Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.843
Filtrar
1.
J Environ Sci (China) ; 147: 677-687, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003082

RESUMO

Due to their resistance to degradation, wide distribution, easy diffusion and potential uptake by organisms, microplastics (MPs) pollution has become a major environmental concern. In this study, PEG-modified Fe3O4 magnetic nanoparticles demonstrated superior adsorption efficiency against polyethylene (PE) microspheres compared to other adsorbents (bare Fe3O4, PEI/Fe3O4 and CA/Fe3O4). The maximum adsorption capacity of PE was found to be 2203 mg/g by adsorption isotherm analysis. PEG/Fe3O4 maintained a high adsorption capacity even at low temperature (5°C, 2163 mg/g), while neutral pH was favorable for MP adsorption. The presence of anions (Cl-, SO42-, HCO3-, NO3-) and of humic acids inhibited the adsorption of MPs. It is proposed that the adsorption process was mainly driven by intermolecular hydrogen bonding. Overall, the study demonstrated that PEG/Fe3O4 can potentially be used as an efficient control against MPs, thus improving the quality of the aquatic environment and of our water resources.


Assuntos
Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Cinética , Adsorção , Polietileno/química , Nanopartículas de Magnetita/química , Polietilenoglicóis/química , Modelos Químicos
2.
Sci Rep ; 14(1): 20443, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227384

RESUMO

Corneal abrasion is a frequent complication in critically ill, intubated patients, potentially leading to visual impairment. This study compares the efficacy of three ocular care methods in preventing corneal abrasion among this vulnerable population. We conducted a randomized controlled trial involving 156 intubated adult patients admitted to the ICU. Participants were randomly allocated to one of three intervention groups (n = 52 per group): (1) polyethylene cover only, (2) polyethylene cover with artificial tear drops, and (3) polyethylene cover with Lubratex eye ointment. One eye per patient was randomly assigned as the control, receiving standard ICU eye care. Daily assessments over five days included a standardized dryness and corneal abrasion checklist, graded strip evaluation of eye dryness, and documentation of corneal abrasion incidence. Data were analyzed using descriptive and inferential statistics (SPSS-18). The incidence of corneal abrasion was significantly lower in the group receiving polyethylene cover with Lubratex eye ointment (4%) compared to the polyethylene cover with artificial tears group (36%, p < 0.001) and the polyethylene cover only group (60%, p < 0.001). The combined application of a polyethylene cover with Lubratex eye ointment effectively prevents corneal abrasion in intubated ICU patients. This method demonstrates superior efficacy compared to polyethylene covers used alone or with artificial tears. We recommend its implementation as standard practice for corneal abrasion prophylaxis in this high-risk population.Trial Registration. This study is registered with the Iranian Registry of Clinical Trials (IRCT201506294736N8) and can be accessed at www.IRCT.ir .


Assuntos
Lesões da Córnea , Unidades de Terapia Intensiva , Pomadas , Polietileno , Humanos , Masculino , Feminino , Polietileno/química , Pessoa de Meia-Idade , Pomadas/administração & dosagem , Lesões da Córnea/prevenção & controle , Idoso , Adulto , Lubrificantes Oftálmicos/administração & dosagem , Lubrificantes Oftálmicos/uso terapêutico , Soluções Oftálmicas/administração & dosagem , Estado Terminal
3.
World J Microbiol Biotechnol ; 40(10): 309, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179751

RESUMO

Polyethylene, one of the most used petroleum-derived polymers, causes serious environmental pollution. The ability of Pleurotus ostreatus to degrade UV-treated and untreated recycled and unused (new) low-density polyethylene (LDPE) films was studied. We determined the fungal biomass production, enzyme production, and enzyme yield. Changes in the chemical structure and surface morphology of the LDPE after fungal growth were analyzed using FTIR spectroscopy and SEM. Functional group indices and contact angles were also evaluated. In general, the highest Lac (6013 U/L), LiP (2432 U/L), MnP (995 U/L) and UP (6671 U/L) activities were observed in irradiated recycled LDPE (IrRPE). The contact angle of all samples was negatively correlated with fermentation time; the smaller the contact angle, the longer the fermentation time, indicating effective biodegradation. The IrRPE samples exhibited the smallest contact angle (49°) at 4 weeks, and the samples were fragmented (into two pieces) at 5 weeks. This fungus could degrade unused (new) LDPE significantly within 6 weeks. The biodegradation of LDPE proceeded faster in recycled than in unused samples, which can be enhanced by exposing LDPE to UV radiation. Enzymatic production during fungal growth suggest that LDPE degradation is initiated by laccase (Lac) followed by lignin peroxidase (LiP), whereas manganese peroxidase (MnP) and unspecific peroxygenase (UP) are involved in the final degradation process. This is the first experimental study on the fungal growth and its main enzymes involved in LDPE biodegradation. This fungus has great promise as a safe, efficient, and environmentally friendly organism capable of degrading LDPE.


Assuntos
Biodegradação Ambiental , Lacase , Pleurotus , Polietileno , Raios Ultravioleta , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Polietileno/química , Polietileno/metabolismo , Lacase/metabolismo , Fermentação , Reciclagem , Biomassa , Peroxidases/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Med Eng Phys ; 130: 104201, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39160015

RESUMO

Model-based Roentgen Stereophotogrammetric Analysis (RSA) is able to measure the migration of metallic prostheses with submillimeter accuracy through contour-detection and 3D surface model matching techniques. However, contour-detection is only possible if the prosthesis is clearly visible in the radiograph; consequently Model-based RSA cannot be directly used for polymeric materials due to their limited X-ray attenuation; this is especially clinically relevant for all-polyethylene implants. In this study the radiopacity of unicompartmental Ultra-High Molecular Weight Polyethylene (UHMWPE) knee bearings was increased by diffusing an oil-based contrast agent into the surface to create three different levels of surface radiopacity. Model-based RSA was performed on the bearings alone, the bearings alongside a metallic component held in position using a phantom, the bearings cemented into a Sawbone tibia, and the bearings at different distances from the femoral component. For each condition the precision and accuracy of zero motion of Model-based RSA were assessed. The radiopaque bearings could be located in the stereo-radiographs using Model-based RSA an accuracy comparable to metallic parts for translational movements (0.03 mm to 0.50 mm). For rotational movements, the accuracy was lower (0.1∘ to 3.0∘). The measurement accuracy was compared for all the radiopacity levels and no significant difference was found (p=0.08). This study demonstrates that contrast enhanced radiopaque polyethylene can be used for Model-based RSA studies and has equivalent translational measurement precision to metallic parts in the superior-inferior direction.


Assuntos
Fotogrametria , Análise Radioestereométrica , Imagens de Fantasmas , Polietileno/química , Polietilenos/química , Prótese do Joelho , Próteses e Implantes
5.
J Hazard Mater ; 478: 135596, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39178784

RESUMO

Although irregularly-shaped label-free microplastics (MPs) are predominantly distributed in the environment, non-destructive analysis of environmentally relevant MPs in organisms is still challenging. The purpose of the study is to suggest in vivo visual evidence of the uptake and effect of environmentally relevant MPs in organism. Transparent irregularly-shaped high-density polyethylene was selected as an environmentally relevant model MP and exposed to brine shrimp (Artemia franciscana). As a result, we suggest the application of SEM/EDX and coherent anti-Stokes Raman scattering (CARS) microspectroscopy as complementary tools to secure in vivo visual evidence of irregularly-shaped unlabeled MPs in living organisms without chemical digestion for biodistribution observations. Biological transmission electron microscopy also provides how ingested MPs physically affects the digestive tract in the brine shrimp which is rarely reported. In terms of environmental implications, this study would advance ecotoxicological research on microplastic pollution by providing a cutting-edge tool for investigating the bioavailability and ecotoxicity of environmentally relevant MPs in ecosystems.


Assuntos
Artemia , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Artemia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/farmacocinética , Polietileno/toxicidade , Polietileno/química , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Análise Espectral Raman , Microscopia Eletrônica de Transmissão
6.
J Hazard Mater ; 478: 135482, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39137551

RESUMO

New high-density polyethylene (HDPE) manufactured from different percentage of post-consumer recycled HDPE milk bottles was studied through two static and dynamic migration tests using saliva simulant to assess the potential hazard to children. Sixty-nine compounds were identified, including several additives used in PE synthesis such as alkanes, alkenes, antioxidants and plasticizers as well as non-intentionally added substances (NIAS) like degradation products such as 2,6-di-tert-butyl-1,4-benzoquinone, 2,4-di-tert-butylphenol, phenol, 2,5-bis(1,1-dimethylethyl)-, 3,5-di-tert-butyl-4-hydroxybenzaldehyde, and 3,5-di-tert-butyl-4-hydroxyacetophenone, or various residues from flavoring agents, cleaning products and essential oils. Some of these compounds as the isomers p and o t-butylcyclohexyl acetate, 3-Octanol, 3,7-dimethyl- and thujanol acetate (3-) pose a potential risk to children, as their concentrations exceed the recommended Cramer values for high percentages of recycling. This suggests improving recycling processes by incorporating advanced cleaning to remove residual products and contaminants.


Assuntos
Polietileno , Reciclagem , Polietileno/química , Humanos , Jogos e Brinquedos , Criança
7.
Environ Sci Pollut Res Int ; 31(39): 51504-51520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112900

RESUMO

This study aims to use beeswax, a readily available and cost-effective organic material, as a novel phase change material (PCM) within blends of low-density polyethylene (LDPE) and styrene-b-(ethylene-co-butylene)-b-styrene (SEBS). LDPE and SEBS act as support materials to prevent beeswax leakage. The physicochemical properties of new blended phase change materials (B-PCM) were determined using an X-ray diffractometer and an infrared spectrometer, confirming the absence of a chemical reaction within the materials. A scanning electron microscope was used for microstructural analysis, indicating that the interconnection of the structure allowed better thermal conductivity. Thermal gravimetric analysis revealed enhanced thermal stability for the B-PCM when combined with SEBS, especially within its operating temperature range. Analysis of phase change temperature and latent heat with differential scanning calorimetry showed no major difference in the melting point of the various PCM blends created. During the melting/solidification process, the B-PCMs possess excellent performance as characterized by W70/P30 (112.45 J.g-1) > W70/P20/S10 (94.28 J.g-1) > W70/P10/S20 (96.21 J.g-1) of latent heat storage. Additionally, the blends tend to reduce supercooling compared to pure beeswax. During heating and cooling cycles, the B-PCM exhibited minimal leakage and degradation, especially in blends containing SEBS. In comparison to the rapid temperature drop observed during the cooling process of W70/P30, the temperature decline of W70/P30 was slower and longer, as demonstrated by infrared thermography. The addition of LDPE to the PCM reduced melting time, indicating an improvement in the thermal energy storage reaction time to the demand. According to the obtained findings, increasing the SEBS concentration in the composite increased the thermal stability of the resulting PCM blends significantly. Despite the challenges mentioned earlier, SEBS proved to be an effective encapsulating material for beeswax, whereas LDPE served well as a supporting material. Leak tests were performed to find the ideal mass ratio, and weight loss was analyzed after multiple cycles of cooling and heating at 70 °C. The morphology, thermal characteristics, and chemical composition of the beeswax/LDPE/SEBS composite were all examined. Beeswax proves to be a highly effective phase change material for storing thermal energy within LDPE/SEBS blends.


Assuntos
Ceras , Ceras/química , Polietileno/química
8.
Waste Manag ; 187: 306-316, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089146

RESUMO

Plastic waste poses a critical environmental challenge for the world. The proliferation of waste plastic coffee pods exacerbates this issue. Traditional disposal methods such as incineration and landfills are environmentally unfriendly, necessitating the exploration of alternative management strategies. One promising avenue is the pyrolysis in-line reforming process, which converts plastic waste into hydrogen. However, traditional pyrolysis methods are costly due to inefficiencies and heat losses. To address this, for the first time, our study investigates the use of microwave to enhance the pyrolysis process. We explored microwave pyrolysis for polypropylene (PP), high-density polypropylene (HDPE), and waste coffee pods, with the latter primarily comprising polypropylene. Additionally, catalytic ex-situ pyrolysis of coffee pod pyrolysis over a nickel-based catalyst was investigated to convert the evolved gas into hydrogen. The single-stage microwave pyrolysis results revealed the highest gas yield at 500 °C for HDPE, and 41 % and 58 % (by mass) for waste coffee pods and polypropylene at 700 °C, respectively. Polypropylene exhibited the highest gaseous yield, suggesting its readiness for pyrolytic degradation. Waste coffee pods uniquely produced carbon dioxide and carbon monoxide gases because of the oxygen present in their structure. Catalytic reforming of evolved gas from waste coffee pods using a 5 % nickel loaded activated carbon catalyst, yielded 76 % (by volume) hydrogen at 900 °C. These observed results were supported by elemental balance analysis. These findings highlight that two-stage microwave and catalysis assisted pyrolysis could be a promising method for the efficient management of waste coffee pods, particularly for producing clean energy.


Assuntos
Café , Hidrogênio , Micro-Ondas , Polietileno , Polipropilenos , Pirólise , Polipropilenos/química , Hidrogênio/química , Café/química , Catálise , Polietileno/química , Eliminação de Resíduos/métodos
9.
PLoS One ; 19(7): e0305143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008505

RESUMO

Concrete structures are susceptible to cracking, which can compromise their integrity and durability. Repairing them with ordinary Portland cement (OPC) paste causes shrinkage cracks to appear in the repaired surface. Alkali-activated binders offer a promising solution for repairing such cracks. This study aims to develop an alkali-activated paste (AAP) and investigate its effectiveness in repairing concrete cracks. AAPs, featuring varying percentages (0.5%, 0.75%, 1%, 1.25%, 1.5%, and 1.75%) of polyethylene (PE) fibers, are found to exhibit characteristics such as strain hardening, multiple plane cracking in tension and flexure tests, and stress-strain softening in compression tests. AAP without PE fibers experienced catastrophic failure in tension and flexure, preventing the determination of its stress-strain relationship. Notably, AAPs with 1.25% PE fibers demonstrated the highest tensile and flexural strength, exceeding that of 0.5% PE fiber reinforced AAP by 100% in tension and 70% in flexure. While 1% PE fibers resulted in the highest compressive strength, surpassing AAP without fibers by 17%. To evaluate the repair performance of AAP, OPC cubes were cast with pre-formed cracks. These cracks were induced by placing steel plates during casting and were designed to be full and half-length with widths of 1.5 mm and 3 mm. AAP both with and without PE fibers led to a substantial improvement in compressive strength, reducing the initial strength loss of 30%-50% before repair to a diminished range of 2%-20% post-repair. The impact of PE fiber content on the compressive strength of repaired OPC cube is marginal, providing more flexibility in using AAP with any fiber percentage while still achieving effective concrete crack repair. Considering economic and environmental factors, along with observed mechanical enhancements, AAPs show promising potential for widespread use in concrete repair and related applications, contributing valuable insights to the field of sustainable construction materials.


Assuntos
Álcalis , Materiais de Construção , Teste de Materiais , Polietileno , Polietileno/química , Álcalis/química , Força Compressiva , Resistência à Tração , Estresse Mecânico
10.
Oper Dent ; 49(4): 455-464, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38978307

RESUMO

OBJECTIVE: To evaluate the effect of polyethylene fiber-reinforcement on the fracture resistance and fracture mode of extensive resin-based composite (RBC) restorations in structurally compromised maxillary premolars. METHODS AND MATERIALS: Maxillary premolars (54) with specific dimensions and extracted for orthodontic reasons were used. Following mesio-occluso-distal (MOD) cavity preparation and endodontic access, teeth were randomly assigned to one of three restorative protocols (n=18): RBC applied incrementally (I) or reinforced with woven polyethylene fibers (Ribbond) placed horizontally (H) or U-shaped (U). Restored teeth were stored for 45 days in distilled water at 37°C and then loaded monotonically until fracture. Half of the specimens in each group received axial loading (A) and the other half was loaded paraxially (PA). Fracture load data was assessed using two-way analysis of variance and Tukey's post hoc test for multiple comparisons (α=0.05). The fracture initiation and propagation path were analyzed using stereomicroscopy and scanning-electron microscopy. RESULTS: No significant differences were observed for the fracture strength among loading configurations, except for groups IA (825 N) and HA (553 N). Fracture initiated and propagated mainly at and through the RBC restoration in the I group, whereas a shift to the interface was observed in both polyethylene fiber-reinforced groups. Blocking and bridging of cracks were identified around the fibers, especially in specimens of group U. CONCLUSIONS: Incorporation of woven polyethylene fibers to reinforce extensive MOD resin-based composite restorations on endodontically treated premolars reduced the occurrence of cohesive fractures in the restorative material but was unable to increase the fracture resistance of the affected teeth.


Assuntos
Dente Pré-Molar , Resinas Compostas , Falha de Restauração Dentária , Restauração Dentária Permanente , Análise do Estresse Dentário , Humanos , Resinas Compostas/uso terapêutico , Resinas Compostas/química , Técnicas In Vitro , Restauração Dentária Permanente/métodos , Polietileno/química , Polietileno/uso terapêutico , Microscopia Eletrônica de Varredura , Teste de Materiais , Fraturas dos Dentes/prevenção & controle , Dente não Vital/terapia , Polietilenos
11.
Microbes Environ ; 39(3)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39085141

RESUMO

Polyethylene (PE), a widely used recalcitrant synthetic polymer, is a major global pollutant. PE has very low biodegradability due to its rigid C-C backbone and high hydrophobicity. Although microorganisms have been suggested to possess PE-degrading enzymes, our understanding of the PE biodegradation process and its overall applicability is still lacking. In the present study, we used an artificial bacterial consortium for PE biodegradation to compensate for the enzyme availability and metabolic capabilities of individual bacterial strains. Consortium members were selected based on available literature and preliminary screening for PE-degrading enzymes, including laccases, lipases, esterases, and alkane hydroxylases. PE pellets were incubated with the consortium for 200 days. A next-generation sequencing ana-lysis of the consortium community of the culture broth and on the PE pellet identified Rhodococcus as the dominant bacteria. Among the Rhodococcus strains in the consortium, Rhodococcus erythropolis was predominant. Scanning electron microscopy (SEM) revealed multilayered biofilms with bacteria embedded on the PE surface. SEM micrographs of PE pellets after biofilm removal showed bacterial pitting and surface deterioration. Multicellular biofilm structures and surface biodeterioration were observed in an incubation of PE pellets with R. erythropolis alone. The present study demonstrated that PE may be biodegraded by an artificially constructed bacterial consortium, in which R. erythropolis has emerged as an important player. The results showing the robust colonization of hydrophobic PE by R. erythropolis and that it naturally possesses and extracellularly expresses several target enzymes suggest its potential as a host for further improved PE biodeterioration by genetic engineering technology using a well-studied host-vector system.


Assuntos
Biodegradação Ambiental , Biofilmes , Consórcios Microbianos , Polietileno , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Polietileno/metabolismo , Polietileno/química , Biofilmes/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura
12.
Sci Rep ; 14(1): 16476, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014021

RESUMO

Pyrolytic synergistic interactions, in which the production of pyrolyzates is enhanced or inhibited, commonly occur during the co-pyrolysis of different polymeric materials, such as plastics and biomass. Although these interactions can increase the yield of desired pyrolysis products under controlled degradation conditions, the desired compounds must be separated from complex pyrolyzates and further purified. To balance these dual effects, this study was aimed at examining pyrolytic synergistic interactions during slow heating co-pyrolysis of biodegradable plastics including polylactic acid (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexaoate) (PHBH) and petroleum-based plastics including high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). Comprehensive investigations based on thermogravimetric analysis, pyrolysis-gas chromatography/mass spectrometry, and evolved gas analysis-mass spectrometry revealed that PLA and PHBH decompose at lower temperatures (273-378 °C) than HDPE, PP, and PS (386-499 °C), with each polymer undergoing independent decomposition without any pyrolytic interactions. Thus, the independent pyrolysis of biodegradable plastics, such as PLA and PHBH, with common plastics, such as HDPE, PP, and PS, can theoretically be realized through temperature control, enabling the selective recovery of their pyrolyzates in different temperature ranges. Thus, pyrolytic approaches can facilitate the treatment of mixed biodegradable and common plastics.


Assuntos
Plásticos Biodegradáveis , Poliésteres , Polipropilenos , Pirólise , Poliésteres/química , Plásticos Biodegradáveis/química , Polipropilenos/química , Plásticos/química , Poliestirenos/química , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Termogravimetria , Polietileno/química
13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000151

RESUMO

Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.


Assuntos
Hemoglobinas , Oxigênio , Plásticos , Polipropilenos , Hemoglobinas/química , Hemoglobinas/metabolismo , Adsorção , Oxigênio/química , Oxigênio/metabolismo , Plásticos/química , Polipropilenos/química , Polietileno/química , Microplásticos/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124882, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068844

RESUMO

This research aims to study the effects of ultraviolet C (UVC) radiation on low-density polyethylene (LDPE) food packaging. Main objectives include evaluating LDPE degradation and detecting UVC radiation using thermoluminescent dosimeters (TLDs) placed under LDPE samples. Results confirm accurate UVC detection after one hour of exposure, providing a useful tool for optimize food treatment procedures. ATR-FTIR spectroscopy analysis revealed subtle alterations (<8 % transmittance relative) in UVC-irradiated LDPE samples, including possible CH breakage (2910 and 2848 cm-1) and potential CC bond vibrations (1470 cm-1), among others. However, observed variations may stem from LDPE properties rather than entirely from UVC radiation. A comparative study of UVC-induced thermoluminescence (TL) emissions provided insights into various TLDs materials. TL kinetic analysis, using computerised glow curve deconvolution (CGCD) method, unveiled trap charge activation due to UVC exposure, including partial ionization, bleaching effect and photo-transfer (PTTL) processes. LDPE samples amplified UVC-TL responses, revealing intensity differences between the TLDs attributed to the PTTL process, accentuated by the lack of an annealing treatment. Additionally, chemical composition of the TL detectors such as, type, concentration, number, oxidation states and ionic radii of their dopants may influence UVC-TL response. Consequently, TL intensity ratios follow as: GR-200 (LiF: Mg, Cu, P) > TLD-100 (LiF: Ti, Mg) > TLD-400 (CaF2: Mn) > TLD-200 (CaF2: Dy). Thus, GR-200 detects ionizing radiation but cannot distinguish between ionizing and non-ionizing UVC radiation, while TLD-100 has limited effectiveness as a UVC radiation detector. In contrast, TLD-400 is suitable for detecting UVC radiation and TLD-200 emerges as the most favorable UVC detector, showing consistent response levels and minimal PTTL effect placed under the LDPE samples without the need of a thermal annealing treatment that makes the TLD-200 to be reusable in a low-cost measurement protocol.


Assuntos
Embalagem de Alimentos , Polietileno , Raios Ultravioleta , Polietileno/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Dosimetria Termoluminescente/métodos
15.
Environ Sci Technol ; 58(29): 13047-13055, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38977269

RESUMO

Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 µm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 µm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 µg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.


Assuntos
Agricultura , Cromatografia Gasosa-Espectrometria de Massas , Plásticos , Polietileno , Pirólise , Poluentes do Solo , Solo , Polietileno/química , Solo/química , Poluentes do Solo/análise , Espectrometria de Massas em Tandem , Microplásticos/análise , Polietilenotereftalatos/química , Monitoramento Ambiental/métodos
16.
Chemosphere ; 363: 142814, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986773

RESUMO

There is a lack of agreement on a suitable container material for per- and polyfluoroalkyl substances (PFAS) analysis, particularly at trace levels. In this study, the losses of 18 short- and long-chain (C4-C10) PFAS to commonly used labware materials (high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), polypropylene co-polymer (PPCO), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and glass were investigated. The influence of sample storage and preparation conditions, i.e., storage time, solvent composition, storage temperatures (4 °C and 20 °C), and sample agitation techniques (shaking and centrifugation) on PFAS losses to the container materials were investigated. The results showed higher losses for most of the considered PFAS (up to 50.9%) in 100% aqueous solutions after storage for 7 days regardless of the storage temperature compared to those after 3 days. Overall, the order of losses to different materials varied for individual PFAS, with the highest losses of long-chain PFAS observed to PP and HDPE after 7-day storage at room temperature. The addition of methanol to aqueous PFAS solutions reduced the losses of long-chain PFAS to all tested materials. The use of sample centrifugation and shaking did not influence the extent of losses for most of the PFAS in 80:20 water:methanol (%, v/v) to container materials except for 8:2 fluorotelomer sulfonic acid (8:2 FTS), 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS), perfluorodecanoic acid (PFDA) and 4:2 fluorotelomer sulfonic acid (4:2 FTS). This study demonstrates lower losses of both long- and short-chain PFAS to glass and PET. It also highlights the need for caution when deciding on sample preparatory steps and storage during the analysis of PFAS.


Assuntos
Fluorocarbonos , Fluorocarbonos/análise , Fluorocarbonos/química , Polietilenotereftalatos/química , Temperatura , Polietileno/química , Polipropilenos/química , Politetrafluoretileno/química , Vidro/química , Poliestirenos/química
17.
Chemosphere ; 363: 142833, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002654

RESUMO

In this study, we examined the aging characteristics of polyethylene (PE) and polylactic acid (PLA) microplastics (MPs), examining the adsorption behaviors and mechanisms concerning Cd(II) and Cr(VI) under both single and binary systems. The results revealed that aging treatment changed the physicochemical properties of MPs. The aging mechanisms of PLA and PE MPs were shown to be similar by the 2D-FTIR-COS study. These mechanisms involve the formation of oxygen-containing functional groups through the combination of carbon chain breakdown and oxygen. Aged MPs had a greater ability to adsorb metal ions than pristine MPs, with PLA MPs outperforming PE MPs. After 30 days of aging, Cd(II) adsorption increased by 40.61 % and 25.49 % for PE and PLA MPs, respectively, while Cr(VI) adsorption increased by 37.50 % and 69.29 %, respectively. The adsorption ability of PE and PLA MPs with Cd(II) or Cr(VI) under binary systems was less than that under single systems, with Cd(II) exhibiting more adsorption competitiveness than Cr(VI). Humic acid (HA), ionic species and strength, solution pH, and adsorption of Cd(II) and Cr(VI) were found to be significantly correlated. Further investigation into the adsorption mechanisms of Cd(II) and Cr(VI) on PE and PLA MPs revealed that pore-filling, electrostatic interactions, complexation, and hydrogen bonding play important roles in the adsorption process. The study's conclusions are crucial for assessing the risk associated with concurrent contamination by metal ions and microplastics.


Assuntos
Cádmio , Cromo , Microplásticos , Poliésteres , Polietileno , Poluentes Químicos da Água , Poliésteres/química , Adsorção , Cádmio/química , Polietileno/química , Poluentes Químicos da Água/química , Microplásticos/química , Cromo/química , Substâncias Húmicas
18.
Chemosphere ; 363: 142934, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053781

RESUMO

Microplastics (MPLs) are contaminants of emerging concern (CECs) ubiquitous in aquatic environments, which can be bioaccumulated along the food chain. In this study, the accumulation of polyethylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) microplastics (MPLs) of sizes below 63 µm was assessed in Mediterranean mussels (Mytilus galloprovincialis spp). Moreover, the potential of mussels to uptake and bioaccumulate other organic contaminants, such as triclosan (TCS) and per- and polyfluoroalkyl substances (PFASs), was evaluated with and without the presence of MPLs. Then, the modulation of MPLs in the human bioaccessibility of co-contaminants was assessed by in vitro assays that simulated the human digestion process. Exposure experiments were carried out in 15 L marine microcosms. The bioaccumulation and bioaccessibility of PE, PS, PET, and co-contaminants were assessed by means of liquid chromatography -size exclusion chromatography-coupled to high-resolution mass spectrometry (LC(SEC)-HRMS). Our outcomes confirm that MPL bioaccumulation in filter-feeding organisms is a function of MPL chemical composition and particle sizes. Finally, despite the lower accumulation and bioaccumulation of PFASs in the presence of MPLs, the bioaccessibility assays revealed that PFASs bioaccessibility was favoured in the presence of MPLs. Since part of the bioaccumulated PFASs are adsorbed onto MPL surfaces by hydrophobic and electrostatic interactions, these interactions easily change with the pH during digestion, and the PFASs bioaccessibility increases.


Assuntos
Bioacumulação , Microplásticos , Mytilus , Poluentes Químicos da Água , Animais , Microplásticos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Mytilus/metabolismo , Polietileno/química , Polietileno/metabolismo , Poliestirenos/química , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Humanos , Bivalves/metabolismo , Triclosan/metabolismo , Cadeia Alimentar , Monitoramento Ambiental
19.
Environ Sci Pollut Res Int ; 31(35): 47974-47990, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017862

RESUMO

This study investigated the role of ultraviolet (UV) radiation and oxidation in high-density polyethylene microplastics (2-15 µm) and nanoplastics (0.2-9.9 µm) (NMPs) on particle chemistry, morphology, and reactivity with cadmium (Cd). Additionally, toxicity of NMPs alone and with Cd was evaluated using RTgutGC cells, a model of the rainbow trout (Oncorhynchus mykiss) intestine. The role on NMPs on Cd bioaccumulation in RTgutGC cells was also evaluated. Dynamic light scattering indicated that after UV radiation NPs agglomerated size increased from 0.8 to 28 µm, and to 8 µm when Cd was added. Oxidized MPs agglomerated size increased from 11 and 7 to 46 and 27 µm in non-UV- and UV-aged oxidized MPs when adding Cd, respectively. Cd-coated particles exhibited generally significantly higher zeta potential than non-Cd-coated particles, while attenuated total reflectance-Fourier transform infrared spectroscopy showed that the functional chemistry of the particles was oxidized and modified after being exposed to UV radiation. Presence of NMPs resulted in a significant decrease in Cd bioaccumulation in RTgutGC cells (100.5-87.9 ng Cd/mg protein) compared to Cd alone (138.1 ng Cd/mg protein), although this was not quite significant for co-exposures with UV-aged NPs (105.7 ng Cd/mg protein). No toxicity was observed in RTgutGC cells exposed to NMPs alone for 24 h. Moreover, co-exposures with Cd indicated that NMPs reduce the toxicity of Cd. Altogether these results show that UV aging enhances NMP surface reactivity, increasing Cd absorption in solution, which resulted in a reduction in Cd bioavailability and toxicity.


Assuntos
Bioacumulação , Cádmio , Oncorhynchus mykiss , Polietileno , Raios Ultravioleta , Animais , Cádmio/toxicidade , Polietileno/toxicidade , Polietileno/química , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Intestinos/efeitos dos fármacos , Oxirredução
20.
J Hazard Mater ; 477: 135241, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032183

RESUMO

Microplastics (MPs) with different physical-chemical properties are considered as vectors for the propagation of microbes in aquatic environments. It remains unclear how plastic types impact on the plastisphere and whether different MPs spread microbes more rapidly than natural materials in microbes across distinct water bodies as proposed previously. We used in-situ incubation to investigate the microbes attached on MPs of polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC), versus that on two natural microcarriers (quartz sands and bamboo) during the travel from aquaculture ponds with impacted by fish farming to adjacent freshwater stream. The results showed that the microbial communities on the carriers were shaped not only by environmental conditions, which were primary determinants but also by carrier types. All the tested plastics did not carry more microbes than the natural carriers during the journey. The biofilm community composition on PVC is distinct from that on PE and PP MPs and natural carriers. The plastisphere of PE and PP kept microbial proportions as natural materials did but PVC retained less than nature materials. Bamboo carried more potential pathogens than plastic polymers and quartz. The results indicated that the communities of plastisphere is polymer-type dependent, and, compared with the natural materials, MPs did not show enhanced propagation of microbes, including pathogens, cross distinct environments.


Assuntos
Aquicultura , Microbiota , Microplásticos , Lagoas , Lagoas/microbiologia , Rios/microbiologia , Rios/química , Biofilmes , Poluentes Químicos da Água , Polietileno/química , Cloreto de Polivinila/química , Areia/microbiologia , Bactérias , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...