Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Nutrients ; 16(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39125431

RESUMO

Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.


Assuntos
Disponibilidade Biológica , Frutas , Polifenóis , Polifenóis/farmacologia , Polifenóis/farmacocinética , Humanos , Frutas/química , Verduras/química , Metabolismo Secundário , Nanopartículas , Suplementos Nutricionais
2.
Food Funct ; 15(15): 8143-8152, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39011755

RESUMO

"Horchata de chufa" is a beverage produced from tiger nut tubers, which yields a high amount of by-product. This study explored the functional properties of the Spanish tiger nut beverage (TNB) and its by-product (TNBP) together with the bioaccessibility and bioavailability of polyphenols in vitro. TNB and TNBP were characterized for polyphenols via LC/MS/MS and underwent in vitro digestion (INFOGEST). The total antioxidant capacity (TAC) of all bioaccessible fractions and digestion residues was assessed. Intestinal bioaccessible fractions were tested for the ability to inhibit the activity of digestive enzymes (α-amylase, α-glucosidase, and lipase) and the content of polyphenols, whose bioavailability was assessed in a Caco-2 cell model. Thirteen polyphenols were quantified and found to be more abundant in TNB (603 ± 1.4 µg g-1 DW) than in TNBP (187 ± 1.0 µg g-1 DW). Polyphenol bioaccessibility was higher for TNBP than that for TNB (57% vs. 27%), and despite a similar TAC of the intestinal bioaccessible fractions (10.2 ± 0.1 µmoL vs. 9.2 ± 0.03 µmoL eq. Trolox per g DW for TNB and TNBP, respectively), the different patterns of polyphenols released upon digestion suggested the higher ability of TNBP fraction to inhibit α-glucosidase and lipase. TNBP digestion residue showed higher TAC than TNB. Moreover, TNB polyphenols exhibited over 80% bioavailability, whereas TNBP polyphenols' bioavailability ranged from 62% to 84%. Overall, the findings demonstrated that TNBP maintains a high nutritional value, thus suggesting its possible reuse in innovative, healthy, and sustainable foods.


Assuntos
Disponibilidade Biológica , Digestão , Polifenóis , Polifenóis/farmacocinética , Polifenóis/metabolismo , Humanos , Células CACO-2 , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Nozes/química , Bebidas/análise , alfa-Glucosidases/metabolismo , Lipase/metabolismo , Espectrometria de Massas em Tandem , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia
3.
Mol Pharm ; 21(8): 3951-3966, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39049477

RESUMO

In this research, we utilized molecular simulations to create co-amorphous materials (CAMs) of ceritinib (CRT) with the objective of improving its solubility and bioavailability. We identified naringin (NRG) as a suitable co-former for CRT CAMs based on binding energy and intermolecular interactions through computational modeling. We used the solvent evaporation method to produce CAMs of CRT and NRG, expecting to enhance both solubility and bioavailability simultaneously. The solid-state characterization using techniques like differential scanning calorimeter, X-ray powder diffraction, and Fourier-transform infrared spectroscopy affirmed the formation of a single amorphous phase and the presence of intermolecular interactions between CRT and NRG in the CAMs. These materials remained physically stable for up to six months under dry conditions at 40 °C. Moreover, the CAMs demonstrated significant improvements in the solubility and dissolution of CRT (specifically in the ratio CRT:NRG 1:2). This, in turn, led to an increase in cytotoxicity, apoptotic cells, and G0/G1 phase inhibition in A549 cells compared to CRT alone. Furthermore, CRT permeability is also improved twofold, as estimated by the everted gut sac method. The enhanced solubility of CAMs also positively affected the pharmacokinetic parameters. When compared to the physical mixture, the CAMs of CRT:NRG 2:1 exhibited a 2.1-fold increase in CRT exposure (AUC0-t) and a 2.4-fold increase in plasma concentration (Cmax).


Assuntos
Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas , Flavanonas , Neoplasias Pulmonares , Polifenóis , Solubilidade , Flavanonas/química , Flavanonas/farmacocinética , Flavanonas/administração & dosagem , Humanos , Polifenóis/química , Polifenóis/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Células A549 , Animais , Apoptose/efeitos dos fármacos , Masculino , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
4.
Food Funct ; 15(14): 7478-7490, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38915263

RESUMO

People are increasingly preparing milk tea using plant-based milks rather than cow's milk, e.g., vegans, those with lactose intolerance, and those with flavor preferences. However, adding plant-based milks to tea may impact the digestion, release, and bioaccessibility of nutrients and nutraceuticals in both the tea and milk. In this study, oat milk tea model systems (OMTMSs) containing different fat and tea polyphenol concentrations were used to explore the impact of tea on macronutrient digestion in oat milk, as well as the impact of oat milk matrix on the polyphenol bioaccessibility in the tea. An in vitro gastrointestinal model that mimics the mouth, stomach, and small intestine was used. Tea polyphenols (>0.25%) significantly reduced the glucose and free fatty acids released from oat milk after intestinal digestion. Tea polyphenols (>0.10%) also inhibited protein digestion in oat milk during gastric digestion but not during intestinal digestion. The bioaccessibility of the polyphenols in the tea depended on the fat content of oat milk, being higher for medium-fat (3.0%) and high-fat (5.8%) oat milk than low-fat (1.5%) oat milk. Liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis showed that lipids improved the tea polyphenol bioaccessibility by influencing the release of flavonoids and phenolic acids from the food matrices. These results provide important information about the impact of tea on the gastrointestinal fate of oat milk, and vice versa, which may be important for enhancing the healthiness of plant-based beverages.


Assuntos
Avena , Digestão , Trato Gastrointestinal , Polifenóis , Chá , Polifenóis/metabolismo , Polifenóis/farmacocinética , Avena/química , Avena/metabolismo , Trato Gastrointestinal/metabolismo , Chá/química , Humanos , Disponibilidade Biológica , Animais , Nutrientes/metabolismo , Nutrientes/análise , Leite/química , Leite/metabolismo , Modelos Biológicos , Espectrometria de Massas em Tandem
5.
Int J Biol Macromol ; 271(Pt 2): 132511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772471

RESUMO

Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP. The ratio of SA/GG significantly affects the network structure of IPN hydrogels and the performance of delivering GTP. The hydrogel formed by interpenetrating 20 % GG with 80 % SA as the main network had the highest water uptake (55 g/g), holding capacity (950 mg/g), and freeze-thaw stability, with springiness reaching 0.933 and hardness reaching 1300 g, which due to the filling effect and non-covalent interaction. Rheological tests showed that the crosslink density of IPN hydrogel in SA-dominated network was improved by the addition of GG to make it better bound to GTP, and the higher water uptake meant that the system could absorb more GTP-containing solution. This IPN hydrogel maintained 917.3 mg/g encapsulation efficiency at the highest loading capacity (1080 mg/g) in tests as delivery system. In in vitro digestion simulations, owing to the pH responsiveness, the IPN hydrogel reduced the loss of GTP in gastric fluid, achieving a bioaccessibility of 71.6 % in the intestinal tract.


Assuntos
Disponibilidade Biológica , Hidrogéis , Polifenóis , Chá , Hidrogéis/química , Polifenóis/química , Polifenóis/farmacocinética , Chá/química , Alginatos/química , Polissacarídeos Bacterianos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Reologia , Portadores de Fármacos/química
6.
Food Res Int ; 183: 114206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760137

RESUMO

Yerba mate is increasingly acknowledged for its bioactive properties and is currently being incorporated into various food and pharmaceutical products. When roasted, yerba mate transforms into mate tea, consumed as a hot aqueous infusion, and has gained popularity. This study investigated the bioaccessibility of phenolic compounds, protein-polyphenol interactions, antioxidant activity, and bioactive peptides in roasted yerba mate infusions, utilizing whole, semi-skimmed, and skimmed bovine milk models. The phytochemical profile of roasted yerba mate was analyzed in infusions with water and milk (whole, semi-skimmed, and skimmed), before and after in vitro digestion, identifying 18 compounds that exhibited variations in composition and presence among the samples. Bioavailability varied across different milk matrices, with milk being four times more efficient as a solvent for extraction. Gastric digestion significantly impacted (p < 0.05) the release of phenolic compounds, such as chlorogenic acid and rutin, with only chlorogenic acid remaining 100 % bioavailable in the infusion prepared with skimmed milk. Protein-polyphenol interaction did not influence protein digestion in different infusions, as there was a similarity in the hydrolysis pattern during the digestive process. Changes in antioxidant activity during digestion phases, especially after intestinal digestion in milk infusions, were related to alterations in protein structures and digestive interactions. The evaluation of total phenolic compounds highlighted that skimmed milk infusion notably preserved these compounds during digestion. Peptidomic analysis identified 253, 221, and 191 potentially bioactive peptides for whole, semi-skimmed, and skimmed milk-digested infusions, respectively, with a focus on anti-inflammatory and anticancer activities, presenting a synergistic approach to promote health benefits. The selection of milk type is crucial for comprehending the effects of digestion and interactions in bioactive compound-rich foods, highlighting the advantages of consuming plant infusions prepared with milk.


Assuntos
Antioxidantes , Disponibilidade Biológica , Digestão , Ilex paraguariensis , Leite , Peptídeos , Fenóis , Polifenóis , Animais , Ilex paraguariensis/química , Antioxidantes/farmacocinética , Leite/química , Bovinos , Fenóis/análise , Peptídeos/química , Polifenóis/farmacocinética , Extratos Vegetais/química
7.
J Ethnopharmacol ; 330: 118229, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670403

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY: To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS: Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS: Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION: The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.


Assuntos
Metabolômica , Polifenóis , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Thymus (Planta) , Animais , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Thymus (Planta)/química , Polifenóis/farmacologia , Polifenóis/farmacocinética , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/farmacocinética , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética
8.
Redox Biol ; 71: 103095, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428187

RESUMO

This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.


Assuntos
Disponibilidade Biológica , Polifenóis , Humanos , Polifenóis/metabolismo , Polifenóis/farmacocinética , Microbioma Gastrointestinal , Flavonoides/metabolismo
9.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209203

RESUMO

Fifty (50) phytocompounds from several subclasses of polyphenols, chosen based on their abundance in the plant world, were analyzed through density functional methods, using computational tools to evaluate their oral availability and particular bioactivity on several cell modulators; key descriptors and molecular features related to the electron density and electrostatic potential for the lowest energy conformers of the investigated molecules were computed. An analysis of the bioactivity scores towards six cell modulators (GPCR ligand, ion channel modulator, kinase inhibitor, nuclear receptor ligand, protease inhibitor and enzyme inhibitor) was also achieved, in the context of investigating their potential side effects on the human digestive processes. Summarizing, computational results confirmed in vivo and in vitro data regarding the high bioavailability of soy isoflavones and better bioavailability of free aglycones in comparison with their esterified and glycosylated forms. However, by a computational approach analyzing Lipinski's rule, apigenin and apigenin-7-O-rhamnoside, naringenin, hesperetin, genistein, daidzin, biochanin A and formonetin in the flavonoid series and all hydroxycinnamic acids and all hydroxybenzoic acids excepting ellagic acid were proved to have the best bioavailability data; rhamnoside derivatives, the predominant glycosides in green plants, which were reported to have the lowest bioavailability values by in vivo studies, were revealed to have the best bioavailability data among the studied flavonoids in the computational approach. Results of in silico screening on the phenolic derivatives series also revealed their real inhibitory potency on the six parameters studied, showing a remarkable similitude between the flavonoid series, while flavonoids were more powerful natural cell modulators than the phenyl carboxylic acids tested. Thus, it can be concluded that there is a need for supplementation with digestive enzymes, mainly in the case of individuals with low digestive efficiency, to obtain the best health benefits of polyphenols in humans.


Assuntos
Simulação por Computador , Bases de Dados Factuais , Compostos Fitoquímicos , Polifenóis , Disponibilidade Biológica , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/uso terapêutico , Polifenóis/química , Polifenóis/farmacocinética , Polifenóis/uso terapêutico
10.
J Ethnopharmacol ; 285: 114854, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808301

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tsantan Sumtang (TS), a traditional Tibetan medicine, has been used in the clinic for the treatment of myocardial ischemia (MI) for ages, however, the bioactive ingredients that are responsible for improving MI remain unknown. AIM OF THE STUDY: This study investigated the chemical components of TS and their medicinal efficacies at cell levels, in order to expound the bioactive ingredients in TS. MATERIALS AND METHODS: First, a response-surface methodology was employed to determine the optimum ethanol reflux extraction process of polyphenols in TS (PTS) due to their close correlation with MI improvement. Second, a serum pharmacochemistry technique was used to analyze the compounds of PTS absorbed into the blood of rats. Third, hypoxia-, H2O2-, and adriamycin (ADM)-induced H9c2 cell injury models were used to investigate the cardioprotective effects of these compounds in vitro. Fourth, protective effects of isovitexin, quercitrin, and isoeugenol on mitochondrial function were further tested. RESULTS: The optimum extraction conditions for obtaining PTS were an ethanol concentration of 78.22%, an extraction time of 67.4 min, and a material-liquid ratio of 1:72.60 mL/g. Serum pharmacochemistry analysis detected 21 compounds, of which 11 compounds were always present in the blood within 5 h. Cytotoxicity and the protective effect of 11 compounds in hypoxia-, H2O2-, and ADM-induced H9c2 cell injury models shown that isovitexin, quercitrin, and isoeugenol had almost no cytotoxicity, and they could elevate the survival rate in injured H9c2 cells. Furthermore, isovitexin, quercitrin, and isoeugenol could decrease mitochondrial reactive oxygen species (ROS) releasion, inhibite mitochondrial permeability transition pore (mPTP) opening, ameliorate the change of mitochondrial membrane potential (MMP) to exert mitochondrial protection effect. CONCLUSION: Isovitexin, quercitrin, and isoeugenol exhibited cardioprotective effect at cell levles, these three compounds might be the bioactive ingredients in TS. These findings elucidate the pharmacodynamic substances and mechanisms of TS, guiding its clinical use.


Assuntos
Medicina Tradicional Tibetana , Mioblastos/efeitos dos fármacos , Isquemia Miocárdica/tratamento farmacológico , Polifenóis/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Apigenina/administração & dosagem , Apigenina/química , Apigenina/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Doxorrubicina/toxicidade , Eugenol/administração & dosagem , Eugenol/análogos & derivados , Eugenol/química , Eugenol/farmacologia , Peróxido de Hidrogênio/toxicidade , Mioblastos/fisiologia , Fitoterapia , Polifenóis/sangue , Polifenóis/química , Polifenóis/farmacocinética , Quercetina/administração & dosagem , Quercetina/análogos & derivados , Quercetina/química , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley
11.
Life Sci ; 292: 119797, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237311

RESUMO

AIMS: We investigated whether the consumption of Concord grape juice (CGJ) was associated with increased bioavailability of serum metabolites and their potential impact on cognitive performance in Veterans with Gulf War Illness (GWI). MAIN METHODS: Twenty-six veterans were selected from a cohort of 36 enrolled in a 24-week randomized, double-blind, Phase I/IIA clinical trial exploring whether the consumption of Concord grape juice (CGJ) was tolerable and safe in Veterans with GWI and improved cognitive function and fatigue. These 26 veterans were selected based on their completion of the entire 24-week protocol and documented adherence to the study beverage ≥80%. Differences in serum metabolite levels between CGJ and placebo at midpoint and endpoint were evaluated using two-way repeated measures ANOVA with post hoc Sidak's multiple comparison test. Bivariate correlations to assess for possible relationships between change in serum metabolite levels and change in cognitive function as measured by the Halstead Category Test-Russell Revised Version (RCAT) were also conducted. KEY FINDINGS: Seventy-six metabolites were identified and quantified in this study, with three (cyanidin-glucuronide, me-cyanidin-glucuronide, and me-malvidin-glucuronide) found to be significantly higher (p < 0.05) in the CGJ group compared to placebo at 24 weeks. Significant associations between changes in cognitive function and changes in serum levels of epicatechin-sulphate (r = 0.48, p = 0.01) and petunidin-glucuronide (r = 0.53, p < 0.01) from baseline to 24 weeks were also observed. SIGNIFICANCE: Our data suggest that dietary supplementation with CGJ is associated with increased bioavailability of specific phenolic metabolites, some of which may be correlated with cognitive performance.


Assuntos
Cognição/efeitos dos fármacos , Suplementos Nutricionais/análise , Síndrome do Golfo Pérsico/tratamento farmacológico , Polifenóis , Disponibilidade Biológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polifenóis/farmacocinética , Polifenóis/farmacologia , Veteranos , Vitis/metabolismo
12.
J Int Soc Sports Nutr ; 18(1): 76, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34965876

RESUMO

BACKGROUND: Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS: Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS: One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION: Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER: The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.


Assuntos
Tolerância ao Exercício/fisiologia , Alimentos , Nitratos , Óxido Nítrico/metabolismo , Resistência Física/fisiologia , Polifenóis , Arginina/metabolismo , Arginina/farmacocinética , Citrulina/metabolismo , Citrulina/farmacocinética , Feminino , Análise de Alimentos , Humanos , Masculino , Nitratos/metabolismo , Nitratos/farmacocinética , Polifenóis/metabolismo , Polifenóis/farmacocinética , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948345

RESUMO

Functional properties and biological activities of plant-derived polyphenolic compounds have gained great interest due to their epidemiologically proven health benefits and diverse industrial applications in the food and pharmaceutical industry. Moreover, the food processing conditions and certain chemical reactions such as pigmentation, acylation, hydroxylation, and glycosylation can also cause alteration in the stability, antioxidant activity, and structural characteristics of the polyphenolic compounds. Since the (poly)phenols are highly reactive, to overcome these problems, the formulation of a complex of polyphenolic compounds with natural biopolymers is an effective approach. Besides, to increase the bioavailability and bioaccessibility of polyphenolic compounds, milk proteins such as whey protein concentrate, sodium caseinate, and milk protein concentrate act as natural vehicles, due to their specific structural and functional properties with high nutritional value. Therefore, milk proteins are suitable for the delivery of polyphenols to parts of the gastrointestinal tract. Therefore, this review reports on types of (poly)phenols, methods for the analysis of binding interactions between (poly)phenols-milk proteins, and structural changes that occur during the interaction.


Assuntos
Manipulação de Alimentos , Proteínas do Leite/química , Polifenóis/química , Disponibilidade Biológica , Caseínas , Polifenóis/farmacocinética
14.
Curr Drug Metab ; 22(12): 969-977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719359

RESUMO

BACKGROUND: Herbs usually contain a mixture of biologically active constituents, which can interact with numerous prescribed drugs and alter their safety profiles. OBJECTIVES: The current investigation was aimed to evaluate the effect of commonly used herbal products including black seed (Nigella sativa), garden cress (Lepidium sativum), and fenugreek (Trigonella foenum-graecum) on the pharmacokinetics and pharmacodynamics of clopidogrel using a Wistar rat model. METHODS: A GC-MS analysis revealed the presence of several phytoconstitutents (polyphenols) in the extracts of black seed, garden cress, and fenugreek. These polyphenols have the potential to interfere with clopidogrel effect. Plasma concentrations of clopidogrel were measured at different time points in the absence and presence of the concurrent use of tested herbal products and the pharmacokinetic parameters were calculated. Bleeding time was measured in various groups as a measure of the antiplatelet effect of clopidogrel. RESULTS: Area under the plasma concentration-time curves (AUC0-∞) of clopidogrel were 35.53 ±0.89 µg/ml*h (p<0.05), 26.01 ±0.90 µg/ml*h (p>0.05) and 32.80 ±2.51 µg/ml*h (p<0.05) in the black seed, garden cress and fenugreek group, respectively, compared with that of the control group (27.02 ±0.42 µg/ml*h). Treatment with black seed also caused an increase in clopidogrel Cmax by 31.52% (p<0.05) and with fenugreek by 21.42% (p<0.05); Cmax, did not changed with garden cress treatment (6.48 ±0.15 µg/ml versus 6.12 ±0.21 µg/ml, p>0.05). The pharmacodynamic evaluation of the antiplatelet effect of clopidogrel in the presence of herbal products treatment showed a significant prolongation in the bleeding time from a control baseline by ~22-26%, and by added ~8-12% in reference to clopidogrel therapeutic effect (p<0.05). CONCLUSION: The concurrent use of black seed, fenugreek, or garden cress can alter the pharmacokinetics and pharmacodynamics of clopidogrel to varying degrees due to the presence of various bioactive polyphenols. This is probably due to changes in drug disposition and its antiplatelet action. Further confirmation can determine the clinical relevance of these observations and identify the exact constituents responsible for such activities.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Clopidogrel/farmacocinética , Lepidium sativum , Nigella sativa , Compostos Fitoquímicos/farmacocinética , Polifenóis/farmacocinética , Antagonistas do Receptor Purinérgico P2Y/farmacocinética , Trigonella , Animais , Tempo de Sangramento/métodos , Interações Ervas-Drogas , Agregação Plaquetária/efeitos dos fármacos , Polifenóis/farmacologia , Ratos
15.
Biomed Pharmacother ; 142: 111970, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333289

RESUMO

Plant-based polyphenols are natural compounds, present in fruits and vegetables. During recent years, polyphenols have gained special attention due to their nutraceutical and pharmacological activities for the prevention and treatment of human diseases. Nevertheless, their photosensitivity and low bioavailability, rapid metabolism and short biological half-life represent the major limitations for their use, which could be overcome by polyphenols encapsulation (flavonoids and non-flavonoids) into chitosan (CS)-tripolyphosphate (TPP) based nanoparticles (NP). In this review, we particularly focused on the ionic gelation method for the NP design. This contribution exhaustively discusses and compares results of scientific reports published in the last decade referring to ionic gelation applied for the protection, controlled and site-directed delivery of polyphenols. As a consequence, CS-TPP NP would constitute true platforms to transport polyphenols, or a combination of them, to be used for the designing of a new generation of drugs or nutraceuticals.


Assuntos
Quitosana/análogos & derivados , Nanopartículas , Polifenóis/administração & dosagem , Animais , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Polifenóis/farmacocinética
16.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361774

RESUMO

Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.


Assuntos
Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Composição de Medicamentos/métodos , Hipertensão/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Polifenóis/farmacologia , Elementos de Resposta Antioxidante , Antioxidantes/química , Antioxidantes/farmacocinética , Arginina/análogos & derivados , Arginina/antagonistas & inibidores , Arginina/metabolismo , Cardiotônicos/química , Cardiotônicos/farmacocinética , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Portadores de Fármacos , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/química , Polifenóis/farmacocinética , Transdução de Sinais
17.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299519

RESUMO

There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.


Assuntos
Curcumina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacocinética , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Disponibilidade Biológica , Curcumina/farmacocinética , Curcumina/farmacologia , Preparações de Ação Retardada/química , Humanos , Polifenóis/administração & dosagem , Polifenóis/farmacocinética , Polifenóis/farmacologia
18.
Food Funct ; 12(11): 4921-4934, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34100470

RESUMO

Chronodisruption leads to obesity and other metabolic disorders that can be alleviated by food-derived potential chronobiotics, such as phytomelatonin (PMT), phenolic compounds (PCs) and dietary fiber rich pistachios. Pistachios with (PN + SC) or without (PN) the seed coat were investigated for their in vitro chronobiotic potential since they are one of the main reported PMT sources. Consequently we evaluated the bioaccessibility, permeability, and biosynthesis of pistachio chronobiotics, particularly PMT, during gastrointestinal and colonic fermentation. The maximum in vitro bioaccessibility and apparent permeability (efflux-prone) of PCs, flavonoids and PMT were sample-specific [∼1.3% (both), 27 and 3.4% (PN + SC)], but additional amounts (flavonoids > PCs > PMT) were released under simulated colonic conditions. Short-chain fatty acids (SCFAs; 38 mM; >50% butyrate, PN + SC > PN) and some metabolites (e.g., indole, benzaldehyde, phenolic acids, and aliphatic/aromatic hydrocarbons) were detected depending on the sample. The predominant pistachio butyrate production during in vitro colonic fermentation can improve chronodisruption and benefit obese individuals. Pistachio's digestion increases the bioaccessibility and intestinal permeability of potential chronobiotics (PMT and PCs) and the biosynthesis of colonic metabolites (SCFAs, among others) also with chronobiotic potential.


Assuntos
Digestão , Fermentação , Trato Gastrointestinal/metabolismo , Melatonina/farmacocinética , Pistacia/química , Polifenóis/farmacocinética , Animais , Antioxidantes/metabolismo , Disponibilidade Biológica , Fenômenos Cronobiológicos , Colo/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Flavonoides/metabolismo , Humanos , Masculino , Melatonina/metabolismo , Nozes/química , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Permeabilidade , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacocinética , Polifenóis/metabolismo , Ratos , Ratos Wistar
19.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073709

RESUMO

Polyphenols are natural organic compounds produced by plants, acting as antioxidants by reacting with ROS. These compounds are widely consumed in daily diet and many studies report several benefits to human health thanks to their bioavailability in humans. However, the digestion process of phenolic compounds is still not completely clear. Moreover, bioavailability is dependent on the metabolic phase of these compounds. The LogP value can be managed as a simplified measure of the lipophilicity of a substance ingested within the human body, which affects resultant absorption. The biopharmaceutical classification system (BCS), a method used to classify drugs intended for gastrointestinal absorption, correlates the solubility and permeability of the drug with both the rate and extent of oral absorption. BCS may be helpful to measure the bioactive constituents of foods, such as polyphenols, in order to understand their nutraceutical potential. There are many literature studies that focus on permeability, absorption, and bioavailability of polyphenols and their resultant metabolic byproducts, but there is still confusion about their respective LogP values and BCS classification. This review will provide an overview of the information regarding 10 dietarypolyphenols (ferulic acid, chlorogenic acid, rutin, quercetin, apigenin, cirsimaritin, daidzein, resveratrol, ellagic acid, and curcumin) and their association with the BCS classification.


Assuntos
Produtos Biológicos/metabolismo , Polifenóis/metabolismo , Animais , Disponibilidade Biológica , Produtos Biológicos/química , Produtos Biológicos/classificação , Produtos Biológicos/farmacocinética , Ácidos Cumáricos , Flavonas , Flavonóis , Humanos , Absorção Intestinal , Isoflavonas , Permeabilidade , Polifenóis/química , Polifenóis/classificação , Polifenóis/farmacocinética , Solubilidade , Estilbenos , Taninos
20.
Molecules ; 26(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065743

RESUMO

Dietary plant polyphenols are natural bioactive compounds that are increasingly attracting the attention of food scientists and nutritionists because of their nutraceutical properties. In fact, many studies have shown that polyphenol-rich diets have protective effects against most chronic diseases. However, these health benefits are strongly related to both polyphenol content and bioavailability, which in turn depend on their origin, food matrix, processing, digestion, and cellular metabolism. Although most fruits and vegetables are valuable sources of polyphenols, they are not usually consumed raw. Instead, they go through some processing steps, either industrially or domestically (e.g., cooling, heating, drying, fermentation, etc.), that affect their content, bioaccessibility, and bioavailability. This review summarizes the status of knowledge on the possible (positive or negative) effects of commonly used food-processing techniques on phenolic compound content and bioavailability in fruits and vegetables. These effects depend on the plant type and applied processing parameters (type, duration, media, and intensity). This review attempts to shed light on the importance of more comprehensive dietary guidelines that consider the recommendations of processing parameters to take full advantage of phenolic compounds toward healthier foods.


Assuntos
Manipulação de Alimentos/métodos , Polifenóis/análise , Polifenóis/farmacocinética , Disponibilidade Biológica , Suplementos Nutricionais/análise , Política Nutricional , Extratos Vegetais/análise , Extratos Vegetais/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...