Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.705
Filtrar
1.
PLoS One ; 19(5): e0299001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805439

RESUMO

Polypropylene fiber was equally mixed into alkali-activated slag fly ash geopolymer in order to ensure the filling effect of mine goaf and improve the stability of cemented gangue paste filling material with ecological matrix. Triaxial compression tests were then conducted under various conditions. The mechanical properties and damage characteristics of composite paste filling materials are studied, and the damage evolution model of paste filling materials under triaxial compression is established, based on the deviatoric stress-strain curve generated by the progressive failure behavior of samples. Internal physical and chemical mechanisms of the evolution of structure and characteristics are elucidated and comprehended via the use of SEM-EDS and XRD micro-techniques. The results show that the fiber can effectively improve the ultimate strength and the corresponding effective stress strength index of the sample within the scope of the experimental study. The best strengthening effect is achieved when the amount of NaOH is 3% of the mass of the solid material, the amount of fiber is 5‰ of the mass of the solid material, and the length of the fiber is about 12 mm. The action mode of the fiber in the sample is mainly divided into single-grip anchoring and three-dimensional mesh traction. As the crack initiates and develops, connection occurs in the matrix, where the fiber has an obvious interference and retardation effect on the crack propagation, thereby transforming the brittle failure into a ductile failure and consequently improving the fracture properties of the ecological cementitious coal gangue matrix. The theoretical damage evolution model of a segmented filling body is constructed by taking the initial compaction stage end point as the critical point, and the curve of the damage evolution model of the specimen under different conditions is obtained. The theoretical model is verified by the results from the triaxial compression test. We concluded that the experimental curve is in good agreement with the theoretical curve. Therefore, the established theoretical model has a certain reference value for the analysis and evaluation of the mechanical properties of paste filling materials. The research results can improve the utilization rate of solid waste resources.


Assuntos
Sulfato de Cálcio , Força Compressiva , Teste de Materiais , Sulfato de Cálcio/química , Materiais de Construção/análise , Polipropilenos/química , Cinza de Carvão/química , Estresse Mecânico , Cimentação/métodos
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731902

RESUMO

Investigation of chiroptical polymers in the solution phase is paramount for designing supramolecular architectures for photonic or biomedical devices. This work is devoted to the case study of poly(propylene oxide) (PPO) optical activity in several solvents: benzonitrile, carbon disulfide, chloroform, ethyl acetate, and p-dioxane. To attain information on the interactions in these systems, rheological testing was undertaken, showing distinct variations of the rheological parameters as a function of the solvent type. These aspects are also reflected in the refractive index dispersive behavior, from which linear and non-linear optical properties are extracted. To determine the circular birefringence and specific rotation of the PPO solutions, the alternative method of the channeled spectra was employed. The spectral data were correlated with the molecular modeling of the PPO structural unit in the selected solvents. Density functional theory (DFT) computational data indicated that the torsional potential energy-related to the O1-C2-C3-O4 dihedral angle from the polymer repeating unit-was hindered in solvation environments characterized by high polarity and the ability to interact via hydrogen bonding. This was in agreement with the optical characterization of the samples, which indicated a lower circular birefringence and specific rotation for the solutions of PPO in ethyl acetate and p-dioxane. Also, the shape of optical rotatory dispersion curves was slightly modified for PPO in these solvents compared with the other ones.


Assuntos
Solventes , Solventes/química , Propilenoglicóis/química , Polipropilenos/química , Polímeros/química , Modelos Moleculares , Rotação , Ligação de Hidrogênio , Reologia
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731949

RESUMO

To enrich the properties of polylactic acid (PLA)-based composite films and improve the base degradability, in this study, a certain amount of poly(propylene carbonate) (PPC) was added to PLA-based composite films, and PLA/PPC-based composite films were prepared by melt blending and hot-press molding. The effects of the introduction of PPC on the composite films were analyzed through in-depth studies on mechanical properties, water vapor and oxygen transmission rates, thermal analysis, compost degradability, and bacterial inhibition properties of the composite films. When the introduction ratio coefficient of PPC was 30%, the tensile strength of the composite film increased by 19.68%, the water vapor transmission coefficient decreased by 14.43%, and the oxygen transmission coefficient decreased by 18.31% compared to that of the composite film without PPC, the cold crystallization temperature of the composite film increased gradually from 96.9 °C to 104.8 °C, and PPC improved the crystallization ability of composite film. The degradation rate of the composite film with PPC increased significantly compared to the previous one, and the degradation rate increased with the increase in the PPC content. The degradation rate was 49.85% and 46.22% faster on average than that of the composite film without PPC when the degradation was carried out over 40 and 80 days; the composite film had certain inhibition, and the maximum diameter of the inhibition circle was 2.42 cm. This study provides a strategy for the development of PLA-based biodegradable laminates, which can promote the application of PLA-based laminates in food packaging.


Assuntos
Poliésteres , Propano/análogos & derivados , Resistência à Tração , Poliésteres/química , Polipropilenos/química , Embalagem de Alimentos/métodos , Vapor , Polímeros/química , Antibacterianos/química , Antibacterianos/farmacologia , Temperatura
4.
ACS Appl Mater Interfaces ; 16(20): 25686-25697, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739862

RESUMO

Polypropylene (PP) mesh is commonly used in repairing abdominal wall hernia (AWH). However, the use of synthetic prosthesis comes with the risk of developing a prosthetic infection, resulting in delayed healing, secondary surgery, and potentially increased mortality. To address these issues, a facile surface functionalization strategy for PP mesh based on phytic acid (PA) and polyhexamethylene guanidine (PHMG) was constructed through a one-step co-deposition process, referred to as the PA/PHMG coating. The development of PA/PHMG coating is mainly attributed to the surface affinity of PA and the electrostatic interactions between PA and PHMG. The PA/PHMG coating could be completed within 4 h under mild conditions. The prepared PA/PHMG coatings on PP mesh surfaces exhibited desirable biocompatibility toward mammalian cells and excellent antibacterial properties against the notorious "superbug" methicillin-resistant Staphylococcus aureus (MRSA) and tetracycline-resistant Escherichia coli (TRE). The PA/PHMG-coated PP meshes showed killing ratios of over 99% against MRSA in an infected abdominal wall hernia repair model. Furthermore, histological and immunohistochemical analysis revealed a significantly attenuated degree of neutrophil infiltration in the PA/PHMG coating group, attributed to the decreased bacterial numbers alleviating the inflammatory response at the implant sites. Meanwhile, the pristine PP and PA/PHMG-coated meshes showed effective tissue repair, with the PA/PHMG coating group exhibiting enhanced angiogenesis compared with pristine PP meshes, suggesting superior tissue restoration. Additionally, PP meshes with the highest PHMG weight ratio (PA/PHMG(3)) exhibited excellent long-term robustness under phosphate-buffered saline (PBS) immersion with a killing ratio against MRSA still exceeding 95% after 60 days of PBS immersion. The present work provides a facile and promising approach for developing antibacterial implants.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Polipropilenos , Telas Cirúrgicas , Polipropilenos/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Escherichia coli/efeitos dos fármacos , Herniorrafia/instrumentação , Parede Abdominal/cirurgia , Parede Abdominal/patologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Camundongos , Hérnia Abdominal/cirurgia , Humanos , Testes de Sensibilidade Microbiana
5.
ACS Appl Mater Interfaces ; 16(21): 26998-27010, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748642

RESUMO

A coating that can be activated by moisture found in respiratory droplets could be a convenient and effective way to control the spread of airborne pathogens and reduce fomite transmission. Here, the ability of a novel 6-hydroxycatechol-containing polymer to function as a self-disinfecting coating on the surface of polypropylene (PP) fabric was explored. Catechol is the main adhesive molecule found in mussel adhesive proteins. Molecular oxygen found in an aqueous solution can oxidize catechol and generate a known disinfectant, hydrogen peroxide (H2O2), as a byproduct. However, given the limited amount of moisture found in respiratory droplets, there is a need to enhance the rate of catechol autoxidation to generate antipathogenic levels of H2O2. 6-Hydroxycatechol contains an electron donating hydroxyl group on the 6-position of the benzene ring, which makes catechol more susceptible to autoxidation. 6-Hydroxycatechol-coated PP generated over 3000 µM of H2O2 within 1 h when hydrated with a small amount of aqueous solution (100 µL of PBS). The generated H2O2 was three orders of magnitude higher when compared to the amount generated by unmodified catechol. 6-Hydroxycatechol-containing coating demonstrated a more effective antimicrobial effect against both Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria when compared to unmodified catechol. Similarly, the self-disinfecting coating reduced the infectivity of both bovine viral diarrhea virus and human coronavirus 229E by as much as a 2.5 log reduction value (a 99.7% reduction in viral load). Coatings containing unmodified catechol did not generate sufficient H2O2 to demonstrate significant virucidal effects. 6-Hydroxycatechol-containing coating can potentially function as a self-disinfecting coating that can be activated by the moisture present in respiratory droplets to generate H2O2 for disinfecting a broad range of pathogens.


Assuntos
Catecóis , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Catecóis/química , Catecóis/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Desinfetantes/farmacologia , Desinfetantes/química , Polipropilenos/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos
6.
Anal Chem ; 96(21): 8373-8380, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38709238

RESUMO

Polypropylene microcentrifuge tubes (MCTs) are increasingly used in lipidome sample preparation. In the absence of a comprehensive study evaluating ramifications of plasticware utilization in mass spectrometry-based lipidomic analyses, we conducted a systematic analysis to elucidate potential negative effects ascribable to labware contamination in serum lipidomics. During serum lipid extractions, tested glassware introduced 24 labware contaminants. In contrast, Eppendorf polypropylene MCTs contributed 485 contaminant features, many of which could be erroneously putatively identified as lipids via their m/z values. Eppendorf MCTs contamination engendered severe ion-suppression of 40 low abundance serum lipids, while generating mild to modest lipid ion-suppression across a multitude of higher abundance coeluting lipids. Less compatible polypropylene MCTs from an alternative manufacturer introduced a staggering 2,949 contaminant m/z values, severely affecting 75 coeluting serum lipids and causing more frequent and pronounced ion-suppression instances. Furthermore, by performing serum extractions with varied initial volumes, it was ascertained that labware-induced lipid ion-suppression is a dynamic phenomenon, contingent on both lipid and labware contaminant concentrations where low-abundance lipids are disproportionately impacted by coelutes of suppressive contaminants. In addition to lipid ion-suppression, the identification and quantification of 7 fatty acid endogenous serum lipids were compromised by the leaching of structurally identical surfactants from MCTs. MCTs artificially introduced 10 additional primary amides extraneous to serum samples. Utmost caution is imperative in interpreting data concerning primary amides and fatty acids when employing plastic labware. Through this investigation, we aspire to elevate awareness regarding the pernicious impact of labware contamination on lipidome analysis.


Assuntos
Lipidômica , Lipídeos , Espectrometria de Massas , Polipropilenos , Humanos , Lipidômica/métodos , Lipídeos/sangue , Lipídeos/química , Espectrometria de Massas/métodos , Polipropilenos/química , Contaminação de Equipamentos
7.
Environ Pollut ; 352: 124097, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703985

RESUMO

Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.


Assuntos
Microplásticos , Polipropilenos , Poliestirenos , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Microplásticos/química , Polipropilenos/química , Poliestirenos/química , Poluentes Químicos da Água/química , Adsorção , Nanopartículas Metálicas/química , Nanopartículas/química
8.
Int J Biol Macromol ; 270(Pt 1): 132061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705326

RESUMO

Polypropylene (PP) mesh is the most widely used prosthetic material in hernia repair. However, the efficacy of implanted PP mesh is often compromised by adhesion between viscera and PP mesh. Thus, there is a recognized need for developing an anti-adhesive PP mesh. Here, a composite hydrogel coated PP mesh with the prevention of adhesion after hernia repair was designed. The composite hydrogel coating was prepared from polyvinyl alcohol (PVA) and hyaluronic acid (HA) by using the freezing-thawing (FT) method. To overcome the shortcoming of the long time of the traditional freezing-thawing method, a small molecule 3,4-dihydroxyphenylacetic acid (DHPA) was introduced to promote the formation of composite hydrogel. The as-prepared composite hydrogel coating displayed modulus more closely resembling that of native abdominal wall tissue. In vitro studies illustrated that the resulting meshes showed excellent coating stability, hemocompatibility, and non-cytotoxicity. In vivo experiments using a rat abdominal wall defect model demonstrated that the composite hydrogel coated PP mesh could prevent the formation of adhesion, alleviate the inflammatory response, and reduce the deposition of collagen around the damaged tissue. These disclosed results manifested that the PP mesh coated with HA/PVA composite hydrogel might be a promising application in preventing adhesion for hernia repair.


Assuntos
Ácido Hialurônico , Polipropilenos , Álcool de Polivinil , Telas Cirúrgicas , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Álcool de Polivinil/química , Animais , Polipropilenos/química , Ratos , Aderências Teciduais/prevenção & controle , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Parede Abdominal/cirurgia , Humanos , Ratos Sprague-Dawley , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Teste de Materiais , Herniorrafia/métodos
9.
Int J Biol Macromol ; 270(Pt 2): 132308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740163

RESUMO

UV-ozone activated polypropylene (PP) food films were subjected to a novel bilayer coating process involving primary or quaternary chitosan (CH/QCH) as the first layer and natural extracts from juniper needles (Juniperus oxycedrus; JUN) or blackberry leaves (Rubus fruticosus; BBL) as the second layer. This innovative approach aims to redefine active packaging (AP) development. Through a detailed analysis by surface characterization and bioactivity assessments (i.e., antioxidant and antimicrobial functionalities), we evaluated different coating combinations. Furthermore, we investigated the stability and barrier characteristics inherent in these coatings. The confirmed deposition, coupled with a comprehensive characterization of their composition and morphology, underscored the efficacy of the coatings. Our investigation included wettability assessment via contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), which revealed substantial enhancements in surface concentrations of elements and functional groups of CH, QCH, JUN, and BBL. Scanning electron microscopy (SEM) unveiled the coatings' heterogeneity, while time-of-flight secondary ion mass spectrometry (ToF-SIMS) and CA profiling showed moderately compact bilayers on PP, providing active species on the hydrophilic surface, respectively. The coatings significantly reduced the oxygen permeability. Additionally, single-layer depositions of CH and QCH remained below the overall migration limit (OML). Remarkably, the coatings exhibited robust antioxidative properties due to plant extracts and exceptional antimicrobial activity against S. aureus, attributed to QCH. These findings underscore the pivotal role of film surface properties in governing bioactive characteristics and offer a promising pathway for enhancing food packaging functionality.


Assuntos
Quitosana , Embalagem de Alimentos , Extratos Vegetais , Polipropilenos , Quitosana/química , Quitosana/farmacologia , Polipropilenos/química , Embalagem de Alimentos/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Juniperus/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Rubus/química , Propriedades de Superfície , Molhabilidade
10.
Sci Rep ; 14(1): 8975, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637597

RESUMO

For the majority of cytotoxic drug preparations, such as bortezomib, the unit dose information is not available. In addition, there is a lack of information on the physicochemical stability of the pharmaceutical preparation after opening; this information is crucial for its administration to patients in successive visits, and the per-patient cost can be affected. The purpose of our proposed physicochemical stability study is to determine the shelf life of the reconstituted liquid product under refrigeration and clinical practice conditions. This evaluation was extended to both vials and ready-to-use syringes prefilled with the contents of the open vial. The stability test design includes the specified storage conditions and the critical physicochemical parameters of reconstituted injectable bortezomib. Furthermore, this approach includes the determination of impurities, the monitoring of the purity of the mean peak using a photodiode array, the control of the mass balance, the monitoring of subvisible particles using a laser diffraction analyser, and the setting of stability specifications. For the chemical stability study, the amount of bortezomib and its degradation products were determined using a stability-indicating HPLC method. The physical inspection of the samples was performed throughout the stability study, and their pH values were also monitored. Bortezomib (2.5 mg/mL) in 0.9% sodium chloride remained stable for 7 days when stored in both polypropylene syringes and vials at 5 ± 3 °C (refrigeration) and shielded from light. Additionally, it exhibits stability for 24 h under storage conditions simulating clinical use (20-30 °C and protected from light). The proposed protocol provides the stability in the vials once reconstituted and in prefilled refrigerated syringes; this protocol can be used to reduce waste and increase cost savings.


Assuntos
Antineoplásicos , Embalagem de Medicamentos , Humanos , Bortezomib , Polipropilenos/química , Estabilidade de Medicamentos , Seringas , Cromatografia Líquida de Alta Pressão , Soluções Farmacêuticas/química
11.
J Mater Chem B ; 12(16): 3927-3946, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563779

RESUMO

Messenger RNA (mRNA) based vaccines have been introduced worldwide to combat the Covid-19 pandemic. These vaccines consist of non-amplifying mRNA formulated in lipid nanoparticles (LNPs). Consequently, LNPs are considered benchmark non-viral carriers for nucleic acid delivery. However, the formulation and manufacturing of these mRNA-LNP nanoparticles are expensive and time-consuming. Therefore, we used self-amplifying mRNA (saRNA) and synthesized novel polymers as alternative non-viral carrier platform to LNPs, which enable a simple, rapid, one-pot formulation of saRNA-polyplexes. Our novel polymer-based carrier platform consists of randomly concatenated ethylenimine and propylenimine comonomers, resulting in linear, poly(ethylenimine-ran-propylenimine) (L-PEIx-ran-PPIy) copolymers with controllable degrees of polymerization. Here we demonstrate in multiple cell lines, that our saRNA-polyplexes show comparable to higher in vitro saRNA transfection efficiencies and higher cell viabilities compared to formulations with Lipofectamine MessengerMAX™ (LFMM), a commercial, lipid-based carrier considered to be the in vitro gold standard carrier. This is especially true for our in vitro best performing saRNA-polyplexes with N/P 5, which are characterised with a size below 100 nm, a positive zeta potential, a near 100% encapsulation efficiency, a high retention capacity and the ability to protect the saRNA from degradation mediated by RNase A. Furthermore, an ex vivo hemolysis assay with pig red blood cells demonstrated that the saRNA-polyplexes exhibit negligible hemolytic activity. Finally, a bioluminescence-based in vivo study was performed over a 35-day period, and showed that the polymers result in a higher and prolonged bioluminescent signal compared to naked saRNA and L-PEI based polyplexes. Moreover, the polymers show different expression profiles compared to those of LNPs, with one of our new polymers (L-PPI250) demonstrating a higher sustained expression for at least 35 days after injection.


Assuntos
Polietilenoimina , RNA Mensageiro , Transfecção , Animais , Transfecção/métodos , Polietilenoimina/química , Humanos , RNA Mensageiro/genética , Camundongos , Polipropilenos/química , Polímeros/química , Portadores de Fármacos/química , SARS-CoV-2/efeitos dos fármacos , Nanopartículas/química
12.
Environ Sci Technol ; 58(16): 7124-7132, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38599582

RESUMO

Often large quantities of plastics are found in compost, with price look-up stickers being a major but little-explored component in the contamination path. Stickers glued to fruit or vegetable peels usually remain attached to the organic material despite sorting processes in the composting plant. Here, we investigated the effects of industrial composting on the structural alterations of these stickers. Commercial polypropylene (PP) stickers on banana peels were added to a typical organic material mixture for processing in an industrial composting plant and successfully resampled after a prerotting (11 days) and main rotting step (25 days). Afterward, both composted and original stickers were analyzed for surface and structural changes via scanning electron microscopy, Fourier-transform infrared spectroscopy, and micro- and nano-X-ray computed tomography (CT) combined with deep learning approaches. The composting resulted in substantial surface changes and degradation in the form of microbial colonization, deformation, and occurrence of cracks in all stickers. Their pore volumes increased from 16.7% in the original sticker to 26.3% at the end of the compost process. In a similar way, the carbonyl index of the stickers increased. Micro-CT images additionally revealed structural changes in the form of large adhesions that penetrated the surface of the sticker. These changes were accompanied by delamination after 25 days of composting, thus overall hinting at the degradation of the stickers and the subsequent formation of smaller microplastic pieces.


Assuntos
Compostagem , Frutas , Plásticos , Tomografia Computadorizada por Raios X , Solo/química , Microscopia Eletrônica de Varredura , Polipropilenos/química
13.
Chemosphere ; 357: 141961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615954

RESUMO

Microplastics (MPs) poses a significant threat to ecosystems and human health, demanding immediate attention. The reported research work offers an effective and low cost method towards the detection of toxic MPs. In this study, hydrophobic cerium oxide nanoparticles (CeO2 NPs) are synthesized and applied as promising electrode material for the detection of two different types of MPs, i.e. polyethylene (PE) and polypropylene (PP). Through electrochemical analyses, such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV), hydrophobic CeO2 NPs modified glassy carbon electrode (GCE) based sensor demonstrated remarkable sensitivity of ∼0.0343 AmLmg-1cm-2 and detection limit of ∼0.226 mgmL-1, with promising correlation coefficient (R2) towards the detection of PE (∼27-32 µm). Furthermore, hydrophobic CeO2 NPs modified GCE exhibited promising stability and reproducibility towards PE (∼27-32 µm), suggesting the promising potential of hydrophobic CeO2 NPs as electrode materials for an electrochemical microplastics detection.


Assuntos
Cério , Monitoramento Ambiental , Interações Hidrofóbicas e Hidrofílicas , Microplásticos , Poluentes Químicos da Água , Cério/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Monitoramento Ambiental/métodos , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Polietileno/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Polipropilenos/química , Limite de Detecção
14.
Chemosphere ; 357: 142056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641294

RESUMO

Polypropylene (PP) and polystyrene (PS) underwent a comprehensive investigation into their mechanical and chemical degradation through reactive molecular dynamics simulations. The simulations utilized the ReaxFF force field for CHO (carbon-hydrogen-oxygen) systems in the combustion branch. The study included equilibrium simulations to determine densities and melting temperatures, non-equilibrium simulations for stress-strain and Young moduli determination, mechanical cleaving to identify surface species resulting from material fragmentation, and shock compression simulations to elucidate chemical reactions activated by some external energy sources. The results indicate that material properties such as densities, phase transition temperatures, and Young moduli are accurately reproduced by the ReaxFF-CHO force field. The reactive dynamics analysis yielded crucial insights into the surface composition of fragmented polymers. Both polymers exhibited backbone breakage, leaving -CH2· and -CH·- radicals as terminals. PP demonstrated substantial fragmentation, while PS showed a tendency to develop crosslinks. A detailed analysis of chemical reactions resulting from increasing activation due to increasing value of compression pressure is presented and discussed.


Assuntos
Polipropilenos , Poliestirenos , Poliestirenos/química , Polipropilenos/química , Simulação de Dinâmica Molecular , Pressão , Modelos Químicos
15.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643575

RESUMO

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Polietileno , Polipropilenos , Poluentes Químicos da Água , Polipropilenos/química , Polietileno/química , Polietileno/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/genética , Microplásticos/toxicidade , Microplásticos/metabolismo , Água Doce/microbiologia , Estuários
16.
Food Chem ; 451: 139368, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657518

RESUMO

A unique strategy for developing porous membrane protected micro-solid phase extraction has been provided. An electrospun composite was fabricated on the sheet of membrane. To this end, NiFe-layered double hydroxide/Nylon 6 composite nanofibers were coated on a polypropylene membrane sheet followed by folding into a pocket shape, which were then utilized as a novel extractive device to extract of organophosphorus pesticides from fresh fruit juice samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The fabricated hybrid composites were successfully characterized. The effective parameters on extraction performance were investigated. LODs were 0.020-0.065 ng mL-1. Excellent linearity (R2≥0.996) was observed between 0.05 and 100.0 ng mL-1. RSDs% were in the range of 3.1-5.8% (intra-day, n = 3) and 2.6-5.5% (inter-day, n = 3×3). Satisfactory related recovery values within the acceptable range of 90.7-111.2% with RSDs% below 6.7% were achieved for the analysis of real samples.


Assuntos
Caprolactama , Sucos de Frutas e Vegetais , Polímeros , Polipropilenos , Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Sucos de Frutas e Vegetais/análise , Polipropilenos/química , Microextração em Fase Sólida/instrumentação , Microextração em Fase Sólida/métodos , Polímeros/química , Caprolactama/química , Caprolactama/análogos & derivados , Praguicidas/isolamento & purificação , Praguicidas/química , Contaminação de Alimentos/análise , Compostos Organofosforados/isolamento & purificação , Compostos Organofosforados/química , Compostos Organofosforados/análise , Níquel/química , Níquel/isolamento & purificação , Porosidade , Cromatografia Líquida/instrumentação , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos
17.
Food Chem ; 451: 139475, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678648

RESUMO

In this work, we aimed to evaluate human intake of triclosan (TCS) associated with real-life use of different brands of Microban™ microwave-safe food packaging. Calculations were based on: TCS migration data (under the worst-case foreseeable conditions), MPs abundance and TCS bioaccessibility from microplastics (MPs), leached from containers under microwave heating. Bioaccessibility studies were performed with in vitro digestion of MPs, followed by liquid-liquid extraction of TCS from digestive fluids and LC-QqQ-MS analysis yielding values of 46 ± 9%. The estimated weekly intake (EWI) of TCS ranged between 11 and 42 µg/kg body weight/week, with migration being the largest contribution (0.6-2.3 mg/week), compared to leaching of MPs (75-300 µg/week). These values represent a significant source of human exposure to TCS, emphasizing the need to harmonize the ban of TCS in food contact materials worldwide and improve compliance testing of food contact articles, particularly those marketed through online sales platforms.


Assuntos
Embalagem de Alimentos , Polipropilenos , Triclosan , Triclosan/análise , Triclosan/química , Embalagem de Alimentos/instrumentação , Humanos , Polipropilenos/química , Contaminação de Alimentos/análise , Exposição Dietética/análise
18.
Biomater Sci ; 12(10): 2730-2742, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639196

RESUMO

Polypropylene (PP) mesh is widely used in hernioplasty, but it is prone to contamination by pathogenic bacteria. Here, we present an infection microenvironment-responsive metal-phenolic network (MPN) coating, which is made up of Cu2+ and tannic acid (TA) (referred to as CT coating), and is fabricated on PP meshes by layer-by-layer (LbL) assembly. The CT coating provided a robust protection for the PP mesh from pathogenic bacterial infection in a pH-responsive manner due to the pH-responsive disassembly kinetics of MPN complexes. Moreover, the PP meshes with ten CT coating cycles (PP-CT(10)) exhibited excellent stability in a physiological environment, with the killing ratio against "superbug" methicillin-resistant Staphylococcus aureus (MRSA) at pH 5.5 exceeding 99% even after 28 days of PBS (pH 7.4) immersion. In addition, the PP-CT(10) exhibited excellent in vivo anti-infective ability in a rodent subcutaneous implant MRSA infection model, and the results of histological and immunohistochemical analyses demonstrated that the reduced bacterial number alleviated the inflammatory response at implant sites. This study revealed that MPN coating is a promising strategy, which could provide a self-defensive ability for various implants to combat post-surgical infections in a pH-responsive manner.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Polipropilenos , Telas Cirúrgicas , Taninos , Concentração de Íons de Hidrogênio , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Polipropilenos/química , Taninos/química , Taninos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Herniorrafia , Cobre/química , Cobre/farmacologia , Camundongos
19.
Eur J Pharm Biopharm ; 199: 114297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641228

RESUMO

Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a âˆ¼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.


Assuntos
DNA , Nanopartículas , Polietilenoimina , RNA Interferente Pequeno , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Nanopartículas/química , Polietilenoimina/química , DNA/administração & dosagem , DNA/química , Humanos , Técnicas de Transferência de Genes , Secagem por Atomização , Transfecção/métodos , Polipropilenos/química , Excipientes/química , Tamanho da Partícula , Plasmídeos/administração & dosagem , Dessecação/métodos , Álcool de Polivinil/química
20.
Environ Res ; 252(Pt 2): 118975, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649018

RESUMO

Understanding the impact of various agricultural chemical components on the fate and transport of microplastics (MPs) in the subsurface is essential. In this study, column experiments on saturated porous media were conducted to explore the influence of the coexistence environment of pesticide adjuvants (surfactants) and active ingredients (neonicotinoids) on the transport of polyethylene (PE) and polypropylene (PP) MPs. An anionic surfactant (sodium dodecyl sulfate (SDS)), a nonionic surfactant (nonylphenol ethoxylate (NP-40)), and three neonicotinoid insecticides (acetamiprid, dinotefuran, and nitenpyram) could independently increase MP migration by 9.31%-61.01% by improving the hydrophilicity. Acetamiprid or dinotefuran reduced the adhesion work of the binary system by competing with SDS for adsorption sites, thereby inhibiting PE mobility. However, nitenpyram in the mixture was not easily adsorbed on the surface of PE MPs together with SDS because of nitenpyram's high hydrophilicity. Neonicotinoid molecules could not reduce the hydrophilic modification of SDS on PP MPs by competing for adsorption sites. Owing to their weak charge and adhesion work of nonionic surfactants (-4.80 mV and 28.45 kT for PE and -8.21 mV and 17.64 kT for PP), neonicotinoids tended to occupy the adsorption sites originally belonging to NP-40. The long molecular chain of NP-40 made it difficult for high-concentration neonicotinoids to affect the adhesion on MPs. In addition, NP-40 was harder to peel off from the MP surface than SDS, leading to a larger MP transport ability in the sand column.


Assuntos
Microplásticos , Polietileno , Polipropilenos , Tensoativos , Polipropilenos/química , Polietileno/química , Microplásticos/química , Tensoativos/química , Adsorção , Praguicidas/química , Neonicotinoides/química , Agroquímicos/química , Inseticidas/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA