.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Epitopos/imunologia , Pneumonia Bacteriana/prevenção & controle , Sepse/prevenção & controle , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/mortalidade , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunização , Camundongos , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/mortalidade , Prognóstico , Sepse/imunologia , Sepse/mortalidade , Resultado do Tratamento
20.
Elife ; 102021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544549

RESUMO

Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here, we demonstrated that a single intranasal immunization of inactivated whole cell of Acinetobacter baumannii elicits rapid protection against broad A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Administração Intranasal , Transferência Adotiva , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Imunidade Inata/efeitos dos fármacos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vacinação , Vacinas de Produtos Inativados/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...