RESUMO
PURPOSE: Radiation pneumonitis (RP) is a dose-limiting toxicity associated with increased mortality for patients with non-small cell lung cancer (NSCLC) treated with chemoradiotherapy (CRT). This study aims to assess the incidence of symptomatic RP (grade 2-5), rate of recovery and associated predictive factors. MATERIAL AND METHODS: We performed a retrospective population-based study including 602 patients with NSCLC who were treated with CRT between 2002 and 2016. RP and rate of recovery were analysed using Common Terminology Criteria for Adverse Events version 4.0. Stepwise logistic regression was performed to analyse potential predictive factors for the two endpoints RP grade ≥ 2 and RP grade ≥ 3. RESULTS: A total of 136 (23%) patients developed symptomatic RP and 37 (6%) developed RP grade ≥ 3. A total of 67 (71%) recovered, whereas the remaining 27 (29%), with the major proportion of patients belonging to the RP grade ≥ 3 group, suffered from prevailing sequelae. On multivariable analysis, the selected model for predicting RP grade ≥ 2 included the factors V20, smoking status, average fractions per week and chemotherapy agent. V20 and age were selected factors for RP grade ≥ 3. INTERPRETATION: The results suggest that regardless of all proposed factors predictive for RP, the most important influenceable significant factor still is dose to the lung. The main aim should be to avoid RP grade ≥ 3, where a substantial proportion of patients suffer from prevailing sequalae. Consequently, the technical improvement and precision of radiotherapy delivery should continue to focus on lung sparing techniques also in the ongoing immunotherapy-containing schedules where the risk of pneumonitis may be increased. e factor still is dose to the lung. Consequently, the technical improvement and precision of radiotherapy delivery should continue to focus on lung sparing techniques also in the ongoing immunotherapy-containing schedules where the risk of pneumonitis may be increased.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiorradioterapia , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Feminino , Masculino , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Adulto , Idoso de 80 Anos ou mais , Fatores de Risco , IncidênciaRESUMO
Normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) in lung cancer patients with stereotactic body radiation therapy (SBRT), which based on dosimetric data from treatment planning, are limited to patients who have already received radiation therapy (RT). This study aims to identify a novel predictive factor for lung dose distribution and RP probability before devising actionable SBRT plans for lung cancer patients. A comprehensive correlation analysis was performed on the clinical and dose parameters of lung cancer patients who underwent SBRT. Linear regression models were utilized to analyze the dosimetric data of lungs. The performance of the regression models was evaluated using mean squared error (MSE) and the coefficient of determination (R2). Correlational analysis revealed that most clinical data exhibited weak correlations with dosimetric data. However, nearly all dosimetric variables showed "strong" or "very strong" correlations with each other, particularly concerning the mean dose of the ipsilateral lung (MI) and the other dosimetric parameters. Further study verified that the lung tumor ratio (LTR) was a significant predictor for MI, which could predict the incidence of RP. As a result, LTR can predict the probability of RP without the need to design an elaborate treatment plan. This study, as the first to offer a comprehensive correlation analysis of dose parameters, explored the specific relationships among them. Significantly, it identified LTR as a novel predictor for both dose parameters and the incidence of RP, without the need to design an elaborate treatment plan.
Assuntos
Neoplasias Pulmonares , Pneumonite por Radiação , Radiometria , Radiocirurgia , Humanos , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Neoplasias Pulmonares/radioterapia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Incidência , Pulmão/efeitos da radiação , Dosagem Radioterapêutica , Idoso de 80 Anos ou mais , Planejamento da Radioterapia Assistida por ComputadorRESUMO
BACKGROUND: First-line chemotherapy combined with bevacizumab is one of the standard treatment modes for patients with advanced non-small cell lung cancer (NSCLC). Thoracic radiotherapy (TRT) can provide significant local control and survival benefits to patients during the treatment of advanced NSCLC. However, the safety of adding TRT has always been controversial, especially because of the occurrence of radiation pneumonia (RP) during bevacizumab treatment. Therefore, in this study, we used an expanded sample size to evaluate the incidence of RP when using bevacizumab in combination with TRT. PATIENTS AND METHODS: Using an institutional query system, all medical records of patients with NSCLC who received TRT during first-line chemotherapy combined with bevacizumab from 2017 to 2020 at Shandong Cancer Hospital and Institute were reviewed. RP was diagnosed via computed tomography and was classified according to the RTOG toxicity scoring system. The risk factors for RP were identified using univariate and multivariate analyses. The Kaplan-Meier method was used to calculate progression-free survival (PFS) and overall survival (OS). RESULTS: Ultimately, 119 patients were included. Thirty-eight (31.9%) patients developed Grade ≥ 2 RP, of whom 27 (68.1%) had Grade 2 RP and 11 (9.2%) had Grade 3 RP. No patients developed Grade 4 or 5 RP. The median time for RP occurrence was 2.7 months (range 1.2-5.4 months). In univariate analysis, male, age, KPS score, V20 > 16.9%, V5 > 33.6%, PTV (planning target volume)-dose > 57.2 Gy, and PTV-volume > 183.85 cm3 were correlated with the occurrence of RP. In multivariate analysis, male, V20 > 16.9%, and PTV-volume > 183.85 cm3 were identified as independent predictors of RP occurrence. The mPFS of all patients was 14.27 (95% CI, 13.1-16.1) months. The one-year and two-year PFS rates were 64.9% and 20.1%, respectively. The mOS of all patients was 37.09 (95% CI, 33.8-42.0) months. The one-year survival rate of all patients was 95%, and the two-year survival rate was 71.4%. CONCLUSIONS: The incidence of Grade ≥ 2 RP in NSCLC patients who received both bevacizumab and TRT was 31.9%. Restricting factors such as V20 and PTV will help reduce the risk of RP in these patients. For patients who receive both bevacizumab and TRT, caution should be exercised when increasing TRT, and treatment strategies should be optimized to reduce the incidence of RP.
Assuntos
Bevacizumab , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Bevacizumab/uso terapêutico , Masculino , Feminino , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/epidemiologia , Pessoa de Meia-Idade , Incidência , Fatores de Risco , Neoplasias Pulmonares/radioterapia , Idoso , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Estudos Retrospectivos , Adulto , Quimiorradioterapia/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Idoso de 80 Anos ou mais , Taxa de SobrevidaRESUMO
BACKGROUND/AIM: Pneumonitis is a serious radiotherapy complication. This study, which is a prerequisite for a prospective trial, aimed to identify the prevalence of pneumonitis and risk factors in elderly patients with lung cancer. PATIENTS AND METHODS: Ninety-eight lung cancer patients aged ≥65 years were included. Seventeen factors were investigated regarding grade ≥2 pneumonitis at 24 weeks following radiotherapy. RESULTS: The prevalence of grade ≥2 pneumonitis at 24 weeks was 27.3%. On univariate analysis, a significant association was observed for mean (ipsilateral) lung dose (MLD; ≤13.0 vs. 13.1-20.0 vs. >20.0 Gy; 0% vs. 24.9% vs. 48.7%). Results were significant also for ≤13.0 vs. >13.0 Gy (0% vs. 37.1%) or ≤20.0 vs. >20.0 Gy (13.4% vs. 48.7%). MLD achieved significance on multivariate analysis. CONCLUSION: Elderly patients receiving MLDs >13.0 Gy, particularly >20.0 Gy, have a high risk of grade ≥2 pneumonitis. These results are important for designing a prospective trial.
Assuntos
Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Idoso , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Neoplasias Pulmonares/radioterapia , Feminino , Masculino , Idoso de 80 Anos ou mais , Prevalência , Fatores de Risco , Dosagem Radioterapêutica , Pulmão/efeitos da radiação , Estudos ProspectivosRESUMO
BACKGROUND: CCRT is presently the standard treatment for LA-NSCLC. RP is one of the main obstacles to the completion of thoracic radiation therapy, resulting in limited survival benefits in NSCLC patients. This research aims to explore the role of Endostar in the occurrence of grade≥2 RP and clinical curative effect in LA-NSCLC patients. METHODS: This study retrospectively analyzed 122 patients with stage III NSCLC who received CCRT from December 2008 to December 2017, or Endostar intravenous drip concurrently with chemoradiotherapy (Endostar + CCRT group). Standard toxicity of the pneumonitis endpoint was also collected by CTCAE V5.0. We further summarized other available studies on the role of Endostar in the prognosis of NSCLC patients and the incidence of RP. RESULTS: There were 76 cases in the CCRT group and 46 cases in the CCRT+ Endostar group. In the CCRT+ Endostar group, the occurrence of grade ≥2 RP in patients with V20Gy ≥25% was significantly higher than that in patients with V20Gy < 25% (p = 0.001). In the cohorts with V20Gy < 25%, 0 cases of 29 patients treated with Endostar developed grade ≥2 RP was lower than in the CCRT group (p = 0.026). The re-analysis of data from other available studies indicated that Endostar plus CCRT could be more efficient and safely in the occurrence of grade≥2 RP with LA-NSCLC. CONCLUSIONS: When receiving CCRT for LA-NSCLC patients, simultaneous combination of Endostar is recommended to enhance clinical benefit and reduce pulmonary toxicity.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Endostatinas , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Proteínas Recombinantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Pneumonia/induzido quimicamente , Pneumonia/epidemiologia , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologiaRESUMO
PURPOSE: The most common and potentially fatal side effect of thoracic radiation therapy is radiation pneumonitis (RP). Due to the lack of effective treatments, predicting radiation pneumonitis is crucial. This study aimed to develop a dynamic nomogram to accurately predict symptomatic pneumonitis (RP ≥ 2) following thoracic radiotherapy for lung cancer patients. METHODS: Data from patients with pathologically diagnosed lung cancer at the Zhongshan People's Hospital Department of Radiotherapy for Thoracic Cancer between January 2017 and June 2022 were retrospectively analyzed. Risk factors for radiation pneumonitis were identified through multivariate logistic regression analysis and utilized to construct a dynamic nomogram. The predictive performance of the nomogram was validated using a bootstrapped concordance index and calibration plots. RESULTS: Age, smoking index, chemotherapy, and whole lung V5/MLD were identified as significant factors contributing to the accurate prediction of symptomatic pneumonitis. A dynamic nomogram for symptomatic pneumonitis was developed using these risk factors. The area under the curve was 0.89(95% confidence interval 0.83-0.95). The nomogram demonstrated a concordance index of 0.89(95% confidence interval 0.82-0.95) and was well calibrated. Furthermore, the threshold values for high- risk and low- risk were determined to be 154 using the receiver operating curve. CONCLUSIONS: The developed dynamic nomogram offers an accurate and convenient tool for clinical application in predicting the risk of symptomatic pneumonitis in patients with lung cancer undergoing thoracic radiation.
Assuntos
Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/complicações , Nomogramas , Pneumonite por Radiação/diagnóstico , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Dosagem Radioterapêutica , Pneumonia/etiologia , Pneumonia/complicaçõesRESUMO
BACKGROUND: The superior efficacy of concurrent thoracic radiotherapy (TRT) and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has been proven in locally advanced and advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, the high incidence of radiation pneumonitis (RP) reduced by concurrent TRT and TKIs has attracted widespread attention. Thus, this study was designed to investigate the rate and risk factors for RP in EGFR-positive NSCLC patients simultaneously treated with aumolertinib and TRT. METHODS: We retrospectively evaluated stage IIIA-IVB NSCLC patients treated with concurrent aumolertinib and TRT between May 2020 and December 2022 at Shandong Cancer Hospital and Institute, Shandong, China. RP was diagnosed by two senior radiologists and then graded from 1 to 5 according to the Common Terminology Criteria for Adverse Events v5.0. All risk factors were evaluated by univariate and multivariate logistic regression analyses. RESULTS: A total of 49 patients were included, the incidence of grade ≥ 2 RP was 42.9%. Grade 2 and 3 RP were observed in 28.6% and 14.3% of patients, respectively. Grade 4 to 5 RP were not observed. the gross total volume (GTV) ≥ 21 ml and ipsilateral lung V20 ≥ 25% were risk factors for RP. The median progression-free survival (PFS) in the first-line therapy group and second-line therapy group were 23.5 months and 17.2 months, respectively (p = 0.10). CONCLUSIONS: Better local control is achieved with concurrent TRT and aumolertinib, and special attention should be given to controlling ipsilateral lung V20 and GTV to reduce the risk of RP.
Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Estudos Retrospectivos , Dosagem Radioterapêutica , Receptores ErbB/genéticaRESUMO
BACKGROUND: The relationship among body mass index (BMI), setup error and radiation pneumonitis is not clearly illustrated. OBJECTIVE: The present study aimed to investigate the role of BMI in non-small cell lung cancer (NSCLC) patients' radiation treatment, focusing on its relationship with setup error of patient positioning, the dosimetric parameters of intensity-modulated radiation therapy (IMRT) and the incidence of radiation pneumonitis. METHODS: This prospective observational study included 523 cases of NSCLC patients during 2020-2022. Patients were divided into different groups by different BMI. The setup error was obtained by cone beam CT (CBCT) at three positions, lateral (LAT), longitudinal (LNG) and vertical (VRT). IMRT dosimetric parameters of V5, V20, and mean dose were collected. RESULTS: Patients with BMI ≥28 kg/m2 showed significantly higher absolute values of LAT, LNG and VRT, higher V5, V20, mean dose, as well as higher total incidence of radiation pneumonitis and grade III radiation pneumonitis compared with patients with BMI <24 kg/m2 or 24-28 kg/m2. Spearman's analysis demonstrated that the absolute values of LAT, LNG and VRT were positively correlated with BMI, and positive correlation existed among BMI, dosimetric parameters and setup errors. ROC curves showed that LAT in setup errors and V5 in dosimetric parameters had the best diagnostic value for prediction of radiation pneumonitis. Only BMI, LAT, V5 and V20 were the independent risk factors for radiation pneumonitis. CONCLUSIONS: Setup error caused by higher BMI might be associated with the dosimetric parameters, as well as the incidence of radiation pneumonitis in NSCLC patients.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Radioterapia de Intensidade Modulada/efeitos adversos , Índice de Massa Corporal , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/radioterapia , Incidência , Dosagem Radioterapêutica , Estudos RetrospectivosRESUMO
PURPOSE: We hypothesized that after adoption of immune checkpoint inhibitor (ICI) consolidation for patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving concurrent chemoradiation therapy (cCRT), rates of symptomatic pneumonitis would increase, thereby supporting efforts to reduce lung radiation dose. METHODS AND MATERIALS: This single institution, multisite retrospective study included 783 patients with LA-NSCLC treated with definitive cCRT either before introduction of ICI consolidation (pre-ICI era cohort [January 2011-September 2017]; N = 448) or afterward (ICI era cohort [October 2017-December 2021]; N = 335). Primary endpoint was grade ≥2 pneumonitis (G2P) and secondary endpoint was grade ≥3 pneumonitis (G3P), per Common Terminology Criteria for Adverse Events v5.0. Pneumonitis was compared between pre-ICI era and ICI era cohorts using the cumulative incidence function and Gray's test. Inverse probability of treatment weighting (IPTW)-adjusted Fine-Gray models were generated. Logistic models were developed to predict the 1-year probability of G2P as a function of lung dosimetry. RESULTS: G2P was higher in the ICI era than in the pre-ICI era (1-year cumulative incidence 31.4% vs 20.1%; P < .001; IPTW-adjusted multivariable subdistribution hazard ratio, 2.03; 95% confidence interval, 1.53-2.70; P < .001). There was no significant interaction between ICI era treatment and either lung volume receiving ≥20 Gy (V20) or mean lung dose in Fine-Gray regression for G2P; however, the predicted probability of G2P was higher in the ICI era at clinically relevant values of lung V20 (≥24%) and mean lung dose (≥14 Gy). Cut-point analysis revealed a lung V20 threshold of 28% in the ICI era (1-year G2P rate 46.0% above vs 19.8% below; P < .001). Among patients receiving ICI consolidation, lung V5 was not associated with G2P. G3P was not higher in the ICI era (1-year cumulative incidence 7.5% vs 6.0%; P = .39; IPTW-adjusted multivariable subdistribution hazard ratio, 1.12; 95% confidence interval, 0.63-2.01; P = .70). CONCLUSIONS: In patients with LA-NSCLC treated with cCRT, the adoption of ICI consolidation was associated with an increase in G2P but not G3P. With ICI consolidation, stricter lung dose constraints may be warranted.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Estudos Retrospectivos , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/epidemiologia , Imunoterapia/efeitos adversosRESUMO
PURPOSE: Hypofractionated radiation therapy (HFRT) is a common treatment for thoracic tumors, typically delivered as 60 Gy in 15 fractions. We aimed to identify dosimetric risk factors associated with radiation pneumonitis in patients receiving HFRT at 4 Gy per fraction, focusing on lung V20, mean lung dose (MLD), and lung V5 as potential predictors of grade ≥2 pneumonitis. METHODS AND MATERIALS: All patients were treated with thoracic HFRT to 60 Gy in 15 fractions or 72 Gy in 18 fractions at a single health care system from 2013 to 2020. Tumors near critical structures (trachea, proximal tracheobronchial tree, esophagus, spinal cord, or heart) were considered central (within 2 cm), and those closer were classified as ultracentral (within 1 cm). The primary endpoint was grade ≥2 pneumonitis. Logistic regression analyses, adjusting for target size and dosimetric variables, were used to establish a dose threshold associated with <20% risk of grade ≥2 pneumonitis. RESULTS: During a median 24.3-month follow-up, 18 patients (16.8%) developed grade ≥2 radiation pneumonitis, with no significant difference between the 2 dose regimens (17.3% vs 16.3%, P = .88). Four patients (3.7%) experienced grade ≥3 pneumonitis, including 2 grade 5 cases. Patients with grade ≥2 pneumonitis had significantly higher lung V20 (mean 23.4% vs 14.5%, P < .001), MLD (mean 13.0 Gy vs 9.5 Gy, P < .001), and lung V5 (mean 49.6% vs 40.6%, P = .01). Dose thresholds for a 20% risk of grade ≥2 pneumonitis were lung V20 <17.7%, MLD <10.6 Gy, and V5 <41.3%. Multivariable analysis revealed a significant association between lung V20 and grade ≥2 pneumonitis (adjusted odds ratio, 1.48, P = .03). CONCLUSIONS: To minimize the risk of grade ≥2 radiation pneumonitis when delivering 4 Gy per fraction at either 60 Gy or 72 Gy, it is advisable to maintain lung V20<17.7%. MLD <10.6 Gy and V5<41.3% can also be considered as lower-priority constraints. However, additional validation is necessary before incorporating these constraints into clinical practice or trial planning guidelines.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Humanos , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Pneumonia/complicações , Estudos Retrospectivos , Dosagem RadioterapêuticaRESUMO
BACKGROUND: Intensity-modulated radiation therapy (IMRT) has been increasingly used as a new radiation modality for unresectable non-small cell lung cancer (NSCLC). The risk factors for radiation pneumonitis (RP) during consolidation durvalumab following concurrent chemoradiotherapy (CCRT) using IMRT have not been thoroughly investigated. METHODS: This retrospective study analyzed medical record data from consecutive patients diagnosed with NSCLC who underwent CCRT and consolidation durvalumab at our institution between April 2018 and September 2022. Since we adopted IMRT for the treatment of NSCLC in April 2020, these patients were categorized into two groups: those treated with IMRT after April 2020 and those treated with three-dimensional conformal radiotherapy (3D-CRT) before April 2020. RESULTS: A total of 31 patients underwent IMRT (the IMRT group), while 25 patients underwent 3D-CRT (the 3D-CRT group). In both groups, the total dose was 60 Gy in 30 fractions. The cumulative incidence of ≥ grade 2 RP at 12 months was significantly lower in the IMRT group than in the 3D-CRT group (27.0% vs. 64.0%, hazard ratio [HR]: 0.338, 95% confidence interval [CI]: 0.144-0.793, p = 0.013). In the multivariable analysis, V20 (≥ 25.6%, HR: 2.706, 95% CI: 1.168-6.269, p = 0.020) and radiotherapy technique (IMRT, HR: 0.414, 95% CI: 0.172-0.994, p = 0.048) were identified as significant risk factors for ≥ grade 2 RP. CONCLUSIONS: IMRT is associated with a lower rate of ≥ grade 2 RP in patients with NSCLC who received CCRT followed by durvalumab.
Assuntos
Anticorpos Monoclonais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/complicações , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Incidência , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/complicações , Dosagem Radioterapêutica , Radioterapia Conformacional/efeitos adversos , Radioterapia Conformacional/métodos , Quimiorradioterapia/efeitos adversosRESUMO
BACKGROUND: We sought to quantify diffuse parenchymal lung disease (DPLD) extent using quantitative computed tomography (CT) analysis and to investigate its association with radiation pneumonitis (RP) development in non-small cell lung cancer (NSCLC) patients receiving definitive concurrent chemoradiation therapy (CCRT). METHODS: A total of 82 NSCLC patients undergoing definitive CCRT were included in this prospective cohort study. Pretreatment CT scans were analyzed using quantitative CT analysis software. Low-attenuation area (LAA) features based on lung density and texture features reflecting interstitial lung disease (ILD) were extracted from the whole lung. Clinical and dosimetric factors were also evaluated. RP development was assessed using the Common Terminology Criteria for Adverse Events version 5.0. Univariable and multivariable logistic regression analyses were performed to identify independent risk factors for grade ≥3 (≥GR3) RP. RESULTS: RP was identified in 68 patients (73.9%), with nine patients (10.9%) experiencing ≥GR3 RP. Univariable logistic regression analysis identified excess kurtosis and high-attenuation area (HAA)_volume (cc) as significantly associated with ≥GR3 RP. Multivariable logistic regression analysis showed that the combined use of imaging features and clinical factors (forced expiratory volume in 1 second [FEV1], forced vital capacity [FVC], and CHEMO regimen) demonstrated the best performance (area under the receiver operating characteristic curve = 0.924) in predicting ≥GR3 RP. CONCLUSION: Quantified imaging features of DPLD obtained from pretreatment CT scans would predict the occurrence of RP in NSCLC patients undergoing definitive CCRT. Combining imaging features with clinical factors could improve the accuracy of the predictive model for severe RP.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/epidemiologia , Neoplasias Pulmonares/tratamento farmacológico , Estudos Prospectivos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/complicações , Estudos RetrospectivosRESUMO
BACKGROUND: We aim to identify the multifaceted risk factors that can affect the development of severe radiation pneumonitis (RP) in patients with non-small cell lung cancer (NSCLC) treated with curative high-dose radiotherapy with or without concurrent chemotherapy. METHODS: We retrospectively reviewed the medical records of 175 patients with stage-I-III NSCLC treated with curative thoracic X-ray radiotherapy at the Korea University Guro Hospital between June 2019 and June 2022. Treatment-related complications were evaluated using the Common Terminology Criteria for Adverse Events (version 4.03). RESULTS: The median follow-up duration was 15 months (range: 3-47 months). Idiopathic pulmonary fibrosis (IPF) as an underlying lung disease (P < 0.001) and clinical stage, regarded as the concurrent use of chemotherapy (P = 0.009), were associated with a high rate of severe RP. In multivariate analyses adjusting confounding variables, the presence of IPF as an underlying disease was significantly associated with severe RP (odds ratio [95% confidence interval] = 48.4 [9.09-347]; P < 0.001). In a subgroup analysis of stage-I-II NSCLC, the incidence of severe RP in the control, chronic obstructive pulmonary disease (COPD), and IPF groups was 3.2%, 4.3%, and 42.9%, respectively (P < 0.001). The incidence of severe RP was 15.2%, 10.7%, and 75.0% in the control, COPD, and IPF groups, respectively (P < 0.001) in the stage-III NSCLC group. CONCLUSIONS: This study revealed that IPF as an underlying lung disease and the concurrent use of chemotherapy are associated with a high rate of severe RP. In contrast, COPD did not increase the risk of pulmonary toxicity after receiving curative high-dose radiotherapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fibrose Pulmonar Idiopática , Pneumopatias , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Fatores de Risco , Doença Pulmonar Obstrutiva Crônica/complicaçõesRESUMO
BACKGROUND/AIM: Adjuvant radiotherapy (RT) for breast cancer can be associated with acute dermatitis (ARD) and pneumonitis (RP). Prevalence and risk factors were characterized. PATIENTS AND METHODS: This study included 489 breast cancer patients receiving adjuvant RT with conventional fractionation (CF) ± sequential or simultaneous integrated boost, or hypo-fractionation ± sequential boost. RT-regimen and 15 characteristics were investigated for grade ≥2 ARD and RP. RESULTS: Prevalence of grade ≥2 ARD and RP was 25.3% and 2.5%, respectively. On univariate analyses, ARD was significantly associated with CF and radiation boost (p<0.0001), age ≤60 years (p=0.008), Ki-67 ≥15% (p=0.012), and systemic treatment (p=0.002). On multivariate analysis, RT-regimen (p<0.0001) and age (p=0.009) were associated with ARD. Chronic inflammatory disease was significantly associated with RP on univariate (p=0.007) and multivariate (p=0.016) analyses. CONCLUSION: Risk factors for grade ≥2 ARD and RP were determined that may help identify patients who require closer monitoring during and after RT.
Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Radiodermite , Humanos , Pessoa de Meia-Idade , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/complicações , Pneumonite por Radiação/diagnóstico , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Radiodermite/diagnóstico , Radiodermite/epidemiologia , Radiodermite/etiologia , Fracionamento da Dose de Radiação , Neoplasias Pulmonares/complicaçõesRESUMO
Purpose: This prospective study investigated the incidence of radiation pneumonitis (RP) after immunotherapy followed by radiotherapy in non-small-cell lung cancer, analyzed the risk factors for RP, and explored the predictive performance of dosimetry and dosiomics. Methods & materials: Risk factors for grade ≥2 RP were calculated by using a logistic regression model. Predictive performance was compared on the basis of area under the curve values. Results: Grade ≥2 RP occurred in 16 cases (26.7%). The AUC values of V5 Gy, gray-level dependence matrix-small dependence high gray-level emphasis (GLDM-SDHGLE) and combined features were 0.685, 0.724 and 0.734, respectively. Conclusion: Smoking history, bilateral lung V5 Gy and GLDM-SDHGLE were independent risk factors for RP. Dosiomics can effectively predict RP.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/complicações , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/complicações , Pneumonite por Radiação/diagnóstico , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Estudos Prospectivos , Fatores de Risco , Estudos Retrospectivos , Dosagem RadioterapêuticaRESUMO
BACKGROUND: The study aims to identify the risk factors and develop a model for predicting grade ≥2 radiation pneumonitis (RP) for lung cancer patients treated with stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS: Clinical data, dosimetric data, and laboratory biomarkers from 186 patients treated with lung SBRT were collected. Univariate and multivariate logistic regression were performed to determine the predictive factors for grade ≥2 RP. Three models were developed by using the clinical, dosimetric, and combined factors, respectively. RESULTS: With a median follow-up of 36 months, grade ≥2 RP was recorded in 13.4% of patients. On univariate logistic regression analysis, clinical factors of age and lung volume, dosimetric factors of treatment durations, fractional dose and V10, and laboratory biomarkers of neutrophil, PLT, PLR, and Hb levels were significantly associated with grade ≥2 RP. However, on multivariate analysis, only age, lung volume, fractional dose, V10, and Hb levels were independent factors. AUC values for the clinical, dosimetric, and combined models were 0.730 (95% CI, 0.660-0.793), 0.711 (95% CI, 0.641-0.775) and 0.830 (95% CI, 0.768-0.881), respectively. The combined model provided superior discriminative ability than the clinical and dosimetric models (P < .05). CONCLUSION: Age, lung volume, fractional dose, V10, and Hb levels were demonstrated to be significant factors associated with grade ≥2 RP for lung cancer patients after SBRT. A novel model combining clinical, dosimetric factors, and laboratory biomarkers improved predictive performance compared with the clinical and dosimetric model alone.
Assuntos
Neoplasias Pulmonares , Pneumonite por Radiação , Radiocirurgia , Humanos , Neoplasias Pulmonares/cirurgia , Pneumonite por Radiação/diagnóstico , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Radiocirurgia/efeitos adversos , Pulmão , BiomarcadoresRESUMO
AIMS: Pneumonitis is a common and potentially deadly complication of combined chemoradiation and immune checkpoint inhibition (CRT-ICI) in patients with locally advanced non-small cell lung cancer (LA-NSCLC). In this study we sought to identify the risk factors for pneumonitis with CRT-ICI therapy in LA-NSCLC cases and determine its impact on survival. MATERIALS AND METHODS: We conducted a retrospective chart review of 140 patients with LA-NSCLC who underwent curative-intent CRT-ICI with durvalumab between 2018 and 2021. Pneumonitis was diagnosed by a multidisciplinary team of clinical experts. We used multivariable cause-specific hazard models to identify risk factors associated with grade ≥2 pneumonitis. We constructed multivariable Cox proportional hazard models to investigate the impact of pneumonitis on all-cause mortality. RESULTS: The median age of the cohort was 67 years; most patients were current or former smokers (86%). The cumulative incidence of grade ≥2 pneumonitis was 23%. Among survivors, 25/28 patients had persistent parenchymal scarring. In multivariable analyses, the mean lung dose (hazard ratio 1.14 per Gy, 95% confidence interval 1.03-1.25) and interstitial lung disease (hazard ratio 3.8, 95% confidence interval 1.3-11.0) increased the risk for pneumonitis. In adjusted models, grade ≥2 pneumonitis (hazard ratio 2.5, 95% confidence interval 1.0-6.2, P = 0.049) and high-grade (≥3) pneumonitis (hazard ratio 8.3, 95% confidence interval 3.0-23.0, P < 0.001) were associated with higher all-cause mortality. CONCLUSIONS: Risk factors for pneumonitis in LA-NSCLC patients undergoing CRT-ICI include the mean radiation dose to the lung and pre-treatment interstitial lung disease. Although most cases are not fatal, pneumonitis in this setting is associated with markedly increased mortality.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Quimiorradioterapia/efeitos adversos , Pneumonia/etiologia , Pneumonia/complicações , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/tratamento farmacológicoRESUMO
PURPOSE: Normal tissue complication probability (NTCP) models can be used to estimate the risk of radiation pneumonitis (RP). The aim of this study was to externally validate the most frequently used prediction models for RP, i.e., the QUANTEC and APPELT models, in a large cohort of lung cancer patients treated with IMRT or VMAT. [1-2] METHODS AND MATERIALS: This prospective cohort study, included lung cancer patients treated between 2013 and 2018. A closed testing procedure was performed to test the need for model updating. To improve model performance, modification or removal of variables was considered. Performance measures included tests for goodness of fit, discrimination, and calibration. RESULTS: In this cohort of 612 patients, the incidence of RP ≥ grade 2 was 14.5%. For the QUANTEC-model, recalibration was recommended which resulted in a revised intercept and adjusted regression coefficient (from 0.126 to 0.224) of the mean lung dose (MLD),. The APPELT-model needed revision including model updating with modification and elimination of variables. After revision, the New RP-model included the following predictors (and regression coefficients): MLD (B = 0.250), age (B = 0.049, and smoking status (B = 0.902). The discrimination of the updated APPELT-model was higher compared to the recalibrated QUANTEC-model (AUC: 0.79 vs. 0.73). CONCLUSIONS: This study demonstrated that both the QUANTEC- and APPELT-model needed revision. Next to changes of the intercept and regression coefficients, the APPELT model improved further by model updating and performed better than the recalibrated QUANTEC model. This New RP-model is widely applicable containing non-tumour site specific variables, which can easily be collected.
Assuntos
Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Pneumonite por Radiação/diagnóstico , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Estudos Prospectivos , Neoplasias Pulmonares/radioterapia , Probabilidade , Quimiorradioterapia/efeitos adversos , Dosagem RadioterapêuticaRESUMO
BACKGROUND: The current standard of care for patients with unresectable locally advanced non-small cell lung cancer (NSCLC) is chemoradiotherapy (CRT) combined with durvalumab consolidation therapy. However, radiotherapy (RT) always carries the risk of radiation pneumonitis (RP), which can preclude durvalumab continuation. In particular, the spread of interstitial lung disease (ILD) in low-dose areas or extending beyond the RT field often makes it difficult to determine the safety of continuation or rechallenging of durvalumab. Thus, we retrospectively analyzed ILD/RP after definitive RT with and without durvalumab, with assessment of radiologic features and dose distribution in RT. METHODS: We retrospectively evaluated the clinical records, CT imaging, and radiotherapy planning data of 74 patients with NSCLC who underwent definitive RT at our institution between July 2016 and July 2020. We assessed the risk factors for recurrence within one year and occurrence of ILD/RP. RESULTS: Kaplan-Meier method showed that ≥ 7 cycles of durvalumab significantly improved 1-year progression free survival (PFS) (p < 0.001). Nineteen patients (26%) were diagnosed with ≥ Grade 2 and 7 (9.5%) with ≥ Grade 3 ILD/RP after completing RT. There was no significant correlation between durvalumab administration and ≥ Grade 2 ILD/RP. Twelve patients (16%) developed ILD/RP that spread outside the high-dose (> 40 Gy) area, of whom 8 (67%) had ≥ Grade 2 and 3 (25%) had Grade 3 symptoms. In unadjusted and multivariate Cox proportional-hazards models adjusted for V20 (proportion of the lung volume receiving ≥ 20 Gy), high HbA1c level was significantly correlated with ILD/RP pattern spreading outside the high-dose area (hazard ratio, 1.842; 95% confidence interval, 1.35-2.51). CONCLUSIONS: Durvalumab improved 1-year PFS without increasing the risk of ILD/RP. Diabetic factors were associated with ILD/RP distribution pattern spreading in the lower dose area or outside RT fields, with a high rate of symptoms. Further study of the clinical background of patients including diabetes is needed to safely increase the number of durvalumab doses after CRT.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Estudos Retrospectivos , Quimioterapia de Consolidação/efeitos adversos , Doenças Pulmonares Intersticiais/complicações , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/epidemiologia , Fatores de Risco , Quimiorradioterapia/efeitos adversosRESUMO
Randomized studies evaluating hypofractionation and conventional fractionation radiotherapy treatments (RT) in patients with breast cancer have shown that hypofractionation achieves similar results to conventional fractionation in terms of survival and local control rates. It has also been shown that their long-term toxicities are similar. This study aimed to evaluate the effects of hypofractionated radiotherapy (H-RT) and conventional radiotherapy (C-RT) on lung toxicity and identify factors affecting this toxicity in patients with breast cancer. The study included 118 patients who underwent adjuvant RT following breast-conserving surgery (BCS). Out of these, 63 patients were assigned to receive C-RT, while the remaining 55 were assigned to receive H-RT. To clarify, we treated 63 patients with C-RT and 55 patients with H-RT. 60 patients were treated using 3-dimensional conformal radiotherapy (3DCRT) and 58 patients were treated using intensity modulated radiotherapy (IMRT). The patients were evaluated weekly for toxicity during radiotherapy (RT) treatment and were called every 3 months for routine controls after the treatment. The first control was performed 1 month after the treatment. Statistical analysis was performed using the SPSS20 program, and a P value ofâ <.005 was considered statistically significant. The study found that the median age of the participants was 54.9 years and tomographic findings were observed in 70 patients. Radiological findings were detected at a median of 5 months after RT. The mean lung dose (MLD) on the treated breast side (referred to as ipsilateral lung or OAR) was 10.4 Gy for the entire group. Among patients who received 18 MV energy in RT, those with an area volume (V20) of the lung on the treated breast side >18.5%, those with a mean dose of the treated breast side lung (ipsilateral lung) >10.5 Gy, and those who received concurrent hormone therapy had significantly more tomographic findings. However, patients treated with YART had fewer tomographic findings. No symptomatic patients were observed during the follow-up period. Our findings show that the risk of lung toxicity is similar with H-RT and C-RT, and H-RT can be considered an effective and safe treatment option for breast cancer. The key factors affecting the development of lung toxicity were found to be the type of RT energy used, RT to the side breast, volume receiving 20 Gy in the side lung, side lung mean dose, and simultaneous hormonal therapy.